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 Abstract Proposition 1.1 is, by far, the most popular example used to justify the
 thesis that many of Euclid's geometric arguments are diagram-based. Many scholars
 have recently articulated this thesis in different ways and argued for it. My purpose is
 to reformulate it in a quite general way, by describing what I take to be the twofold role

 that diagrams play in Euclid's plane geometry (EPG). Euclid's arguments are object-
 dependent. They are about geometric objects. Hence, they cannot be diagram-based
 unless diagrams are supposed to have an appropriate relation with these objects. I take
 this relation to be a quite peculiar sort of representation. Its peculiarity depends on the
 two following claims that I shall argue for: (i) The identity conditions of EPG objects
 are provided by the identity conditions of the diagrams that represent them; (ii) EPG
 objects inherit some properties and relations from these diagrams.

 Keywords Euclid • Plane geometry • Diagrams

 Some views expounded in the present paper have been previously presented in Panza (2002), whose first
 version was written in 1996, during a visiting professorship at the Universidad Nacional Autónoma de
 México. I thank all the people who supported me during my stay there. Several preliminary versions of the
 present paper have circulated in different forms and two of them are available online at http://hal.
 archives-ouvertes.fr/hal-00192165. This has allowed me to benefit from many comments, suggestions and
 criticisms and to change some of my views. I thank in particular, for their comments, suggestions and
 criticisms: Carlos Alvarez, Andrew Arana, Jeremy Avigad, Jessica Carter, Karine Chemla, Annalisa
 Coliva, Davide Crippa, Paolo d'Allessandro, Enzo Fano, Michael Friedman, Massimo Galuzzi, Giovanna
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 M. Panza (И)
 CNRS, IHPST (UMR 8590 of CNRS, University of Paris 1, and ENS Paris), Paris, France
 e-mail: marco.panza@univ-parisl.fr

 Springer

This content downloaded from 132.247.242.252 on Mon, 07 Aug 2017 23:47:25 UTC
All use subject to http://about.jstor.org/terms



 56 Synthese (2012) 186:55-102

 Fig. 1

 Proposition 1. 1 of Euclid's Elements requires to "construct" an equilateral triangle on
 a "given finite straight line", or on a given segment, in modern parlance.1 To achieve
 this, Euclid takes this segment to be AB (Fig. 1), then describes two circles with its
 two extremities A and В as centres, and takes for granted that these circles intersect
 each other in a point С distinct from A and B. This last step is not warranted by his
 explicit stipulations (definitions, postulates and common notions). Hence, either his
 argument is flawed, or it is warranted on other grounds.

 According to a classical view, "the Principle of Continuity" provides such another
 ground, insofar as it ensures "the actual existence of points of intersection" of lines
 (Euclid EEH, I, pp. 235 and 242). Friedman (1985, p. 60) has rightly remarked, how-
 ever, that in the Elements "the notion of 'continuity' [. . .] is not logically analysed" and
 thus there is no room for a "valid syllogistic inference of the form: C' is continuously]
 Сг is continuousf, then] С exists" (where C' and Сг are two circles, of course).

 A possible solution of the difficulty is to admit that Euclid's argument is diagram-
 based and that continuity provides a ground for it insofar as it is understood as a
 property of diagrams.

 Proposition 1.1 is, by far, the most popular example used to justify the thesis that
 many of Euclid's geometrical arguments are diagram-based. Many scholars have re-
 cently articulated such a thesis in different ways and argued for it.2 The purpose of my
 paper is to reformulate this thesis in a general way, by accounting for what I take to be
 the twofold role that diagrams play in Euclid's plane geometry3 (EPG, from now on).4

 1 The text of the Elements I refer to is that established by Heiberg (Euclid EGH). Quotations from it are
 drawn from Heath's translation (Euclid EEH), possibly with some local changes (often inspired by Vitrac's
 French translation: (Euclid EFV). The term 'straight line' is used here to translate the Greek 'Eúeeíď used
 in place of the larger * eù6et(x ураццт|' This translation is mandatory, though, in most cases, Euclid uses
 these last terms to refer to segments (of straight lines).

 2 For a survey of recent literature about diagram-based arguments in Euclid's geometry, cf. Manders
 (2008a). Some other works not mentioned by Manders will be cited in what follows.

 3 Diagrams have to be carefully distinguished from "figures", in the sense established in definition 1.14 of
 the Elements : cf. footnote 19, below

 4 With 'Euclid's plane geometry' I mean plane geometry as it is expounded by Euclid in the first six book
 of the Elements and in the Data , and was largely practised up to early-modern age: cf. Panza (201 1). This
 should be confounded neither with plane Euclidean geometry in general, nor with elementary synthetic
 plane geometry (Stekeler-Weithofer 1992). I take it to be a mathematical theory. Nevertheless, this term
 should not be understood in modern logical terms. EPG is a theory merely insofar as it is a closed framework
 characterised by a precise system of (informal) rules for obtaining objects and drawing conclusions about
 them: on this matter, cf. Panza (201 1, pp. 43-58, Sections 1, 2.1, 2.2).
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 This goes together with accounting for some crucial aspects of EPG, i.e. with offering
 a partial but basic account of EPG as a whole.5
 I take arguments in EPG to be about geometrical objects: points, segments of

 straight lines (segments tout court , from now on), circles, plane angles (angles tout
 court , from now on), and polygons. Hence, in my view, they cannot be diagram-based
 unless diagrams are supposed to have an appropriate relation with these objects. I take
 this relation to be a quite peculiar sort of representation.6
 Its peculiarity depends on the two following claims that I shall argue for:

 (C.i) The identity conditions of EPG objects are provided by the identity conditions
 of the diagrams that represent them;

 5 One could wonder about the status of this account. Among the works recently devoted to argue for the
 essential role of diagrams in EPG, many (like Mumma 2006, 2010, 201 1 ; Miller 2008; Avigad et al. 2009)
 suggest and discuss appropriate formal systems intended to capture some features of Euclid's arguments.
 More generally, these and other works (like Manders 2008b) have aimed to provide a modern philosophical
 account of Euclid's geometry that, though trying to reveal some important aspects of it, is not primarily
 intended to be faithful to the relevant sources. My ambition is different. 1 would like to offer an under-
 standing of EPG which depends on a faithful interpretation of these sources (but, on this matter, cf. the
 remarks advanced at the beginning of Sect. 2). Another different exercise would be that of reading EPG
 in the light of some coeval philosophical views or discussions. Though my account contrasts with a more
 customary understanding of Euclid's geometry, often taken to be Platonic in (spirit and supposed to have
 been suggested by Proclus (CEELF, CEEEM)), according to which it would deal with purely ideal objects,
 and could rather be taken to be close to the Aristotelian view that geometric objects result by abstraction
 from physical ones, it is quite far from my purpose to argue that Euclid was actually guided by an Aristo-
 telian, rather than a Platonic insight. On the one hand, the Elements and the Data offer no unquestionable
 evidence for supporting such a claim, that should, in any case, be defended or rejected by relying on a
 discussion of a number of sources that 1 cannot offer here. On the other hand, the Aristotelian notion of

 abstraction does not fit well with the relation between geometric objects and diagrams that 1 describe (while
 I consider that the understanding of the notion of continuity that 1 suggest to be at work within EPG is close
 to Aristotle's: cf. footnote 40), and the considerations of Plato's views advanced in Sect. 1 .2 suggest that
 also the anti-Platonic nature of my account could be plausibly questioned.

 6 For short, I use the term 'diagram' in a restricted sense, so as to refer only the particular sort of diagrams
 that occur in EPG. If the same term is used in its usual larger sense, one should distinguish between what
 Norman calls 'intrinsically depictive' and 'intrinsically non-depictive' diagrams (Norman 2006, p. 78).
 According to him, the former are those that "can represent in virtue of a similarity of visual appearance with
 its object(s)", the latter those that cannot. This does not seem to me a good way to make the distinction,
 however: if the relevant objects are abstract, nothing can represent them in virtue of a similarity of visual
 appearance since, if taken as such, abstract objects have no visual appearance (at most, they have it insofar
 they are associated with something else which has such an appearance, like a diagram). I'd rather distinguish
 between diagrams that are taken to display some properties and relations of some other objects (possibly
 abstract ones) which are associated to them, and diagrams that do not. It is natural to call 'representation'
 the (quite complex) relation that the former have with the objects associated to them. I'm interested here
 with a particular case of representation, in this sense. The term 'representation' is also used by Parsons, in
 a second sense, which, though close to this first one, is more general in one respect, and more particular in
 another. According to him (Parsons 2008, §7 and chap. 5), some mathematical objects are "quasi-concrete".
 These are abstract objects "distinguished by the fact that they have an intrinsic relation to the concrete", to
 the effect that they are "determined" by some concrete objects ( ibid ., pp. 33-34). For Parsons, the particular
 nature of the relation between quasi-concrete objects and the corresponding concrete ones differs according
 to the kind of the quasi-concrete objects considered. Still, he generally calls this relation 'representation'.
 In my view, the objects that EPG is about are quasi-concrete, and this just depends on the relation they
 have with the relevant diagrams (which I take to be concrete objects). Hence, I consider that the case of
 representation, in the first sense, that I'm interested in is also a case of representation in Parsons's sense.
 The main purpose of my paper can thus be understood as that of accounting for the particular nature that
 the relation of representation, both in the first and in Parsons's sense, acquires in the case of EPG objects.
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 (С.//) EPG objects inherit some properties and relations from these diagrams.

 For short, I say that diagrams play a global and a local role in EPG to mean,
 respectively, that they are such that claims (C.i) and ( C.ii ) hold.7
 As a matter of fact, I have no direct argument in favour of these claims, and

 I have no clear idea about how a direct argument in favour of these or similar claims
 (regarding the way EPG works) could be shaped. All that I shall do in order to argue
 for these claims is to explain them and, based on such an explanation, offer my partial
 account of EPG.8 If such an account is taken to be plausible (and/or favoured over
 other accounts), then it provides an indirect argument in favour of (C.i) and (C. ii).
 My plan is as follows. In Sect. 1, 1 present this account in general terms. While

 Sects. 1 .2 and 1 .3 are respectively devoted to the global and the local roles of diagrams,
 Sect. 1.1 is concerned with a crucial related question: that of the generality of EPG
 results (namely, theorems and solutions of problems). In Sect. 2, 1 illustrate, then, this
 account through examples, by applying it to a relevant fragment of the first book of
 the Elements . Finally, Sect. 3 provides some concluding remarks.

 1 The global and local roles of diagrams

 Klein (1934, pp. 119-123) has argued for a distinction that would characterise the
 essential difference between Greek science, especially Euclid's mathematics, and early
 modern mathematics. This is the distinction between "the generality of the method
 and the generality of the objects of investigation". According to Klein, early modern
 mathematics is characterised by the generality of the method: it "determines its objects

 by reflecting on the way in which these objects become accessible through a general
 method". This is just what makes it is symbolic. Greek science, instead, is not sym-
 bolic at all, since it "represents the whole complex of those ' natural ' cognitions which

 are implied in a prescientific activity", and "does not identify the object represented
 with the means of its representation"; rather, its concepts "are formed in continual
 dependence on 'natural' prescientific experience", to the effect that the acquaintance
 with the relevant objects can only depend on an "immediate insight" of them. Klein
 seems then to suggest that, whereas early modern science is ipso facto general insofar
 as its method is so, Greek science reaches generality only in presence of an immediate
 insight of general objects (which is quite hard to have).
 My account of EPG is basically different, even diametrically opposed. I concede

 that EPG objects can be conceived of as forms of concrete objects, that is, of objects
 that we have an immediate insight of. But I deny one can have an immediate insight
 of EPG objects themselves. Still, I do not take these objects to be general. In my
 view, our acquaintance with them passes though diagrams conceived of as concrete

 7 This use of the adjectives 'local' and 'global' should thus not be taken to evoke some more general
 perspective on the role of diagrams in EPG. These adjectives are merely used to call forth claims (C.i) and
 (CM).

 8 For different, but (at least partially) complementary, insights about the role of diagrams in Euclid's and,
 more generally, Greek geometry, cf., among others: Netz (1999, chap. 1), Shabel (2003, part 1), Azzouni
 (2004), Norman (2006), Manders (2008b) and Macbeth (2010). For a complementary account to the one
 offered in the present paper, I refer the reader to Panza (201 1, Sect. 2).
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 objects, but they are neither the diagrams themselves, nor types of which diagrams are

 tokens.9 Doing EPG rather relies on a number of abilities for operating with diagrams
 to draw conclusions about abstract objects which these diagrams represent. Insofar
 as diagrams can be taken to be symbols of the objects they represent, EPG can then
 be taken to be symbolic, though the sense in which it is so is a quite particular one,
 namely a sense that claims (C. I) and (C.ii) are intended to specify, insofar as they are
 purported to account for the relation of representation that links diagrams with EPG
 objects. The way EPG is general depends, in turn, on this very relation. In short, it is
 general neither because its objects are general, nor because its theorems and solutions
 of problems say something about determinate totalities of objects, but rather because
 they assert that certain repeatable procedures cannot but have certain outcomes.
 Though my paper is not mainly concerned with the generality of EPG, it is appro-

 priate to begin my account by saying something more about this matter. This will
 possibly avoid misunderstanding, by making clear a crucial difference between this
 account and a very widespread view on EPG.

 1 . 1 The problem of generality and the schematic view

 Geometrical objects are abstract. By contrast, I take diagrams to be concrete objects,
 though I admit of course they are tokens belonging to appropriate types.10 So under-
 stood, a diagram is a configuration of concrete lines11 drawn on an appropriate flat
 material support.12
 These are compositional objects: a diagram can be either elementary or composed of

 other diagrams. A composed diagram includes other distinct diagrams (either elemen-
 tary or composed, in turn). But diagrams can also be distinct without being included
 in a single composed one. For example, a diagram drawn on December 1st, 2010 at
 15h23 by a colleague of mine on the blackboard of a classroom of Paris 1 Univer-
 sity, and another drawn by Euclid himself on a vax tablet during one if his courses at
 the Alexandria Museum are certainly distinct, and certainly not included in a single

 9 Taken as concrete objects, any diagram is, of course, a token of a certain type. But this type is not, in my
 view, a geometric object that EPG is about, but merely a type of diagram. It follows that, in my view, EPG
 is neither an empirical theory, nor a contentual one, in Hilberťs sense, that is, a theory of "extra-logical
 discrete objects, which exist intuitively as immediate experience before all thought" (Hilbert 1998, p. 202).

 10 Cf. footnote 9, above.

 1 1 Anytime the context will not be clear enough to avoid confusion between terms denoting some EPG
 objects and terms denoting the configurations of lines representing them, I shall add to these terms the
 adjectives 'geometric' and 'concrete', according whether they are intended to refer to the former or the
 latter. The clarification of the distinction between concrete and abstract objects is a crucial philosophical
 task, that, of course, I cannot undertake here. I hope however that what I mean by saying that diagrams
 are concrete objects and EPG objects are abstract be clear enough, or will be at least clarified by my very
 account.

 12 Through many forms of expositions of EPG arguments rely on diagrams that are not drawn throughout
 the exposition itself (but completely drawn beforehand, or printed), in order to follow these arguments one
 has to conceive these diagrams are drawn while the argument progresses. This is the how EPG diagrams
 are conceived here.
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 composed diagram. I say that diagrams like these are mutually independent, and that
 each of them is self-sufficient.

 I suppose that the (cognitive) abilities necessary to understand and practice EPG
 include: recognising types that a diagram belongs to as token; identifying the distinct
 elementary or composed diagrams that are part of a single composed one; distinguish-
 ing two mutually independent diagrams; identifying a self-sufficient one.

 Consider two mutually independent diagrams, and suppose that both of them repre-
 sent an equilateral triangle. Take for example two diagrams like those just mentioned
 representing an equilateral triangle, or those that are printed on my copy of Heath's
 translation of the Elements on a side of the text of propositions 1.1 and 1.10, respec-
 tively, or, again, those that are printed respectively on my copy of this same book and

 on that of my friend Ken, on a side of the text of the same proposition 1.1. It is nec-
 essary, in order to understand and practice EPG, to be able to establish whether they
 represent the same equilateral triangle? I take for granted that the answer is negative.
 More than that, I take for granted that the question makes little sense, or better that
 there is no need to be able to ascribe a clear sense to it in order to understand and

 practice EPG.13 Hence, I take claim (C.i) to mean that EPG objects are distinct insofar
 as they are represented by distinct diagrams or distinct elements of diagrams entering
 into a single composed self-sufficient diagram,14 and that no other identity condi-
 tion for EPG objects is available (except in some particular cases, where appropriate
 stipulations are made).15

 One could retort that in order to understand and practice EPG it is no more neces-
 sary to ascribe a clear sense to the question whether two mutually independent proofs
 are concerned with the same objects. Accordingly, one could argue that the reason
 why it is irrelevant whether two mutually independent diagrams represent the same
 EPG objects, rests on the fact that EPG arguments are not about singular objects, but
 rather about something like general schémas, or, better, only about concepts. Tennant

 13 Cf. McLarty (2008, p. 354): [. . .] it is senseless to ask [. . .] [whether] the vertex A of a triangle ABC [. . .]
 is equal to or distinct from vertex A of a square ABCD in another diagram. [. . .] If the points were distinct,
 then by postulate a unique [straight] line would join them; but a line between two diagrams is senseless in
 Euclid's practice."

 14 To be more precise, one should consider the case of angles separately. This will be made clear in Sects. 1 .2
 and 2.1. Also the case of points is particular, since, according to my account, points are, properly speak-
 ing, not represented by diagrams but by elements of diagrams, namely by extremities or intersections of
 concrete lines (cf. footnote (38) and Sect. 2.1, below). For short, I say, in general, that diagrams represent
 EPG objects to mean that these objects are individually represented either by diagrams or by elements of
 diagrams. But I use a more precise parlance when I rely on the relation of representation between diagrams
 and EPG objects in order to specify the identity conditions of points.

 15 These cases are very easy to conceive. Throughout the course of a single argument it can be convenient,
 for example, to reproduce a certain diagram to the side of another, or under it, or even on a fresh page or
 blackboard, though admitting that the new diagram represents the same objects as the former. In cases like
 these, two mutually independent diagrams are explicitly taken to represent the same objects (the same situ-
 ation could also be described by saying that there is only a diagram-type with two or more diagram-tokens
 belonging to it, and that the relevant objects are represented by the former). These cases are governed be
 explicit local stipulations and they can be easily accounted for within the framework of the simpler, more
 common case where no identity condition is available for objects represented by mutually independent
 diagrams (and diagrams are nothing but tokens). For simplicity, in what follows I limit myself to consider
 this simpler case.
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 has articulated this view by arguing that in geometrical proofs like Euclid's, a singular
 term like 'the triangle ABC' is "no more than a placeholder in schematic reasoning",
 and the corresponding diagram "stands for no particular triangle" (Tennant 1986,
 pp. 303-304). For future reference, label a singular term like this 'diagrammatic'.
 This view can be specified in different ways, but, mutatis mutandis , it is quite com-

 mon. In his paper included in the first tome of the present issue, J. Mumma argues,
 for example, that in the theorem "that the three angle bisectors of a triangle ABC
 intersect in a point", "the triangle ABC is not one individual triangle" since "nothing
 about its position or orientation is specified, nor is anything specified about the relative
 magnitude of its sides and angles [, but rather] [...] all these can vary continuously,
 and the theorem still applies" (Mumma 2011, p. 15). He concludes that the default
 way to account for this is to render the theorem as an universally quantified statement

 of the form 'Vjc [(jc is a; triangle) =>> ...]'.
 There is no doubt that this theorem is general, that is, it does not concern a single

 triangle, whatever this triangle might be. But if one wanted to state it in the language
 used in the Elements , one should not rely on any diagrammatic singular term. Proposi-
 tions 1. 16-20 suggests to state it as follows: 'in any triangle, the three angle bisectors
 intersect in a point'. But other formulations are possible, for example the following
 ones, respectively suggested by propositions 1.5 and 1.6: 'in the triangles, the three
 angle bisectors intersect in a point', or 'in a triangle, the three angle bisectors intersect
 in a point'.

 Diagrammatic singular terms never enter into the statement of a geometrical prop-
 osition (whether might it be a theorem or a problem) of the Elements and the Data.
 They enter rather into their proofs or solutions. It is just because these are proofs or
 solutions of propositions that are rightly taken to be general, that it is often denied
 that the diagrammatic singular terms that enter into them refer to particular objects.
 Insofar as diagrams are related with these terms in such a way that there is no doubt
 that one such term refers to a certain particular object if and only if the related diagram

 (or element of a diagram) represents this very object, this is also the reason why it is
 also often denied that diagrams represent particular objects in Euclid's arguments.

 This leaves the problem open of understanding the role that diagrammatic singular
 terms and the related diagrams play in these arguments.

 One possibility is to deny that diagrams have any effective role and to maintain that

 diagrammatic singular terms work as dummy letters. An obvious difficulty with this
 solution is just the one I have begun with: if such a solution is adopted, the possibil-
 ity of arguing that some of these arguments are diagram-based has to be discarded;
 another explanation for these arguments has then to be offered, or they have to be
 frankly taken as flawed.

 But the idea that diagrammatic singular terms work in Euclid's arguments as dummy
 letters is also compatible with the admission that diagrams enter indispensably into
 these arguments. This is the case, for example, if it is maintained that a diagram
 represents a variety (or a multitude, a family, a class, etc.) of geometric objects or
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 configurations of geometric objects which include all those that are in the scope of the
 relevant proposition. This is just Mumma's option.16
 The main problem that I see with this option is that it requires that the abstract

 objects that EPG is about form a fixed domain of individuals within which the scope
 of any proposition is somehow selected. This is also required if Euclid theorems
 are understood as universally quantified statements where the range of quantifiers

 includes geometric objects, as in statements of the form 'Vjc [(x is a triangle) => . . .]'
 mentioned above, at least if the universal quantifier is interpreted as usually in classical

 predicate logic. For this view to be appropriate, one should then provide some fixed
 and global identity conditions for these objects. In other words, one should explain
 what makes it that any one of these objects is definitively distinct from any other,
 that is, it is just one particular geometric object, for example one particular triangle.
 This requirement can be quite easily satisfied: it is enough to admit that these objects
 eternally exist as such, independently from EPG and from our practice of EPG, in
 agreement with the usual Platonic view; or, at least, that they exist within the space of
 EPG (this space being appropriately identified), in such a way that each of them has
 a distinct location in this space, as it is the case in the picture Mumma finds himself
 led to. The problem is that both these views hardly fit with the constructive language
 Euclid adopts and the role he assigns to constructions and solutions of problems.17
 My account is quite different, and fits quite well, instead, with this language and this

 role. According to it, in EPG, general propositions are proved or solved by working
 on particular individuals. Of course, this goes with the problem of explaining how this
 is possible. This problem is not very different, however, from that of explaining how
 general conclusions can be soundly reached by working with schémas as those that
 EPG would be about, according to the schematic view. In both cases, what requires
 explanation is how it is that Euclid's arguments, which are prima facie particular, can
 support general conclusions. But, while in the latter case, it is taken for granted that
 these last conclusions are general insofar as they concern a fixed totality of geometric
 objects (and can then be rendered through quantified statements usually understood,
 where the range of quantifiers includes these objects), my account suggests another
 way of understanding the generality of Euclid's propositions. According to it, they are
 general insofar as they assert that some admitted rules to be followed in constructing
 geometric objects are such that these objects cannot but be constructed so as to have
 certain properties or relations, to the effect that any time one of them is constructed
 what is obtained is an object having these properties or relations. According to the
 understanding of the notion of being given that I shall describe in the following sub-
 section, this could be easily rendered by saying that any given object of a certain sort

 16 If I understand his point well, according to Caveing, this is rather what happens in pre-Euclidean geom-
 etry (especially Thales's). For him (Cavaing 1997, pp. 73-75, 148-149) this geometry was concerned with
 "schémas" understood as diagrams "given in visual intuition", whose "mode of being" was "the same as
 that of the decorative drawing", but whose "sense" was not "aesthetic", being rather that "of representing a
 problematic situation", so as to open "a field of possibilities". Caveing holds, however, that things changed
 radically with Eucliďs geometry (Cavaing 1982, pp. 155, 164), since in it "empirical intuition is out of the
 question" and the continuum is not "a simple intuitive determination", with the result that diagrams lose
 their essential role.

 17 For my account of the role of problems in EPG, cf. Panza (201 1), Sect. 2.2.
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 is so and so or has this or that relation with whatever other given objects of the same
 or other sorts. Indeed, according to this understanding, a given object is not an object
 selected within a fixed totality of geometric objects, but rather an object constructed
 in a certain way that has neither existence nor determination independently of the act
 of constructing it.18

 Suggesting this way of understanding the generality of Euclid's propositions is
 certainly not enough to explain how they can be soundly proved or solved through
 arguments like Euclid's. Still, this provides, I think, an appropriate ground for explain-

 ing it. This is not the purpose of my present paper, however (I leave it possibly for other

 occasions). This is rather devoted to a particular aspect of a more basic question: a
 question that any alleged solution of the problem of generality of Euclid's propositions
 has to deal with as a preliminary. This is the question of understanding how Euclid's
 arguments work, and the particular aspect I tackle here is, of course, that of the role
 that diagrams play in these arguments.

 1.2 The global role of diagrams

 Like any other mathematical theory, EPG relies on stipulations. In the case of EPG,
 these can be understood as prescriptions addressed to the members of a relevant com-
 munity that are supposed to have appropriate abilities for understanding, applying and
 following them.
 Some of these prescriptions are intended to provide appropriate conditions for a

 geometrical object to be of a certain sort, that is, for it to fall under a certain (sortal)
 concept: these are the application conditions of this concept. Others are intended to
 provide appropriate conditions for an object that fall under a certain concept to be
 distinct from any other object that also falls under this concept: these are the identity
 conditions of the objects falling under this concept.
 As said, EPG objects are points, segments, circles, angles, and polygons. All of them

 can be understood as configurations of points and lines, or as (that which is common
 to) equivalence classes of such configurations, this latter case being that of angles.19

 1 8 Hence, to come back to Mumma's example, though 1 admit that the theorem he considers can be rendered
 in the language of EPG through the statement 'in any triangle, the three angle bisectors intersect in a point',
 according to the example of propositions, 1. 16-20, 1 suggest to understand the universal quantifier occurring
 in this statement and in these proposition as ranging not on the totality of triangles, but on possible acts of
 construction. I have no space here for further clarifying this interpretation and outlining the (non-classical)
 logic it should go with. I hope to be able to do it elsewhere.

 19 For Euclid, circles and polygons are "figures" and, according to definition 1. 14, "a figure [a%r¡ |xá] is that
 which is contained by any boundary or boundaries". This suggests making a distinction between a line or
 configuration of lines and that which this line or configuration of lines contains, if it is contour-closed
 (a portion of the plane, perhaps?). Strictly speaking, this distinction is not necessary, however, for
 EPG to run. What is necessary, rather, is a distinction between two equivalence relations among
 contour-closed lines or configurations of lines, namely congruence and surface-equality, in modern
 language The same Euclid suggests that the former distinction is not essential as such by using
 quite often the term 'circle [xúkXoç]' to refer to what in definitions 1.17-18 he rather calls 'cir-
 cumference [rcepKpépeia]': this is for example the case when he refers to the intersection point
 of two circles, like in propositions 1.1. Still, if the reader attaches some importance to this dis-
 tinction, (s)he can take circles and polygons to be that which appropriate lines or configurations
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 To provide the application conditions of a concept under which some EPG objects are
 supposed to fall is thus the same as providing the conditions that a configuration of
 geometrical points and lines has to satisfy in order to be - or, in the case of angles, in
 order to determine - an object falling under this concept. These conditions typically
 include two different sorts of requirements. For example, according to definitions 1. 19
 and 1.22, squares are systems of four equal segments sharing an extremity two by
 two so as to form four equal angles (or figures contained by four such segments).20
 The requirement that they be systems of four segments sharing an extremity two by
 two so as to form four angles is different in nature from the requirement that these
 segments and angles be equal. The former fixes a clause relative to the intrinsic mor-
 phological nature of the relevant configuration, namely to the nature and number of
 the elements that form such a configuration, and of their respective spatial disposition.
 Broadly speaking, it is topological. The latter fixes a further clause relative to a con-
 dition that does not merely depend on the morphological nature of this configuration.
 Broadly speaking, it is metric. I suggest that requirements of the former kind are in fact
 relative to the conditions that certain diagrams have to meet in order to be suitable for

 representing the relevant objects.21

 Hence, one might say: geometrical points are geometrical objects represented
 by extremities and intersections of concrete lines (which can be taken to be con-
 crete points)22; segments are geometrical objects represented by appropriate23 con-
 crete contour-open lines; circles are geometrical objects represented by concrete

 Footnote 19 continued

 of lines contain (and oppose them to these very lines or configurations of lines, namely to circumferences
 and contour-closed configurations of segments). The necessity of some terminological adjustments apart,
 this will have no influence on what 1 have to say in the present paper about EPG.

 20 Cf. footnote 19, above.

 21 The distinction between these two kinds of requirements is close to that advanced by Avigad, Dean and
 Mumma (Avigad et al. 2009, p. 703) between topological and metric components of the meaning of certain
 Euclid's assertions. This last distinction is inspired, in turn, by Manders's distinction between exact and
 co-exact attributions and attributes (Manders 2008b, pp. 91-94). I shall come back to this last distinction in
 Sect. 1 .3, but, because of its influence and pervasiveness in the recent discussion about the role of diagrams
 in Euclid's geometry, it is important to make clear from now that my own distinction between topological
 and metric requirements cannot be accounted for by saying the former are co-exact and the latter exact,
 in Manders's sense. There are at least two reasons for that. The first is that Manders take straightness or
 circularity of lines to be exact attributes (ibid., p. 92), while I consider, for example, that the requirement
 that a certain EPG object be composed by segments to be topologie in EPG (because of the remark done in
 footnote 24, below). To understand the second reason, consider the requirement that the segments and angles
 forming a system of four segments sharing an extremity two by two be unequal to each other. According
 to Manders, such a requirement would concern co-exact attributes, whereas it would be, in my view, of
 the same kind as the requirement that these four segments and angles be equal. These differences between
 mine and Manders's distinctions apart, what is relevant for my account is that the application conditions
 of the concepts under which EPG objects are supposed to fall include two sorts of requirements, of which
 the former are relative to the conditions that certain diagrams have to meet in order to be appropriate for
 representing the relevant objects.

 22 Cf. footnotes 38 and 60, above.

 23 What 'appropriate' means in this case is clarified in Sect. 2. 1 .
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 contour-closed lines, which are supposed to meet a further equality condition24; an-
 gles are the geometrical objects represented by pairs of concrete lines that represent
 segments or circles; polygons are the geometrical objects represented by systems of
 concrete contour-open lines representing segments, which share an extremity two by
 two and do not intersect each other (so as to form a contour-closed configuration).
 In EPG, it is not enough to provide the application conditions of appropriate con-

 cepts, however. It is also necessary to provide identity conditions for the objects that are
 supposed to fall under these concepts. Typically, an identity condition for the objects
 of a certain sort is stated through an instance of the schema = y IFF C(jt, y)'
 where V and 4 y ' refer, or are purported to refer (as names, descriptions, or schematic
 constants) to single (though possibly undetermined) objects of the sort, and *С(х, уУ
 designates an equivalence condition relative to these objects or to other associated enti-
 ties. Hence, in order to provide identity conditions for the objects that are supposed
 to fall under a certain concept, it is necessary to have a way to refer, or to purport
 reference, to such single (though possibly undetermined) objects. But in EPG, only
 given or supposedly given objects are liable to individual reference. Hence, EPG only
 includes identity conditions for given or supposedly given objects.25 To understand
 the nature of these conditions is thus necessary to understand what 'given' means in
 EPG.

 Though in the Elements , geometrical objects are often said to be given, the condi-
 tions under which an object is given are never explicitly stated. And this is no more
 done in the Data , whose definitions 1, 3 and 4 establish, rather, under which con-

 ditions appropriate geometrical objects are given-in-magnitude, given-in-form, and
 given-in-position, respectively.26

 Taisbak has discussed these definitions in detail in the comments of his translation

 of the Data (Taisbak 2003). He has argued that the term 'given [5e8o|aévoç]' means
 there the same as it usually means: "that an object is given to us means that it is, in
 some relevant sense and scope, put at our disposal" ( ibid ., p. 18). In other words, the
 term 'given' occurs in these definitions as "a primitive needing no definition", and "the
 very concept of given remains undefined" (ibid., pp. 25, 22). In his view, definitions
 1, 3 and 4 of the Data merely establish the conditions under which "some objects
 are also given (in the said respect), besides [...] those that are already given" ( ibid .,
 p. 25). Take the example of definition 1: "Given in magnitude is said of figures and
 lines and angles for which we can provide equals" (ibid., p. 17). According to Taisbak,
 this definition establishes that an appropriate object x is given-in-magnitude if and
 only if "we can provide" something equal to it, and this is equivalent to stating that

 24 Note that in EPG there are only two sorts of lines: straight lines or segments, and circles. Hence, the
 only relevant distinction among lines is between these two sorts, the former being contour-open, the latter
 being contour-closed.

 25 To be strictly faithful to the language that Euclid uses in the Elements , one should say that in EPG only
 given or constructed, or supposedly given or constructed objects are liable to individual reference. This is
 because, as 1 shall emphasise later, Euclid use of the verb 'to give [618соц1]' is quite restricted. However, in
 what follows, I shall suggest a larger understating of the past participle 'given', which justifies my previous
 claim.

 26 Definition 2 of the Data establishes under which condition a ratio is given. The status of ratios in EPG
 is controversial, but for my present purpose it is not useful to consider this matter.
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 an appropriate object x is given-in-magnitude if and only if it is equal to an already
 given object a ( ibid ., p. 29).
 This interpretation leaves the crucial questions open: what does it mean to say that

 a geometrical object is put at our disposal in some sense and scope, and is thus given
 (to us)? And what does it mean to say that we can provide something? This is not
 because Taisbak's interpretation is deficient. It is rather because Euclid's definitions
 do not aim to establish what 'given' means, in general.
 Taisbak seems to suggest that we can provide an object a to which another geo-

 metrical object x is equal if and only if a is already given and x is provably equal to
 a. Hence, in definition 1 of the Data , Euclid would not employ the verb 4o provide
 [rcopiÇœ]' as a synonym of the verb 4o give [8i8co|xi]' actively understood, that is, so
 used as to indicate the action of putting a at our disposal. This verb would rather be
 used to mean the same as the verb 4o give [ÔîÔcûjii]', passively understood - that is,
 so used as to indicate that a is already given, i.e. not put at our disposal, but already
 at our disposal - provided that the objects to which this verb applies be so given (in
 this last sense) that it be possible to prove that something else is equal to them.
 But even if this were correct, it would not be enough to clarify what 4o give'

 means, either actively or passively understood. For this purpose, Taisbak relies on
 Plato's account of Republic VII, 521a- b (to which I shall come back pretty soon) and,
 on the base of it, he argues that "when mathematicians are doing geometry, describing
 circles, constructing triangles, producing straight lines, they are not really creating
 these items, but only drawing pictures of them "(ibid., p. 27). Hence, for him, giving a

 geometrical object concerns the "Realm of Intelligence", where "The Helping Hand
 [...] takes care that lines are drawn, points are taken, circles described, perpendicu-
 lars dropped, etc." and keeps these operations "free from contamination of our mortal
 fingers "(ibid., pp. 28-29). Taisbak offers the example of postulate 1. 1 of the Elements,
 that licenses one "to draw [a] straight line from any point to any point". According
 to him, such a postulate should be understood as follows: "whenever there are two
 points, there is also one (and only one) straight line joining them", and the geometer
 is "permitted to behave accordingly, that is to conceive a picture of this line" (ibid.,
 p. 28).

 This view is ambiguous. I see at least two ways to understand it. According to
 the first understanding, a geometric object can be actively given only if it is already
 passively given, and this last condition merely consists in its existing in the Realm
 of Intelligence, whatever this Realm might be. Its being actively given would then
 merely consist in its being selected among other objects that are passively given inso-
 far as they are the inhabitants of such a Realm, and diagrams would thus be nothing
 but pictures that geometers use for their convenience, in order to denote the objects
 they successively select. According to the second understanding, it is not required, for
 a geometric object to be actively given, that it be passively given, or that it exist in
 some sense, but what makes it comes to be actively given is not an act fulfilled by a
 human geometer. It is instead an act of The Helping Hand (or even the mere willing
 of such a transcendent subject), any act fulfilled by a human geometer, possibly using
 diagrams, being rather a sort of material echoing of this superhuman act (or willing).
 The former understanding fits with the usual Platonic view I mentioned at the end
 of Sect. 1.1. But the latter also can be taken to be Platonic (or better neo-Platonic),
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 in some sense. According to the former understanding, constructions are nothing but
 means for identifying objects that already exist as such and are already distinguished
 from each other by their intrinsic nature. According to the latter, there are two sorts of
 constructions: those fulfilled by the Helping Hand, and their human echoing, which
 are the only ones that diagrams possibly enter into.
 I have already said that the former understanding hardly fits with Euclid's construc-

 tive language and with the role he assigns to constructions and solutions of problems.
 Let me offer here additional comments which also applies to the latter understanding.
 In order to do it, let us come back to the passage from Plato mentioned by Taisbak27:

 This at least [. . .] will not be disputed by those who have even a slight acquain-
 tance with geometry, that this science is in direct contradiction with the language

 employed in it by its adepts [...] Their language is most ludicrous, though they
 cannot help it, for they speak as if they were doing something and as if all their
 words were directed towards action. For all their talk is of squaring and applying

 and adding and the like, whereas in fact the real object of the entire study is pure

 knowledge [...][,] the knowledge of that which always is, and not of a something
 which at some time comes into being and passes away.

 The phrase rendered in this translation with 'their language is most ludicrous, though
 they cannot help it' is as follows, in Greek: "kéyovoi 'iév тог) 'iáXa ye^oícoç xcci
 ccvaYXaíxDç'. The adjective clearly means inevitability. As remarked
 by P. Shorey in a footnote to his quoted translation, what Plato is saying here is that
 "geometers are compelled to use the language of sense perception". This has been
 emphasised by Burnyeat (1987, p. 219), according to which Plato would not advance
 here a criticism of the language of geometry, in the name of an idealistic conception of

 geometry; he would rather argue that the use of a practical language is indispensable,
 since human beings can speak of the eternal, unchangeable, and purely intelligible
 objects of geometry only by referring (at least apparently) to other objects, temporary,
 changeable and sensible.
 Here is the point, which Plato himself (if this interpretation is correct), was making.

 Even if it were admitted that the objects EPG is about exist (eternally) as such, and are
 distinguished from each other by their intrinsic nature, and/or that the constructions

 fulfilled by the geometers merely echo some other transcendent constructions, these
 objects would enter into EPG, understood as a human geometry,28 only insofar the
 geometer is able to identify them and to distinguish them from each other through some

 appropriate, human way. This is because any account of EPG cannot avoid explaining
 how these objects can be identified and distinguished by us. And if one wants to do
 this without appealing to their being actively given by or to us, the only other expla-
 nation I know of (and that is surreptitiously admitted in many accounts of EPG), is

 27 I quote Shorey's translation: Plato (EC), vol. 6, which is also that quoted by Taisbak.

 28 EPG understood as a human geometry is perfectly conceivable in Plato's framework as a sort of knowl-
 edge, namely as that sort of knowledge that results by connecting true opinions to each other: cf. Meno ,
 pp. 97 e-98 a.
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 by appealing to their disposition in space.29 But, its is very hard to appreciate this
 disposition in absence of any external system of reference. So, it is enough to remark
 that in EPG no such system is available30 to bring to light how both understandings
 of Taisbak's views on giveness result in an account of EPG that is at least incomplete.
 This being said, I can pass to explain my understanding of the notion of being given

 in EPG, which is quite different from Taisbak's.
 I begin by observing that definition I of the Data could be understood in a way

 opposite to that suggested by Taisbak, namely as stating that an appropriate object a
 is given-in-magnitude if and only if it is given (either passively or actively) and we
 can provide another object x which is provably equal to it. I also suggest that the
 verb 'to provide' be understood here as a synonym of 4o give' actively understood, or
 more precisely, that 'we can provide jc' should be understood as meaning that x can
 be actively given, and that 'can' be taken at face value, so as to indicate that a modal
 operator is implicitly involved in the definition.
 I shall come back soon to the way how such an operator should be understood.

 Before doing that, it is necessary to say that I take geometric objects to be given in
 EPG if and only if diagrams appropriate to represent them are canonically drawn, or
 imagined to be canonically drawn. Hence, they are actively given, or provided, by
 canonically drawing these diagrams, or by imagining to draw them canonically, and
 they are passively given if and only if these diagrams have been canonically drawn, or
 imagined to have been canonically drawn. I shall say in a moment what 'canonically'
 means. At present, it is enough to notice that, whatever it means, from this condition -

 and from the fact that, as I have argued below, EPG includes only identity conditions
 for given or supposedly given objects - it follows that these conditions apply only to
 objects represented by appropriate diagrams, actual or imagined.
 To avoid any misunderstanding, a clarification concerning my appeal to imagination

 is needed. To argue that diagrams play an indispensable role in EPG is not the same
 as arguing that, in order to practice EPG, it is necessary to actually draw diagrams. In
 many cases it can be enough (or even necessary) to imagine them (or to imagine draw-
 ing them). More than that: diagrams play an indispensable role in EPG just insofar
 as EPG includes prescriptions on how they are to be drawn; hence the understanding
 of these prescriptions (or at least some of them) cannot require drawing diagrams.
 Understanding them is rather a condition for gaining the ability to draw them.31 What
 is crucial is thus not that diagrams be actually drawn, bur rather that, in the case they or

 their drawing are imagined, imagination is just imagination of diagrams (understood

 29 This is just Taisbak's option (Taisbak 2003, p. 19): 'The Plane is supposed to be full of points, and one
 is free to choose among them. The same holds to a certain extent for lines and line segments."

 30 Of course, the adjective 'external' is crucial here. In EPG, any given object supplies, indeed, a system
 of reference with respect to which the spatial disposition of any other given object can be appreciated. The
 point is that the availability of such an obvious system of reference requires that some objects be given.

 31 Whether the appropriate conveyance of these prescriptions requires that the apprentice look at some
 diagrams or the teacher draw them in front of the apprentice is a separate issue which I shall not discuss
 here.
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 as concrete tokens) and their material drawing, and not imagination of some abstract
 objects (whatever imagination of abstracta might be).32
 Take now V and 4 y ' to refer to some given or supposedly given EPG objects.

 Under what conditions is x the same object as yl I suggest that the right answer is the
 following: if x and y are segments, circles or polygons, then x is the same as y if and
 only if they are represented by the same concrete line or configuration of concrete lines

 (these lines being either actually drawn or imagined); if x and y are points, then x is
 the same as y if and only if they are represented by the same extremity of one or more
 concrete lines, or by the same intersection of concrete lines (these lines being again,
 either actually drawn or imagined); if x and y are angles, then x is the same as y if
 and only if they are respectively represented by appropriate configurations of concrete
 lines (anew, either actually drawn or imagined) - namely configuration formed by
 two such lines sharing an extremity - belonging to the same appropriate equivalence
 class.33 This is how I understand claims (C ./).
 With this in mind, we can go back to the modal nature that I suggest to be assigned

 to definition 1 of the Data. This will also allow me to clarify what I mean with 'canon-
 ically drawn*.

 For Taisbak, this definition should be schematically understood as follows:

 x is given-in-magitude IFF an a such that a = x is passively given.

 I rather suggest to understand it as follows:

 . j T_ a is given ® (either passively or actively)
 a is given-in-magitude ® . j T_ IFF ® . i_ . • i •

 ® and an x such . that i_ a = x can . be actively • i given. •

 According to my interpretation, that an x can be actively given means that a diagram

 appropriate to represent x can be canonically drawn (that is, we can canonically draw
 such a diagram). Therefore, I take definition 1 of the Data to establish, for example,
 that a certain segment is given-in-magnitude if and only if a concrete line appropriate
 to represent it has been, or is canonically drawn, or imagined to have been, or to be
 drawn, and a new concrete line appropriate to represent another segment equal to it
 can be canonically drawn, in turn.

 To better illustrate this interpretation, let us consider proposition 4 of the Data : "if

 a given magnitude be subtracted from a given magnitude, the remainder will be given"
 (ibid., p. 43). A given magnitude is a geometrical object given-in-magnitude, and this
 is also the case of the remainder. Euclid's proof begins as follows: "For, since AB is
 given, it is possible to provide a [magnitude] equal to it. Let it have been provided,
 and let it be DZ" ( ibid ., p. 44). Then Euclid continues by repeating the same argument
 for a second pair of magnitudes - AC and DE - and concludes that as AB = DZ and

 32 Also the notion of being supposedly given deserves a clarification. I shall come back to it in footnote 34.
 A negative remark is appropriate at once, however: that an object is only supposedly given is not be con-
 fused with its being represented with an imagined diagram, a diagram that is not (or has not been) actually
 drawn. The supposition here is not relative to the drawing of the relevant diagrams but to the giveness of
 the corresponding objects.

 33 The nature of these equivalence classes will be made clear in Sect. 2. 1 .
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 AC = DE, the remainder of AB and AC is equal to that of DZ and DE and thus the
 former is a given magnitude, that is, it is given-in-magnitude. Euclid does not say
 that, since AB is given, it is equal to another magnitude DZ. He separates the claim
 'it is possible to provide a magnitude equal to AB', from the claim 'let it have been
 provided'. Under my interpretation, this is the same as distinguishing the admission
 that a geometrical objects x could be actively given both from the assumption that x
 is passively given and from its being actively given.

 Euclid's argument is general, but it is illustrated by a diagram where AB and DZ are
 depicted as segments (Fig. 2). Suppose they are segments. I suggest Euclid's argument
 be interpreted as follows: AB is a (passively) given segment represented by an appro-
 priate concrete line (that is taken to have been canonically drawn); it is then possible
 to canonically draw another concrete line that represents another segment equal to it;
 let this line be drawn and let DZ be the segment that it represents; DZ is thus (actively)

 given (to the effect that AB is then given-in-magnitude).
 A crucial question still remains open: what does it mean that a diagram is canoni-

 cally drawn, and thus a geometric object is actively given?
 The example of proposition 4 of the Data cannot help us in responding this ques-

 tion, since, in this proposition, Euclid is reasoning in general, and thus he can only
 suppose that certain geometric objects be given or can be given. Let us rather consider
 proposition 1.3 of the Elements , which corresponds, clearly, to a particular case of
 proposition 4 of the Data , insofar as it is a problem whose solution shows how to give
 the remainder of two given magnitudes in the case where these magnitudes are two
 segments. Here it is: "Given two unequal straight lines, to cut off from the greater [a]

 straight line equal to the less".
 To solve this problem, Euclid refers to a diagram (Fig. 3a) including two separate

 dashes representing two given segments that he calls 'AB ' and 'C'. The diagram also
 includes a third dash representing a segment AD equal to С that is taken to have been
 placed, according to the solution of proposition 1.2, so that it shares with the segment
 AB one of its extremities, namely the point A. Finally, the diagram includes a contour-
 closed line drawn around A which is taken to pass through the point D, representing
 the circle with centre A and radius AD described according to postulate 1.3. Euclid
 tacitly admits that this circle intersects AB in a point E, and concludes that this point
 cuts AB as required.

 This suggests that a diagram - call it V - is canonically drawn in EPG if a cer-
 tain procedure for drawing diagrams, starting from some other diagrams representing
 some given objects and resulting in V , is licensed by the stipulations of EPG, or if
 these same stipulations licence that a diagram such as V be taken as a starting point
 of licensed procedures for drawing diagrams. Thus, that a geometrical object can be
 actively given in EPG means that a procedure for drawing diagrams resulting in a dia-
 gram representing such an object is licensed by these stipulations, or that these same
 stipulations license that a diagram representing such an object be taken as a starting
 point of a licensed procedure for drawing diagrams.
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 The plausibility of this interpretation depends on the nature of the relevant licensed
 procedures. I shall consider this matter in Sect. 2.2.34 Hefe, I only need to say that
 these procedures result in what is usually called a 'construction [xaxaoxevfi]'. Accord-
 ingly, I suggest that in EPG a construction is a licensed procedure for drawing diagrams
 (Hartshorne 2000, p. 19; Shabel 2003, p. 137, footnote 8), and that a diagram is canon-
 ically drawn in EPG if and only if it results from an appropriate construction or is a
 licensed starting point of such a construction (Norman 2006, pp. 21, 33).

 In the Elements , Euclid uses the verb 4o give [ôíôco^ii]' to refer to geometrical
 objects that are taken as being passively given, as in expressions of the form 'a given
 X 9 or 'given X , to do such and such'. He instead uses different verbs when he requires
 that some objects be actively given, or claims that they have been actively given. Five
 of these verbs occur, for example, in postulates 1. 1-3 and propositions 1. 1-2: in Heath's
 translation, they are the verbs 4o draw [ay©]', 4o produce [éxpáAAco]', Чо describe
 [урасрсо]', Чо construct [огМоттщг]', and Чо place [тЬМцг]'. In my view, these verbs
 are used to require that particular appropriate procedures be applied in order to give
 certain geometrical objects. They would thus be particular specifications of the verb
 Чо give', actively understood.35

 34 There is no need to specify the nature of these procedures to understand what it means in EPG that a
 certain object is supposedly given. This means that it is supposedly represented by an appropriate diagram
 canonically drawn. According to my understanding of the notion of being given, in order for a geometrical
 object to be given, an appropriate diagrams has to be, or to have been canonically drawn or imagined to be,
 or to have been canonically drawn. Hence, supposing that such an object is given is the same as supposing
 that such a diagram has been so drawn, or imagined to have been so drawn, possibly while this same diagram
 is freely drawn, instead, or imagined to have been freely drawn. In the most interesting cases this occurs in
 situations in which the suitable procedure to be followed for drawing this diagram canonically has not been
 yet established. The connoisseurs should have no difficulty in understanding that this latter case is typical
 of analytical arguments occurring in solutions of problems (though in Greek and early-modern geometry,
 the beginning of such an argument is usually indicated with the phrase 'let it be done [Yeyovétco] [iam
 factus sit У which does not include the verb Чо give [ôíôco^i]'). The literature on geometrical analysis is
 quite large. For my views on this matter, cf. Panza (1997, 2007).

 35 Note that in my account the verbs Чо draw', Чо produce* and Чо describe', as well as other ones with a
 close meaning, like the verb Чо join' are susceptible of being used in two distinct senses: either as applied
 to EPG objects (as particular specifications of the verb Чо give')* or as applied to diagrams. This double
 use could be avoided by appropriate conventions, but these conventions would hide an essential feature of
 EPG that I want rather to emphasise: the fact that EPG objects can only be given by drawing diagrams.
 Hence, phrases like Чо produce a segment* or Чо join two points' necessarily indicate both the performing
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 A last remark. As a matter of fact, Euclid's explicit use of modal operators is lim-
 ited. From Euclid's practice it is clear however that not every construction that could
 be applied in a particular situation is actually applied. If the notion of being given is
 understood as I have suggested, the appeal to a modal operator is useful to account
 for this practice.36 For simplicity, in Sect. 2, 1 shall use the phrase 'to be susceptible
 of being given' and its cognates to appeal to such an operator. Hence, I shall say of a
 geometrical object that it is susceptible of being given to mean that it can be actively
 given, in the sense that I have just explained.

 1.3 The local role of diagrams

 As mentioned, diagrams are compositional objects. Thanks to their global role, this is
 also the case for EPG objects. But compositionality requires distinctions. Up to now,
 I have only explained how the identity conditions of diagrams transfer to EPG objects.
 Another problem is that of understanding how diagrams - especially sub-diagrams
 entering into a single self-sufficient composed diagram - are distinct, and how they
 combine with each other so as to give rise to composed diagrams representing single
 EPG objects.

 1.3.1 Continuity

 Many such distinctions and modes of composition depend on obvious (often implicit)
 stipulations. For example, the fact that a configuration of three appropriate concrete
 lines sharing an extremity two by two is taken as a diagram representing a single
 object, namely a triangle, whereas a configuration of two such configurations external
 to each other but sharing a vertex is not taken as a diagram representing a single EPG
 object depends on the presence and lack of appropriate definitions. But stipulations
 like these apply only if elementary diagrams have been detected, that is, only if it is
 specified what counts as an elementary diagram: a diagram that is not composed of
 other diagrams.

 EPG diagrams are drawn via constructions, and these proceed by steps, in each of
 which a line is drawn. Postulates 1. 1-1.3 provide the basic clauses according to which
 this is done. They respectively license one to "draw" and "produce" segments, and
 to "describe" circles. On my understanding, this means that they license the drawing
 of concrete lines representing segments and circles. In Sect. 2.2, I shall argue that
 constructions comply in EPG with some other implicit constructive clauses, one of
 which allows taking some segments as starting points of a construction. I suggest
 taking as elementary diagrams both the lines representing segments and circles whose
 drawing amounts to an elementary (i.e. single) construction step, according to postu-
 lates 1. 1-1.3, and those representing segments which are taken as a starting points of

 Footnote 35 continued

 of a geometric construction and the material act of drawing a diagram (or at least the imagination of this
 act). This is not confusion: it is rather the symptom of a peculiar characteristic of EPG.

 36 The modal nature of EPG has been emphasised in Chihara (2004, p. 10).
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 a construction according to this latter supplementary clause.37 This is because their
 being so drawn confers to each of them - so to say, by stipulation - the property of
 being a single diagram in a way that is more fundamental than that in which any pos-
 sible configuration of lines whose drawing results from several construction steps can
 be taken to be a single diagram. Let us say, for short, that, in being a single diagram
 in this fundamental way, an elementary diagram is intrinsically one.
 From this criterion, it follows that geometrical points are not represented by ele-

 mentary diagrams. They are rather represented by extremities or intersections of lines,

 some of which are possibly elementary diagrams, whereas others are parts of such
 elementary diagrams resulting from dividing them through intersection. I shall come
 back to this matter in Sect. 2. 1 .38 Here it is rather important to ask what underlies the
 representation of points by means of intersection of lines (representing either segments
 or circles).

 The thought seems to be that intersection of lines yields a division of these lines
 into actual parts which share en extremity. Let me explain this. In EPG diagrams, an
 intersection results when a line is drawn so as to cross another already drawn line
 anywhere but in one of its extremities, if it has any. In this way, a division is obtained
 on the latter line, whereas the former, so to say, is divided at the same time it being
 drawn as a single line (which is even intrinsically one). Such a division yields actual
 parts of these lines. The extremities of these parts represent points, which are then
 constructed by intersection. Passing from diagrams to the geometric objects they rep-
 resent, this means that intersection of geometric lines (segments or circles) results in
 the construction of points insofar as it prompts the division of these lines along with
 the construction of some actual parts of them having these points as extremities.

 37 According to this criterion, any line representing a circle is an elementary diagram, since there is no
 other way do draw such a line in EPG than by applying the constructive clause stated in postulate 1.3. But
 for lines representing segments this is not so. Л clear reason for this depends on postulate 1.2 (another will
 become clear in few lines). This postulate licenses one "to produce [a] limited straight [line] continuously
 in [a] straight [line]". The adverb 'continuously [*am xò auvexèç]' is open to different interpretations.
 Under that which seems to me the most plausible, it is intended to mean that the given segment (or limited
 straight line) is so produced as to form a new segment of which this given segment is a part. Let AB such a
 given segment. Producing it "continuously in a straight line" is then the same as drawing a line representing
 a new segment ВС, sharing an extremity with the line representing the segment AB, and so placed with
 respect to it that the two lines taken together also represent a segment, namely AC (rather than two segments
 forming a non-flat angle). It follows that the application of this postulate allows constructing segments (like
 AC) represented by concrete lines whose drawing does not amount to an elementary construction step, and
 which are not, then, elementary diagrams, according to my criterion.

 38 In many of his arguments, Euclid takes some geometric points to be represented by isolated dots, rather
 than by extremities or intersections of lines. This could be accounted for, however, by supposing that these
 dots are used as shortcuts for extremities or intersections of lines that play no other role in these arguments
 but that of displaying these points. The obvious disadvantage of this interpretation is that it is not manda-
 tory and is based on no textual positive evidence (a negative piece of textual evidence will be mentioned
 in Sect. 2.1). The advantage is that it allows one to take only segments (rather than segments and points)
 as starting points of EPG constructions (this will become clear in Sects. 2. 1 and 2.2). This is the reason
 I adopt it. This is all the more advantageous in that it has no substantial consequences with respect to the
 plausibility of my account. One who prefers to be more faithful to the (positive) textual evidence and take
 isolated dots as elementary diagrams providing possible starting points of a construction, has nothing else
 to do but complicate my account a little bit, without changing anything substantial in it.
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 This is just the case of proposition 1.1, discussed at the beginning of the paper.
 During the proof of this proposition, point С (Fig. 1) is constructed by intersection
 of the circles with centres A and B. Hence, these circles mutually separate each other
 into two actual parts having a common extremity which is just this point.
 A relevant question is then the following: does this construction, so explained,

 depend on the property of continuity, intended in some appropriate sense, and attrib-
 uted to some appropriate objects?
 A natural response is that it depends on the continuity of the concrete lines repre-

 senting the relevant circles. But, what does it mean that these lines are continuous,
 exactly? One could argue that this means that they do not suffer of any spatial inter-
 ruption. But then, what would ensure us that this is so? Certainly not the inspection
 of the lines themselves. There are two obvious reasons for this. The first is that no

 such inspection can be fine-grained enough to ensure that some small gaps have not
 been missed. The second is that nothing forces one, in conducting the proof, actually
 to draw these lines, rather than merely imagining to draw them.

 One might think, then, that what matters here is not how the concrete lines rep-
 resenting the relevant circles are (supposing that they are actually drawn), but rather
 how they are required to be, namely the fact that they are required to suffer no spatial
 interruption. This also seems open to obvious objections, however. If it were so, noth-
 ing could assure us that this requirement is met. Moreover, drawing two concrete lines
 that - despite being intended to represent the relevant circles - display some evident
 interruptions does not prevent one from rightly conducting the proof. For this proof to
 hold, it is enough, indeed, that one admits that these line intersect, and this intersection

 yields a division of them into two actual parts having the point С as common extremity,
 which is an admission that does not depend on the properties of the concrete lines that
 one could actually draw or imagine.

 This suggests another option. What matters here, is neither how the concrete lines
 representing the relevant circles are, nor how they are required to be, but rather how
 they are taken to be.39 The point is then that Euclid's proof of proposition 1. 1 holds
 (among other things) because these lines are taken to be continuous. In my view, this
 means, in turn, that each of them is taken to be both intrinsically one and liable to be
 divided into actual parts having extremities.40

 But, one could retort, if this is so, why does one need to take diagrams into account?
 After all, one could directly take each segment and circle constructed throughout an
 elementary construction step to be intrinsically one - that is, an elementary component

 39 Note that taking a concrete object to be so and so is not the same as imagining it as being so and so.
 Suppose that the relevant concrete lines are not drawn but merely imagined. What matters is not how they
 are imagined to be, but rather how, in the imagination, they are taken to be. Indeed, one can imagine a
 concrete object as being in a certain way and being taken to be in some other way. Also note, however, that
 in the parlance I adopt here, the requirement that diagrams be taken to be in a certain way is compatible
 with the fact that these diagrams appear, or are imagined to be just in this way, as it is generally the case
 when they are accurately drawn or imagined. Hence, saying that a certain diagram is taken to be P is in no
 way intended to imply that it does not appear to be, or is not imagined to be P.

 40 In my view, this explanation fits quite well with Aristotle's notion of continuity, as it is expounded in
 books V, VI and VIII of the Physics. However, I do not have the space here to expound my understanding
 of Aristotle's conception of continuity. I can only refer the reader to Panza (1992). This is a quite old paper,
 however, and I hope to have soon the opportunity to come back on this matter to refresh my analysis.
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 of a configuration of geometric objects - and to be distinct from one other, without
 drawing or imagining diagrams at all. My answer is that, in this case, both their intrin-
 sic unity, and their identity would not have a spatial character: they would not be
 distinct elementary spatial objects having distinct spatial positions, but merely dis-
 tinct but indeterminate contents of intentional thought. Hence, in the absence of actual
 or imagined diagrams conferring to these objects their spatial nature, it would be hard
 to understand what could it mean that they are liable to be divided into actual parts
 having extremities, or that they are constructed in certain respective positions. These
 are essentially spatial features that geometrical lines have only insofar as they inherit
 them from the diagrams that represent them.

 This is only a particular aspect of a much more general fact that the present section
 is intended to stress: insofar as doing EPG is not a formal deductive activity, it requires
 that any step of its arguments be supplied with a clear meaning; taking diagrams into
 account, at least in imagination, is a necessary condition for supplying this meaning.
 It is here that claim (CM) enters into the account. It is thus urgent to clarify it.

 For reasons of linguistic simplicity, let us use the term 'attribute' to refer either to
 properties or to relations. And so, accordingly, let us stipulate that to say that some
 objects have a certain attribute is the same as saying either that one or more objects
 have a certain property or that some objects stay in a certain relation.
 This being admitted, I say that EPG objects inherit an attribute P from diagrams

 if and only if P is an attribute of diagrams - that is, an attribute that diagrams can be
 taken to have - , and it is admitted that:

 (0 some EPG objects have a certain attribute and there is no other way to explain,
 within the setting of EPG,41 what it means that they have this attribute besides
 saying that they have P (and possibly explaining what having P means for some
 diagrams);

 (ii) EPG objects have this attribute (that is, according to (i), they have P) if and only
 if the diagrams that represent them are taken to have P (to the effect that the
 fact that some EPG objects have P is the same as the fact of having taken the
 diagrams that represent them to have P)'

 (iii) if some EPG objects have P, and Q is an attribute of diagrams that complies with
 the conditions (i) and (ii), and is such that diagrams that represent these objects
 (have to be taken to) have Q if they (are taken to) have P, then these same objects
 have Q.

 Suppose that EPG objects inherit a certain attribute P from diagrams. I shall say,
 for short, that P is a diagrammatic attribute of these objects. I shall also for short

 41 With 'the setting of EPG' 1 do not want to refer merely to the space of possibilities conceded by Euclid's
 definitions, common notions or postulates, taken as such, but, more generally, to the intellectual resources
 that are required in order to appropriately do EPG (which excludes, of course, those resources that are
 merely required in order to provide some account of EPG, like the present one; in other terms, what matters
 here are resources to be used within EPG, and not in order to reason about EPG) This is, of course, a vague
 notion, but this is a sort of vagueness that seems to me unavoidable in an interpretative enterprise like mine.
 To clarify it a little bit, I could say, perhaps, that in my view the specification 'within the setting of EPG' is,
 strictly speaking, redundant, since the sort of explanation that I'm referring to, here, is an explanation of an
 attribute of EPG objects, rather then of geometrical objects in general. For example, I'm not here concerned
 with triangles in general, but with triangles as they are conceived and treated within EPG.
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 take the liberty of speaking of diagrammatic attributes of diagrams when I mean the
 attributes of diagrams inherited by the corresponding geometric objects.
 This being said, let us come back to the concrete lines entering into Euclid's proof

 of proposition 1.1 and the corresponding circles. I have no difficulty in admitting that
 these last circles are continuous and even that this proof holds (among other things)
 because these circles are so. Still, I maintain that continuity is a diagrammatic property
 of them, and then that they are continuous just because the concrete lines that repre-
 sent them are taken to be so. It is just because of this (and the fact that other relevant

 properties of the objects entering into this proof are diagrammatic) that this proof is
 diagram-based.
 So understood, continuity is an essential property of some of the geometric objects

 that EPG arguments are about. But it is never explicitly ascribed to them by Euclid.
 The adjective 'continuous [owe^fjç]' and its cognates occur in the Elements in

 three distinct senses. They are mostly used to identify a sort of proportion, i.e. contin-

 uous proportion. Much more seldom, they are used either to specify that a segment is
 produced continuously (like in postulate I.242 and in the proof of proposition XI. 1),
 or that several equal chords of a circle are placed continuously with each other so as
 to form an inscribed regular polygon (like in the solution of propositions IV. 16 and
 XII. 16).43 In none of these cases, are this adjective and its cognates used to indicate a
 monadic property of some EPG objects (that is, in order to say that some EPG objects
 are continuous, as such). Still, if it is admitted that continuity is a diagrammatic prop-

 erty of EPG objects and consists in intrinsic unity plus divisibility in homogenous
 parts, as I have just suggested, it follows that its role in EPG is pervasive, since the
 very global role of diagrams depends on it.

 1.3.2 More on diagrammatic attributes

 Continuity is certainly not the only diagrammatic attribute of EPG objects playing an
 essential role in EPG. Among others, one can mention the properties of having extrem-
 ities, and of being contour-open or contour-closed, and the relations of intersecting
 each other, being formed by, being part of, lying inside, being included in, lying on or
 on opposite sides of, passing through, having an extremity on, sharing an extremity,
 and in general all the relations that depend on the respective positions of the relevant
 objects, since EPG objects have respective positions only insofar as this is the case of
 the diagrams that represent them.44
 Thus, in order to better clarify claim (C./i), I have to say more on diagrammatic

 attributes and their role in EPG. This is the purpose of the present subsection.
 Let us begin by coming back to my definition of diagrammatic attributes.
 Take, as an example, the relation rx and y intersect"1. Clearly, this relation can be

 taken to hold for diagrams (namely for two concrete lines representing a segment or a

 42 Cf. footnote 37, above.

 43 I thank an anonymous referee for suggesting this classification to me.

 44 This fits quite well with Reed's claim that the function of a diagram in EPG is "to exhibit the relationship
 of figures and their parts" (Reed 1995, p. 42). But I do not see why one should also maintain, as Reed does,
 that "to ask other things of the diagrams is to misunderstand the nature of Euclid's demonstrations" (ibid.).
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 circle). On the other hand, it is clear that two (geometric) circles stand in this relation

 if and only if each lies partially inside the other. This second condition is clearly stated
 within the setting of EPG. Hence, one could say that, within this setting, there is a way

 to explain the meaning of circle intersection besides saying that the relevant circles
 have the same relation as two concrete lines intersecting each other. Accordingly, my
 definition would be open to an obvious objection, namely it would leave the following
 alternatives open45: (i) intersection of circles is not a diagrammatic relation of EPG
 objects since it can be explained in terms of the lying of circles partially inside each
 other; (//) intersection of circles is a diagrammatic relation of EPG objects, but the
 laying of circles partially inside each other is not, since the former can be explained in
 terms of the latter; (iii) neither of these relations is diagrammatic, since each of them
 can be explained in terms of the other.
 My reply is that a logic equivalence like the previous one does not provide any expla-

 nation within the setting of EPG. Within this setting, it is merely a consequence we
 can draw from our mutually independent understanding of the two relations involved
 in the equivalence, both of which are diagrammatic, since this understanding depends
 inescapably on our understanding of the corresponding relation of diagrams.46
 Another important clarification that my definition of diagrammatic attributes of

 EPG objects calls for concerns the requirement that diagrams be taken to have certain
 attributes. I have discussed this matter with respect to continuity. More generally, my
 idea is that no argument in EPG is based (or could be based) on the inspection (visual
 or otherwise) of diagrams, whereby one is able to judge that these diagrams have an
 attribute that EPG objects inherit from them. What matters are not the real, possibly
 microscopic, features of actual or imagined diagrams, but rather the features that are
 attributed to actual or imagined diagrams in the attribution of certain diagrammatic
 attributes to the corresponding EPG objects. This is just because we attribute some
 features to diagrams by attributing diagrammatic attributes to the corresponding EPG
 objects that we are able, in conducting EPG arguments, to draw diagrams that macro-
 scopically manifest diagrammatic attributes of the corresponding EPG objects. And it
 is only because of this that, if diagrams are drawn accurately, a superficial inspection
 of them can reveal that the corresponding geometric objects have some diagrammatic
 attributes (Azzouni 2004, p. 25).
 A last thing I can do to clarify my notion of diagrammatic attribute is to consider

 some examples of non-diagrammatic attributes. The most obvious are the relation of
 equality and order. Consider the simplest case: equality of segments. To say that two
 segments are equal in EPG does not mean, certainly, that the concrete lines that rep-
 resent them are so. For an EPG argument involving two equal segments to work it is
 certainly not necessary that the concrete (possibly imaginary) lines that represent these
 objects be taken to be equal. The reason is clear: equality of segments is (implicitly)
 defined within EPG in terms of other relations among EPG objects, with the result that,
 within the setting of EPG, there is a way to explain what it means for two segments to
 be equal besides saying that they have to each other the same relation of equality as

 45 1 thank Mumma for having attracted my attention to this conundrum.

 46 It is only in a logical reconstruction of EPG that one of these relations is possibly reduced to the other.
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 the two concrete lines that represent them have. Hence, these segments can be equal
 even if these concrete lines are not taken to be so.

 The complete (implicit) definition of the equality of segments offered by Euclid
 in the book I of the Elements is complex enough.47 But for my present purpose, it is
 enough to consider the simple case involved in the proof of proposition 1.1, that is,
 the case of two segments sharing an extremity. What makes them equal is the fact that

 their other extremities are on the circle having their common extremity as centre. This
 last condition certainly involves a diagrammatic attribute (that of having an extremity

 on), but this is an attribute of the relevant segments (not merely one of the concrete line

 representing them), and it is, a fortiori , distinct from the relation of equality among
 these concrete lines.48

 All this being said, we are now ready to consider two distinctions introduced by
 K. Manders. As these distinctions have played a pivotal role in the recent discussion
 of the role of diagrams in EPG, it is important to clarify the relation I take them to
 have with my notion of diagrammatic attribute.

 The first is the distinction between two components of a "demonstration" in EPG:
 the "discursive text" - that "consists of a reason-giving ordered progression of asser-
 tions, each with the surface form of an ascription of a feature to a diagram" - and the
 diagram itself (Manders 2008b, p. 86). According to Manders, a step in the discursive
 text "is licensed by attributions either already in force in the discursive text or made
 directly based on the diagram as part of the step, or both" and "consists in an attribution

 in the discursive text, or a construction in the diagram or both" (ibid., pp. 86-87).
 The second distinction is that between "exact" and "co-exact" attributes or attribu-

 tions ( ibid ., Sect. 4.2.2).49 Exact attributes "are those which, for at least some con-
 tinuous variation of the diagram, obtain only in isolated cases". The latter "are those

 47 I shall come back to this matter in Sect. 2.4.

 48 To clarify this point, suppose that the two circles entering into Euclid's solution of proposition 1.1 are
 represented by the two concrete lines BCD and ACE in Fig. 4 (in order to better clarify my view I consider
 here a deliberately inaccurate diagram). For the argument to work there is no need that the concrete lines AC
 and ВС be taken to be equal. It is enough that these lines be taken to represent two segments, the concrete
 lines BCD and ACE be taken to pass respectively through the two extremities of the concrete line AB and
 to represent two circles of centres A and B, and the two concrete lines AC and ВС be taken to share one
 of their extremities respectively with the two distinct extremities of the concrete line AB, and to have their
 other extremities at the intersection of the two concrete lines BCD and ACE.

 (S)
 Fig. 4

 4y Of course, Manders takes attributions to be exact or co-exact according to whether they are attributions
 of exact or co-exact attributes. I shall adopt a similar convention when I shall speak of diagrammatic and
 non-diagrammatic attributions.
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 [. . .] which are unaffected by some range of every continuous variation of a specified

 diagram" (ibid., p. 92).
 Manders's crucial claim is that an "exact attribution is licensed only by prior en-

 tries in the discursive text; and may never be 'read off' from the diagram", whereas
 "co-exact attributions either arise by suitable entries in the discursive text [. . .] or are
 licensed directly by the diagram " (ibid., pp. 93-94).
 In Manders's framework, geometric objects are absent. Euclid's geometry is

 described as an activity involving diagrams and discursive text in such a way as to bring
 to attributions whose semantic content and aboutness are never specified by appealing
 to any kind of abstract objects. For his exact vs. co-exact distinction to be able to play
 a role within my own framework, it has thus to be modified a little bit, and namely
 applied to attributes of geometric objects. In the case of diagrammatic attributes, their
 being exact or co-exact can be made to depend on Manders's very definition, provided
 that the condition of obtaining only in isolated cases for some continuous variation
 be concerned not with the real, possibly microscopic, features of actual diagrams, but
 with those that actual or imagined diagrams are taken to have. But in the case of non
 diagrammatic attributes, like equality or order, a different definition is needed.
 Suppose to limit ourselves to relations or monadic properties resulting from sat-

 urating n- 1 places in a n-place relation. One could then take exact attributes to be
 those that EPG objects have insofar as the configuration they belong to has certain
 properties that, for at least some continuous variations of it,50 obtain only in isolated
 cases. But for many monadic properties (that do not result from saturation of relations)

 like circularity, contour-openness, or contour-closure, it is difficult to see which vari-
 ation should be relevant, supposing that such a variation is supposed to conserve the
 property of being an EPG object. To take only a simple example, it is hard to imagine
 how a circle could vary so as to cease to be circular, without ceasing to be an EPG
 object (unless the variation is supposed to transform it in a segment). Fortunately, for
 my present purpose, one can limit the exact vs. co-exact distinction to relations or
 monadic properties resulting from them by saturation.
 What is relevant, indeed, is that co-exact and diagrammatic attributes of EPG objects

 do not coincide with each other: there are both co-exact attributes of EPG objects that
 are not diagrammatic, and, vice versa, diagrammatic attributes of EPG objects that are
 exact.51 Examples of the former are the relations of being greater or of being smaller
 than. Examples of the latter are the relations of passing through, of lying on, of having
 an extremity on, and of sharing an extremity with.
 According to Manders, diagrams can directly license co-exact attributions, but not

 exact ones. My account is compatible with both claims, if, of course, the relevant
 attributions are understood as made of geometric objects.

 50 Presumably, Manders takes the term 'continuous variation' in an informal modern sense, the variations
 being relative to diagrams. In my adapted definition, the same informal modern sense has to be conserved,
 but the variations should be taken to be relative to the relevant configuration of geometric objects.

 5 1 This makes clear that the sense I ascribe to the adjective 'diagrammatic' in the expression 'diagrammatic
 attribute' is different from that ascribed to it in the expression 'diagrammatic assertion' by Avigad, Dean,
 and Mumma, which use this expression just to refer to Manders's co-exact attributions (Avigad et al. 2009,
 p. 701).
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 To grasp why, it is necessary to understand how, on my framework, an attribution
 to a geometric object could be licensed by a diagram. This happens when such an
 attribution is licensed by the fact that the relevant diagram cannot but have (or be
 taken to have) some attributes, if it has (or is taken to have) some other attributes. If

 these attributes are diagrammatic, the inferences that depend on them transmit to the

 relevant geometric objects, and their conclusions consist, then, in attributions licensed
 by diagrams. An example is provided by the case of two contour-closed concrete lines
 each of which (is taken to) lay partially inside the other: these lines (have) necessarily
 (to be taken to) intersect each other.

 This case is involved in the solution of proposition 1.1. For this solution to hold,
 it is not enough to admit that the intersection of two circles yields a division of them
 into two actual parts having a point as common extremity. It is also necessary to admit
 that the two relevant circles actually intersect, which is just ensured by their laying
 partially inside each other. It follows that Euclid's solution of proposition 1. 1 provides
 evidence for the occurrence in EPG of co-exact diagrammatic attributions to geometric

 objects directly licensed by diagrams.
 This is not however the only contribution of diagrams to the justification of attribu-

 tions to geometric objects in EPG. I have observed above that the condition that makes
 two segments sharing an extremity equal involves a diagrammatic attribute. This is
 only an example of a more general and crucial fact that is now time to account for.
 To this purpose, let us come back to the example of proposition 1.3 of the Elements

 already considered above.

 с

 /

 Fig. 3b

 С

 Fig. 3c

 The diagrammatic attribution to the circle and the segment AB (Fig. 3a) of the
 co-exact relation of intersecting each other is not directly licensed by diagrams. It is
 rather because the segment AB is greater than the segment С and the segment AD is
 so constructed to be equal to C, so that AB is also greater than AD, that the circle
 intersects AB. Hence, insofar as this relation is diagrammatic, the diagram has to be
 taken to be so as to display it. Hence, a diagram where the concrete line representing
 the circle patently does not intersect the one representing the segment AB (Fig. 3a)
 would be considered to be inapt for manifesting the relevant diagrammatic attributes.
 Still, Euclid's argument includes no explicit justification for the inference from the
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 premise 'the segment AB is greater than the segment AD and shares the extremity A
 with iť to the conclusion 4he circle of radius AD and centre A intersects AB'. This

 argument seems rather to depend on the reduction of the co-exact non-diagrammatic
 relation of being greater than, applied to two segments, to two diagrammatic relations:
 the exact relation of sharing an extremity, applied to these same segments, and the
 co-exact relation of intersecting each other, applied to one of these segments and the
 circle having the other segment as a radius. This reduction results from taking for
 granted the following condition: if two segments a and b share an extremity, then a is
 greater than b if and only if the circle of radius b and centre in the shared extremity
 intersects a.

 One could retort that the fact that Euclid's argument does not include the mentioned

 explicit justification does not mean that such a justification cannot be provided. And,
 in fact, this can be done as follows. Suppose that the circle of centre A and radius
 AD does not intersect AB. Hence, it either passes through В or it is possible to apply
 postulate 1. 1 and produce AB up to meet the circle in a point F so as to get the new
 segment AF (Fig. 3a). In the former case, it is enough to appeal to definition 1.15 to
 conclude that AD and AB are equal, in contradiction to what is ensured by the very
 construction of AD. In the latter case, from definition 1.15 it follows that AD and AF

 are equal; but AB is part of AF and thus, according to common notion 1.5, the latter
 is greater than the former and then also greater than AD (admitting that the relation
 of being greater than is transitive). Hence, it is not possible that the circle of centre A
 and radius AD does not intersect AB.

 Diagrams enter into this argument in at least three respects. Firstly, to argue that
 either the circle passes through В or it is possible to produce AB up to meet it in
 F, one relies on diagrammatic evidences. Secondly, definition 1.15 is used twice to
 reduce the exact non-diagrammatic relation of being equal, applied to two segments
 (AD and AB, in the first occurrence of this definition, and AD and AF, in its second

 occurrence), to two exact diagrammatic relations: the relation of sharing an extremity,
 applied to these same segments, and the relation of passing through an extremity of,
 applied to the circle having this same extremity as centre and one of these segments
 as radius and the other segment. Thirdly, common notion 1.5 is used to reduce the
 co-exact non-diagrammatic relation of being greater than, applied to two segments
 collinear by construction (AF and AB), to the co-exact diagrammatic relation of being
 part of, applied to these same segments.
 This justification of the inference that Euclid's argument leaves implicit shows that

 the reduction of a non-diagrammatic relation to two diagrammatic ones that enters into
 this argument can be based on two similar reductions: one involving exact relations,
 justified by definition 1.15; and the other involving (like the original one) co-exact
 relations, justified by common notion 1.5. The former of these reductions results from
 appealing to definition 1.15 to get the following condition: if two segments a and b
 share an extremity, then a is equal to b if and only if the circle of radius b and centre in

 the sharing extremity passes through a. The latter of these reductions results, instead,
 from appealing to common notion 1.5 to get the other condition: if two segments a
 and b are collinear, then a is greater than b if and only if b is part of a.
 Other justifications of this inference could be suggested, but it seems to me that

 no such justification can avoid some similar reductions. Indeed, reductions like these
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 seem to me pervasive in EPG. They manifest an aspect of the local role of diagrams.
 This aspect can be generally described as follows: the reduction of some non-diagram-
 matic attributes (both exact and co-exact) to some diagrammatic ones (both exact and
 co-exact, too) is necessary for some EPG arguments to hold. But these reductions are
 not only necessary for this. They also provide an explanation for non-diagrammatic
 attributes. To take only a single example, what does it mean, ultimately, in EPG, that
 two segments are equal to each other? The answer leaves no doubt: it means that
 two appropriate circles respectively pass though an extremity of each of them. I have
 already considered above a particular case, I shall come to the general case, and justify
 my claim in Sect. 2.4.
 A last remark is appropriate before finishing with the local role of diagrams. My

 purpose, here, is to account for the positive roles that diagrams have in EPG argu-
 ments. Hence, I have not insisted on the obvious fact that there are limitations to

 the practice of appealing to them while conducting EPG arguments. The example of
 the well known all-triangle-are-isosceles fallacy, also discussed by Manders (2008b,
 pp. 94-96), is often mentioned to bring out the necessity of being aware of these limi-
 tations. Another example is the following.52 Let ABC (Fig. 5) be a given triangle, D
 and E the midpoints of its sides AB and AC, respectively, and F the intersection point
 of the perpendicular to these sides through D and E. Suppose A is joined to F and the
 circle of centre F and radius BF is drawn. Taking the diagram to include, besides point
 A, also a distinct point G, resulting from the intersection of the segment AF or its pro-

 longation and this circle, is a mistake, whatever the given triangle ABC might be. This
 is because this circle provably passes through A, as Euclid proves in the solution of
 proposition IV.5. In my view, this case, as well as that of the all-triangle-are-isosceles
 fallacy, do not show that taking diagrams to be so and so requires a special discipline
 (as suggested by Manders 2008b, pp. 96-104); but merely that diagrams have to be
 taken to be in agreement with the diagrammatic attributes that the geometric objects
 they represent provably have (or are supposed to have). This is the very limitation that
 the practice of appealing to them while conducting a EPG argument is submitted to.53

 Fig. 5

 52 I thank Mumma for having suggested me this nice example.

 53 The case of reductio ad absurdum is often taken to be different and problematic for an account of
 Euclid's geometry that assigns an essential role to diagrams. In the framework of my account, I do not see,
 however, why one should concede that this is so. Take two usually mentioned examples (also discussed by
 Manders 2008b, pp. 109-1 15). One is that of the proof of proposition 1.6. What is proved here is that a
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 2 The construction of a right angle

 So far, I have spoken of EPG in quite general terms. It is time now to put my account
 to the test of some examples. I shall do that by reconstructing, in the light of this
 account, a fragment of book I of the Elements : that which leads up to the solution of
 the problems stated in propositions 1. 1 1-12. Both these problems require constructing

 a right angle: the former requires constructing a perpendicular to another given seg-
 ment through a given point on it; the latter requires constructing a perpendicular to a
 given straight line through a given point outside it.
 In EPG, a rectilinear angle is given when two segments that share an extremity are

 given; and it is said to be right if and only if it is equal to another one, adjacent to it. To

 account for Euclid's solutions of these two problems, it is thus necessary to account
 for the way in which two such segments are given and for the conditions of equality

 Footnote 53 continued

 triangle with two equal angles also has two equals sides. Let ABC (Fig. 6a) be a triangle with ABC = BCA
 Suppose that AB > AC. One can construct on AB a point D such that DB = AC. Trace the segment
 DC, so as to construct a new triangle DBC. As the side ВС is common to the two triangles, DB = AC,

 and DBC = BCA, the two triangles are equal for side-angle-side, which contradicts the fact that one
 of them is included in the other. Clearly, this argument does not show any impossibility relative to the
 diagram involved in it. What is showed to be impossible is rather that the sides DB and AC of the two
 triangles DBC and ABC stand to each other in the non-diagrammatic relation of equality, provided that
 these triangles stand to each other in the diagrammatic relation of being included in. One could argue that
 this same argument could be associated with a diagram different from that provided in Fig. 6a (which is
 like that occurring in Heath's translation: Euclid EEH, 1, p. 255). Still, supposing that the relevant diagram be

 a a b A

 Fig. 6a, b

 drawn so as to appear as it has to be taken to be for the argument to work, it could differ from
 the diagram provided in Fig. 6a only for its metric features. It could be, for example, like that pro-
 vided in Fig. 6b. Clearly this would make no difference for my point: in any case, the diagram plays
 here the roles 1 ascribe to it in my account, without any difficulty. The situation is a little bit more
 complex in the case of the second example, which is that of proposition 1.27. What is proved here
 is that if two segments form with a third one two equal alternate angles, then they are parallel (the
 understanding of this theorem as being about segments rather than straight lines, in modern sense
 of this term, is suggested, it seems to me, by definition 1.23). In all the six manuscripts of the Ele-
 ments, considered by Saito in his "preliminary study" of the diagrams of the Elements (Saito 2006, p.
 123), this proof goes together with diagrams analogous to that provided in Fig. 7a, which is also like that

 a b A л А Е/ В A л /

 ;X> С А Tf Е/ В 6 С Tf 6 С '

 Fig. 7a, b
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 of angles. This involves a number of fundamental ingredients of EPG, which I shall
 consider one after the other.

 As said in footnote 5, my account of EPG depends on what I take to be a faithful
 interpretation of Euclid's texts. Interpretation is, however, something different from
 mere description and/or exegesis. According to my understanding, these texts provide
 an exposition of a mathematical theory, and my aim is to account for some basic aspects
 of this theory as such, not to gloss these very texts. It is thus not surprising that, in
 what follows, some slight discrepancies appear between my reconstruction and what
 the Elements say, literally. This is not a symptom of unfaithfulness. Rather, it depends

 both on the fact that, in offering an exposition of his theory, Euclid has recourse to
 convenient artifices or shortcuts (for example, by considering a whole straight line,
 rather than a segment, in proposition 1. 12, so as to avoid a case distinction), and on my
 wish of avoiding useless assumptions or detours in my reconstruction (as in the case of
 my limitation to segments as starting point of EPG constructions already mentioned in
 footnote 38, above, or in the case of my choice to avoid appealing to proposition 1.8 in
 the solution of propositions 1. 1 1-12). In my view, what licenses the changes I suggest
 with respect to Euclid's arguments is thus not the simple fact that these changes are
 slight, but rather the fact that they involve no alteration of Euclid's theory as such, but
 merely result in a simplification of it.

 2. 1 Some definitions from book I of the Elements

 My reconstruction begins with definitions 1. 1-4. They respectively state that: "[a] point
 is that of which [there is] no part"; "[a] line [is] breathless length"; "[the] extremities
 of [a] line [are] points"; and "[a] straight line is that [line] which lies evenly with [the]
 points on itself'.

 Footnote 53 continued

 included in Heath's translation (Euclid EEH, I, p. 307). But in one of these same manuscripts (ms. B: Bodlei-
 anus Dorvillianus 301), two other diagrams also occur, like those provided in Fig. 7b and 7c. The argument

 is as follows. Let AB and CD be two segments cut by the third segment EF so as that AEF = EFD. If these
 segments, when produced, met in a point G, a triangle GEF would be constructed, and this would be such

 that its exterior angle AEF would be equal to its internal opposite angle EFG. But this is impossible for
 proposition 1. 16. While it is clear that the diagram provided in Fig. 7b plays the roles I ascribe to diagrams
 in my account without any difficulty, one can doubt, at first glance, that this is also so for the diagrams
 provided in Fig. 7a and 7c. But this doubt is unfounded. Nothing forbids, indeed, taking the concrete lines
 AG and CG in Fig. 7a to represent two segments constructed by producing the given segments AB and CD,

 A

 / tf с tf Б
 Fig. 7с

 which meet each other at G, for the purpose of proving that this cannot happen if AEF = EFD. In the same
 way, nothing forbids taking, in Fig. 7c, the prolongation of the concrete lines AB and CD to meet in some

 point G, again for the purpose of proving that this cannot happen if AEF = EFD.
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 Each of them appeals to some notions that never occur later in the proof of theorems

 and in the solution of problems presented in the Elements , to the effect that no infer-
 ence occurring in these proofs and solutions is openly licensed by these definitions.
 This is why many commentators argued that these definitions play no effective role in

 EPG (and someone even suggested that they are interpolated).54 I disagree. I suggest
 that the function of these definitions is that of fixing the way in which geometrical
 points and lines, especially straight ones, are represented in EPG, and of specifying
 which properties of the concrete objects that provide their representation are relevant
 for this purpose.55
 Definitions 1.1 and 1.2 are independent of each other and present an important

 disanalogy. Definition 1.2 seems to presuppose a primitive cognitive capacity of dis-
 tinguishing and isolating lengths as such. If this capacity is granted, this definition is
 sufficient to prescribe that geometrical lines be represented by concrete lines regarded

 only for their having a length. Definition 1. 1 is unable, in contrast, to prescribe that
 points be represented by some sort of concrete objects. It is merely a premise of defini-
 tion 1.3, which, in the light of it and of definition 1.2, prescribes, in turn, that geometrical

 points be represented by extremities of concrete (and then ended) contour-open lines,
 regarded only as boundaries of a length.56
 Taken as such, definition 1.3 does not prescribes that geometric points be represented

 only in this way: it provides a sufficient, but not necessary condition for representation
 of geometric points. It does not exclude, for example, that geometric points be rep-
 resented by concrete dots, and does no more preclude the possibility that geometric
 lines be composed of geometric points throughout all their length. Prima facie , this
 last possibility is even suggested by definition 1.4, insofar as this seems to characterise
 straight lines (or segments) on the basis of a relation they have with the points on them

 (and not just with the extremities of them). This contrasts, however, with the absence
 of any other characterisation of points, namely of any positive characterisation, other
 than that provided by definition 1.3, apt to supplement the purely negative condition
 stated by definition 1. 1 . Hence, if admitted, both the supposition that geometric points
 could be represented in EPG other than by extremities of concrete lines, and the sup-
 position that geometric lines be composed by geometric points would remain without

 54 This is Russo's view (Russo 1998), according to which these definitions (as well as definitions 1.5-1 .8,
 which are similar to them in this respect, but concern surfaces) are due to Heron, in fact.

 55 A similar view is advanced by Azzouni (2004, p. 126), and is also suggested by Shabel which argues that
 Euclid's definitions (I suppose she means some Euclid's definitions, including 1. 1-4) "enable the geometer
 to understand the implications of diagrams" (Shabel 2003, p. 12). One could object against this view by
 arguing that it conflicts with the fact that in the Elements , no diagram is associated to the definitions. But,
 it seems to me that there is no such conflict. The function of diagrams in EPG is that of representing single
 given geometric objects, and they comply with this function only insofar they are canonically drawn, or
 supposed to be so drawn. Hence, it is perfectly natural that definitions go without any diagrams, since they
 define sorts of geometric objects and are advanced before establishing the rules for canonically drawing
 diagrams.

 56 Whatever the function ascribed to definitions 1.1-1.3 might be, definition 1.1 seems to be incomplete
 if taken alone and seems then to require completion by definition 1.3. Denying this, Proclus (CEELF 93.6-
 94.7; Proclus CEEEM, p. 76) advances that the subject matter of geometry is established in advance, and
 that this definition states, in fact, that a point is that which has no part "in geometric matter". This is clearly
 unsatisfactory, however.
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 any explanation. I prefer then, in my account, to take geometric lines as not being com-

 posed of geometric points, and geometric points to be represented only by extremities
 of concrete lines (by admitting that, when Euclid takes into account isolated geometric
 points represented by dots he is implicitly supposing that an appropriate line is given,
 though it is not considered as such).57 This has a relevant consequence: that points
 are given (i.e. constructed), only insofar as bounded lines are given (i.e. constructed).
 This leaves open the problem of explaining definition 1.4, however. A natural way

 to do it is to maintain that this definition does not refer to the points composing a
 line, but rather to those that one could take on it. Supposing that a concrete line is
 drawn, Euclid seems to appeal, then, to two primitive cognitive capacities: that of
 taking concrete points anywhere on this line and that of appreciating evenness of this
 line with respect to these points.58 Accordingly, definition 1.4 seems to advance the
 prescription that geometrical straight lines be represented by concrete lines that, when

 considered among any two points that one can take on them, always appear as even
 (i.e. present no apparent curvature), and are regarded only with respect to their having
 a length and to their evenness. For short, call these concrete lines 'straight', in turn.
 Any of them is doubly bounded (and thus contour-open). In general (that is, except
 for particular cases explicitly signalled), this is also the case of geometrical straight
 lines in EPG: they are segments, in fact.
 Once the way in which geometrical points and lines are represented in EPG is fixed

 through definitions 1.1-4, definitions 1.8-9 do the same for angles. They also state
 what sort of objects angles are. They respectively state that: "[a] plane angle is the
 inclination to one another of two lines in [a] plane which meet one another and [which]
 do not lie in [a] straight line"; and an angle is rectilineal if "the lines containing [. . .][it]

 are straight".
 Hence, angles are not merely pairs of lines that share an extremity: such pairs deter-

 mine angles, but are not angles. Though Euclid generically mentions lines that meet
 one another, it seems clear that when one or both of these lines continue besides the

 point where they meet, what counts for determining an angle are their portions that
 end in this point, that is, the lines which have this point as their common extremity.
 For my purpose, only rectilineal angles are relevant. Let us focus on them. To fix the
 way they are represented in EPG, Euclid seems to rely, at least, on two primitive cog-
 nitive capacities: that of realising what it means that a pair of concrete straight lines
 share an extremity, without forming, if taken together, another such line; and that of
 grasping what such a pair of lines would have in common with any other pair of such
 lines sharing the same extremity and having the same (mutual) "inclination". Each of
 these pairs of concrete straight lines represents a rectilinear angle (or angle tout court ,
 from now on), and all of them represent the same, to the effect that only the properties

 of such a pair of lines that depend on their mutual inclination are relevant to their
 representing this angle. It is thus enough to admit that such an inclination does not
 depend on the length of these lines, to conclude that such a length is not relevant. But,

 57 On this matter, cf. also footnotes 38 and 60.

 58 This seems to fit with Heath's conjecture that definition 1.4 results from Euclid's "attempt [...] to
 express [. . .] the same thing as the Platonic definition", according to which a straight line is "that of which
 the middle covers the ends" ( Parmenides , p. 131 e; Euclid EEH, 1, pp. 165, 168).
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 as concrete straight lines represent geometric ones only insofar they are regarded as
 having a length, it follows that their mutual inclination only depends on their respec-
 tive position. In other words, two pairs of concrete lines representing segments and
 sharing an extremity represent the same angle if and only if the common extremities
 of these lines coincide and these same lines are respectively collinear.
 Right angles are angles of a particular sort. Definition 1.10 establishes that "when [a]

 straight [line] having been set up on [a] straight [line] yields adjacent angles [which
 are] mutually equal, [then] each of the equal angles is right, and the straight [line]
 standing upon [the other] is called perpendicular' to that upon which it stands". If
 straight lines and angles are understood as I have just proposed, this definition is clear
 enough, but it leaves open the problem of specifying the conditions under which two
 (distinct) angles are equal. I shall consider it in Sect. 2.4. Before coming to it, I need
 to say something on constructions and common notions. I shall do it in the next two
 sections.

 2.2 Constructive clauses and constructive rules

 In Sect. 1 .2, 1 suggested that EPG constructions be understood as procedures for draw-
 ing diagrams. These procedures obey a number of rules. My purpose requires that some
 of them be clarified.

 In EPG, any construction starts out from some given objects. Hence, among these
 rules there should be one specifying which objects can be taken as given without
 resulting from a previous construction, and thus represented by appropriate freely
 drawn diagrams. At first glance, postulates 1.1 and I.359 suggest that constructions
 begin with points (as argued, for example, by Shabel 2003, pp. 17-18). But, as I have
 argued above (p. 86), points are given only insofar as bounded lines are given, and
 are represented by extremities of concrete lines. Hence, any construction step that
 applies to some given point can only apply if appropriate bounded lines are given.
 This suggests the following basic rule for EPG constructions (which I have already
 shortly mentioned in Sect. 1.3.1):

 R.O Any (finite) number of unrelated segments can be taken as given as starting
 points of a construction and then respectively represented with appropriate con-
 crete lines freely drawn.60

 59 1 have quoted the former of these postulates in Sect. 1 .2, p. 66. The latter licenses to "describe a circle
 with any centre and interval".

 60 It is obvious why the relevant segments are required to be unrelated: in order for two segments so
 related as to comply with a certain condition (for example being perpendicular to one other) to be given, a
 construction is needed (I refer the reader to Panza 201 1 , section 2.2, for a more detailed elaboration of this

 point). As observed in footnote 38, rule R.O could be coupled with an analogous rule - call it ' R.Op', for
 short - where unrelated segments are replaced by unrelated points. More than that: because of postulate 1. 1 ,

 rule R.Op would make rule R.O strictly useless, since, according to this postulate, a segment can always be
 constructed if two points are given. But also rule R.O makes rule R.0^ strictly useless, since, as observed
 in footnote 38, one can always consider a given isolated point as an extremity of a given segment that play
 no other role in the relevant argument than that of having this point as an extremity. Take the example of
 proposition 1.2, which is a problem requiring "to place at a given point [as an extremity] a straight [line]
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 Once this rule is stated, the question becomes the following: supposing that a suit-
 able number of unrelated segments are given (i.e. that a suitable number of appropriate
 concrete lines are freely drawn in any mutual position), what rules does a construction
 of other EPG objects starting from these segments have to follow?
 Each such rule has to apply to diagrams representing already given objects, and

 establish which other diagrams can be drawn in the presence of them, and which
 objects these diagrams represent. In doing that, it specifies which objects are suscep-
 tible of being given, provided that some other objects are so. It has thus to be twofold.
 It has to include both a clause licensing the drawing of certain diagrams provided that
 others are already drawn, and an inference rule stating that some geometrical objects
 are susceptible of being given, if some other geometrical objects, meeting certain
 conditions, are already given.
 Postulates 1.1-3 provide three rules like these.61 Those provided by postulates 1.1

 and 1.3 are easy to grasp:

 (R.l) If two points are given, then one and only one concrete line representing a
 segment joining these points can be drawn; hence, if two points are given, one
 and only one segment joining these points is susceptible of being given.

 Footnote 60 continued

 equal to a given straight [line]". Nothing forbids to consider that the given point is an extremity of a given
 segment that, as such, plays no role in the solution. Hence, though a more faithful rendering of Euclid's

 practice might suggest adopting both R.O and R.0/;, logical economy suggests adopting only one them. In
 Panza (201 1, 55, footnote 27), I maintained that definition 1.3 provides a reason for preferring R.O over

 R.0P : it suggests that segments have priority over points by implying that two points are ipso facto given
 if a segment is so, whereas a segment is not ipso facto given if two points are so. Two other reasons are
 implicit in what I said in Sect. 2. 1 : (/') adopting R.O results in supplementing the three sorts of elementary
 construction steps fixed by postulates 1.1-3 with another sort of elementary construction step which, in

 pertaining to the constructions of segments, is similar to those fixed by postulates 1. 1-2; adopting R.0/;, on
 the other hand, would result in admitting a sort of elementary construction step that, in pertaining to the
 construction of points, would differ from any one of those fixed by postulates 1.1-3 (hence adopting R.O

 is compatible with my criterion for elementary diagrams, while adopting R.Op would require entangling
 this criterion without there being a logical reason to do so); (//) adopting R.0/; would presuppose a positive
 characterization of isolated points, whereas the only positive characterization of points offered by Euclid
 is that provided by definition 1.3 that describes points as extremities of lines.

 61 The idea that postulates 1.1-3 provide rules for drawing diagrams is also advanced by Azzouni (2004,
 pp. 1 23-1 24). Mäenpää and von Plato ( 1 990) capture the twofold nature of the rules provided by postulates
 1.1-3, by rendering them as rules of introduction. For example postulate 1.1 is rendered as follows (1 write
 V and 'Segment' instead of 7' and 'Line' to adapt Mäenpää and von Plato's rule to my language):

 a : Point b : Point

 s(a, b) : Segment

 Any segment introduced through this rule is a value of a two-variable function defined on points: if the
 given points are a and b, this segment is a value of this function for a and b as arguments. If functions are
 understood as usually, this supposes that the totality of points be taken as given, and any construction step
 depending on an application of this rule be understood as a procedure for fixing the value of this function
 for two specified arguments. Moreover, since Mäenpää and von Plato's system does not include diagrams,
 geometric objects are identified only as that which appropriate terms refer to. Both these circumstances
 make this system unable to account for some essential features of EPG. This is openly admitted by Mäenpää
 and von Plato, who state that their system is suited for describing constructions, but not for accounting for
 their grounds (cf. Mäenpää and von Plato 1990, pp. 288-289).
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 (R.3) If two points are given,62 then two and only two concrete lines, each of which
 represent a circle having its centre in one of the given points and passing
 through the other, can be drawn; hence, if two points are given, two and only
 two circles, each of which has its centre in one of two given points and passes
 through the other, are susceptible of being given.

 The rule provided by postulate 1.2 is less easy to grasp. I have already discussed an
 aspect of this postulate in footnote 37. Another relevant question concerns the condi-
 tions under which it licenses producing the relevant given segment. Does Euclid admit
 the possibility of producing it at will, that is, by continuing it through to an arbitrarily

 long new segment? In many cases (like in the constructions relative to propositions
 1.2 and 1.5), it seems so. Scrutiny of his applications of this postulate shows however
 that any argument where Euclid avails himself of this possibility can be recast so
 as to become independent of it. Another interpretation of postulate 1.2 is thus possi-
 ble: a given segment is produced at will only insofar as this allows one to abridge a
 more complex construction in which postulate 1.2 is applied to license producing this
 segment only to meet another given line, as in the proof of proposition 1.21. Hence,
 shortcuts apart, the application of this postulate seems to be subject to the implicit
 condition that the relevant given segment could be produced so that the result of the
 corresponding construction step is not just the construction of two new segments, but
 also of a new point on this other given line, which is thus divided into two portions
 (either two segments or two arcs of a circle)63. It remains, however, that Euclid does
 not provide a general criterion for deciding whether a given segment can be produced
 so as to meet a given line. He simply relies on diagrams to decide whether this is so.
 Together with what I have said in footnote 37, this suggests that postulate 1.3 be

 understood so as to provide the following rule:

 (R.2) If a segment is given and the concrete line representing it is such that it can
 be continued so as to meet a concrete line representing another given segment
 or a given circle, then the former segment can be produced up to meet this
 other segment or this circle; hence, if a segment a and another appropriate line
 b (either a segment, in turn, or a circle) are given, then the following other
 objects are susceptible of being given: two other segments, one of which, let
 us say c, extends a up to b , while the other, let's say d , is formed by a and с
 taken together; a point on b at which both с and d meet it; two portions of b
 having this last point as a common extremity (either two segments or two arcs
 of circle).

 Not all the inference rules entering into constructions in EPG are associated with a
 constructive clause and have a modal nature. The construction of a right angle requires
 the application of two constructive rules of inference that are not so. One of them is

 62 The interval mentioned in postulate 1.3 (cf. footnote 59) can be understand either as a segment having
 an extremity in the point taken as centre, or as the distance between two given points. According to postulate
 1.1 and definition 1.3 these understandings do not contradict to each other.

 63 An analogous disclaimer as that advanced in footnote 38 also applies here. One who prefers a recon-
 struction more faithful to the textual evidence, according to which segments are allowed to be produced at
 will, has nothing else to do but liberalise my rule R.2 so as to allow applications of postulate 1.2 which fìts
 better with this evidence. As it was the case earlier, no substantial change of my account would be required.
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 implicit in definition 1.3. The other depends on the admission that the intersection of
 two lines results in a point dividing each of these lines into two portions having this
 point as a common extremity. These rules are the following64 :

 (R.4) If a segment is given, two points, consisting in its extremities, are also given.
 (R.5) If two lines intersect each other, then, any time they meet, a point is given

 where they meet, and this point divides each of them into two portions (either

 two segments or two arcs of circle) having it as a common extremity, which
 are also given.

 2.3 Common notions

 Not all the rules of inference occurring in EPG are constructive (i.e. concerned with
 being given). Among those that are not, the most relevant concern the relations of
 equality, being a part of, and being greater (or smaller) than, and the procedures65
 of taking together and cutting off. In EPG, these relations and procedures applies to
 segments, polygons and angles, and thus they cannot be fixed once for all, since their
 nature depends on the nature of the objects they are applied to. But, whatever sort
 of objects they apply to, each of these relations and procedures are taken to satisfy
 some appropriate general conditions. In my view, the task of the common notions in
 the Elements is that of fixing some of these conditions.66 Insofar as these notions
 are not only common to any sort of EPG objects, but extend also to tridimensional
 geometrical objects and to numbers, the conditions they fix are not merely restricted
 to EPG. Here, I limit myself to the case of EPG, however.

 To put it in modern terms, common notions 1. 1-1 .3 state that any assumed relation

 of equality among EPG objects has to be transitive (provided that its being symmetri-
 cal be taken for granted), and preserved under taking these objects together or cutting
 off one from the other.

 Common notions 1.4-6 (in Heiberg's numeration) are probably interpolated (Euclid
 EEH, I, pp. 223-224), since they follow from the previous ones: they respectively
 establish that any assumed relation of equality among EPG objects has to be such that
 if equal objects are respectively taken together with unequal ones, the resulting objects
 are unequal, and has also to be preserved under the passage to the double and the half.

 Common notions 1.7-8 (always in Heiberg's numeration) are quite different. They
 state respectively that two geometric objects that coincide with each other are equal,
 and that the whole is greater than the part. I take them as referring to diagrams and
 as having several functions. Taken alone, common notion 1.7 seems both to state that
 geometrical objects that are represented by the same diagram have to be equal to each
 other - which, according to the global role of diagrams, is the same as stating that

 64 These rules correspond to the second and third ways "in which points enter into arguments in the
 Elements ", according to Mäenpää and von Plato (1990, p. 286).

 65 I say 'procedures' rather than 'operations', since I do not take operations, at least in the modern (func-
 tional) sense of this term, to be present in EPG.

 66 A similar interpretation of Euclid's common notions is also suggested by Stekeler-Weithofer (1992,
 p. 136).
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 any assumed relation of equality has to be reflexive67 - and to license the (non-con-
 structive) argument that Euclid relies on for proving proposition 1.4 (on which I shall
 come back in Sect. 2.4). Taken alone, too, common notions 1.8 seems to establish
 that a geometric object represented by a diagram that, includes another diagram that
 represents another geometrical object of the same sort has to be greater than this latter
 object. Taken together, these common notions state, moreover, that, when defined for
 the same sort of geometrical objects, the relations of being equal to, and being greater
 (or smaller) than have to be exclusive and to respect trichotomy.
 The following considerations will show how some of these conditions apply in cer-

 tain cases. More generally, one could note that they are crucial for allowing reduction
 of non-diagrammatic attributes to diagrammatic ones. The simple examples of such a
 reduction advanced in Sect. 1.3.2 should be enough for illustrating this point. Other
 examples will be offered below.

 2.4 Constructing perpendiculars

 Solutions of problems in EPG include two steps: the construction of some objects, and
 the proof that these objects comply with the conditions of the problem. In the case of
 propositions 1. 1 1-12, the latter stage consists in proving that two angles constructed
 in the former stage are equal to each other. This requires invoking some sufficient
 conditions for equality of angles.
 In Euclid's solution of both propositions, this condition is provided by proposition

 1.8. This is a theorem: "if two triangles have the two sides equal to [the] two sides,
 respectively, and have the base equal to the base, [they] will also have [any] angle
 equal to [any] angle, [namely] that contained by equal segments". It follows that two
 angles are equal if they are included, or are susceptible of being included, into two
 triangles whose sides are respectively equal.
 Through this condition, equality of angles is reduced to equality of segments. But

 this reduction is not merely a matter of stipulation; it is rather a matter of proof. The

 proof relies on a previous condition provided by proposition I.4.68 This is also a theo-
 rem, and it states, in modern parlance, the side-angle-side condition for congruence of
 triangles. In Euclid's parlance, this results in three distinct conditions, namely equality
 of triangles, of their sides, and of their angles: "if two triangles have two sides equal
 to [the] two sides, respectively, and have [an] angle equal to [an] angle, [namely] that
 contained by the two equal segments, [they] will also have the base equal to the base,
 the triangle will be equal to the triangle, and the remaining angles will be equal to
 the remaining angles respectively, namely those which equal sides subtend". Euclid's
 proof of proposition 1.8 depends on the following condition extracted by this theorem:
 if an internal angle of a certain triangle is equal to an internal angle of another triangle,
 and the sides of these triangles including these angles are also respectively equal, then

 67 This is relevant, of course, when a single geometric object is conceived as complying with two distinct
 functions, for example when the same segment is conceived as being a side of two distinct triangles. It is
 cases like this that Coliva accounts for with the notion of seeing as in Coliva (201 1).

 68 To be more precise, Euclid's proof of proposition 1.8 depends on proposition 1.7, whose proof depends
 on proposition 1.5, which is proved in turn by relying on the condition provided by proposition 1.4.
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 the remaining internal angles of these same triangles are respectively equal. This is also
 a sufficient condition for equality of angles, but, contrary to the condition provided by
 proposition 1.8, it does not result in a reduction of equality of angles to a circumstance

 independent of equality of angles: according to it, two appropriate angles are equal to
 each other, if, among other things, two other appropriate angles are so. This is, so to
 say, an inferentially conservative condition.
 Despite this difference, also this last condition, like that provided by proposition

 1.8, is a matter of proof, rather than a matter of stipulation. This proof is very peculiar
 and often questioned,69 for it is based on the possibility of rigidly displacing a triangle,

 as if it were a rigid configuration of rigid bars.70 It is not only diagram-based, but also
 mechanical, so to speak: the constructive clauses and rules of inference that are applied
 in other EPG proofs and constructions are not enough to make it work.71 Still, there is
 no alternative argument, complying with these constructive constraints to replace it.72
 The reason for this is directly connected with the fact that the sufficient condition for

 equality of angles that proposition 1.4 provides is inferentially conservative: its proof
 is based on the hypothesis that two given angle are equal, but no previous statement
 is made in order to explain what it means for two angles to be equal.73
 Still, once proposition 1.4 is accepted and proposition 1.5 is proved thank to it,

 propositions 1. 11 and 1.12 can be easily solved without using either proposition 1.8
 or any other sufficient condition of equality for angles. Euclid's choice to appeal
 to proposition 1.8 possibly depends on his desire to replace as soon as possible the
 inferentially conservative condition for equality of angles provided by proposition
 1.4 with another condition reducing equality of angles to a circumstance independent
 of equality of angles. This is reasonable enough from the perspective of composing

 69 For two opposed views about this proof, cf. Euclid (EEH, I, pp. 225-23 1 , 249-250) and Mueller (198 1 ,
 pp. 21-26).

 70 At first glance, this is also the case of the proof of proposition 1.8. But it is easy to see that, unlike that of
 proposition 1.8, this proof admits a rephrasing according to which it is independent of rigid displacement.

 71 Let ABC and DFE (Fig. 8) two given triangles such that AB = DF, AC = DE, and CAB = EDF.
 Euclid claims that, if the triangle ABC is rigidly displaced so that the respective members of these equalities
 coincide with each other, then the points В and С coincide with the points F and E respectively, and thus also
 the side ВС coincides with the side FE, then, by common notion 1.7, these last sides, the whole triangles,
 and their other internal angles are equal to each other. The problems with this argument do not arise just
 from its appeal to rigid displacements of triangles. Another problem is that no stipulation explicitly made
 by Euclid ensures that when a triangle is so displaced, its sides and angles coincide with other segments
 and angles that are supposed to be equal to them, respectively. For it to be so, the converse of the common
 notion 1.7 has to hold for segments and angles, which Euclid seems to take for granted (Hartshorne 2000,
 p. 34).

 72 Shabel (2003, pp. 31-34) interprets Euclid's argument in such a way that it does not rely on any dis-
 placement. The basic idea is to appeal to the constructions involved in the solution of proposition 1.2 (which
 I shall consider later) to construct two segments having point D as their common extremity and being
 respectively equal to AB and AC. But this does not save Euclid's argument from being flawed, since, as
 Shabel correctly remarks, the construction involved in the solution of proposition 1.2 does not warrant that
 the two other extremities of the new segments constructed through it coincide respectively with F and E,

 under the supposition that CAB = EDF.

 73 This is the reason Hilbert included a weaker version of this proposition among the postulates of his
 own version of Euclidean geometry (Hilbert 1899, post. IV.6, or II1.6 or 1II.5, in other editions of Hilbert's
 treatise).
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 a comprehensive treatise as the Elements , but from the more limited perspective of
 solving propositions 1.11-12, a simpler argument based on propositions 1.4 and 1.5
 alone could be preferred. To shorten my reconstruction, I confine myself to this simpler
 argument.

 It begins with the solution of proposition 1.1, which requires, as mentioned, the
 construction of an equilateral triangle on a given segment. Provided that segments are
 defined, and diagrams play their twofold role, the definitions of triangles present no
 difficulty: "a boundary is that which is [the] extremity of something" (Def. 1.13); "a
 figure is that which is contained by some boundary or boundaries" (Def. 1. 14)74; "rec-
 tilinear figures are those which are contained by straight lines", or better segments;
 and, among them, "three-sided [ones are] those [contained] by three" (Def. 1.19). Also
 the definitions of equilateral, isosceles, and scalene triangles are simple, at first glance
 (Def.1.20), but, for it to be meaningful, equality of segments has to be explained.

 Definition 1.15 supplies a ground for doing this. It establishes that "[a] circle is
 a plane figure contained by one line such that all the straight [lines] falling upon it
 from one point of those lying inside the figure are equal to one another". Despite this
 definition, Euclid often considers a circle to be a line rather than a figure.75 Needless
 to say that the intelligibility of this definition depends on the twofold role of diagrams,

 which also allows one to infer from it that any given circle encloses a given point such
 that all the given segments that have it as an extremity and whose other extremity is on

 this same line are equal to each other.76 Far from requiring a previous explanation of
 equality of segments, this provides, as already observed in Sect. 1 .3.2, a sufficient con-
 dition for equality of segments that share an extremity, a condition which depends on
 a reduction of a non-diagrammatic relation to a diagrammatic one: two such segments
 are equal if a circle passes trough their other extremities.

 Relying on this condition, proposition 1.1 is easily solved through an argument
 which I have already discussed thoroughly. This provides a new constructive rule to
 be added to R.0-R.5:

 (R.6) If a segment is given, then four concrete lines representing as many other
 segments forming with it two equilateral triangles can be drawn; hence, if a

 74 Cf. footnote 19.

 75 Cf. footnote 19.

 76 This contrasts with proposition III. 1 . This is a problem requiring the construction of the centre of a given
 circle. It implies, then, that a circle can be given without its centre being given. EPG provides, however,
 no possibility of constructing a circle without having previously constructing its centre, unless a rule for
 circles analogous to R.O is admitted. There is then a tension between proposition III. 1 and the constructive
 clauses admitted in EPG.
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 segment is given, two equilateral triangles having this segment as a common
 side are susceptible of being given.

 с

 D

 Fig. 9

 Suppose now that a new segment AB be given (Fig. 9). Apply rule R.6 so as to
 obtain77 the two equilateral triangles ABC and DBA, and then rule R. 1 so as to obtain
 the segment DC. According to rule R.5, the point E is thus given, and, for the two-

 fold role of diagrams, also the four angles AEC, СЕВ, BED and DEA are given.
 These angles are right, but, without further resources, there is no way to prove it. The
 appropriate resources are provided by propositions 1.4-5.

 Hence, were our problem that of constructing a right angle, without any supplemen-

 tary condition, the previous quite simple construction, together with these resources,
 would be enough to solve it. But propositions 1. 1 1 and 1. 12 require more; they require
 the construction of two right angles whose sides meet some conditions that segments
 AB and CD are not required to meet. Thus, in order to solve these propositions,
 other constructions are needed. Still, once these constructions are performed, the same

 resources provided by propositions 1.4-5 are enough also to prove that they solve prop-
 ositions 1.1 1 and 1.12. Let us consider, then, propositions 1.4-5.

 They are theorems. I have already discussed the former above. Here, I need only
 to add that its proof is based on the supposition that two distinct triangles having two
 sides and the angle included by them respectively equal are given. These triangles are
 not supposed to be equilateral, and the generality of the proposition requires that they
 are not be necessarily so. Rule R.6 is thus not enough for licensing this supposition.
 This can be done by relying on the solution of proposition 1.2. This is a problem and
 requires the construction of a segment equal to another given segment having one of
 its extremities in a given point.78 There is no need to go into the details of Euclid's
 solution. It is enough to say that it applies rules R. 1-3 and R.6 explicitly and rule R.4
 implicitly, and it provides, in fact, the following new constructive rule:

 (R.7) If a segment and a point distinct from both its extremities are given, then a
 concrete line representing another segment equal to the given one and having

 77 In agreement with the terminology 1 have used in Panza (201 1), 1 use the verb 'to obtain', as synon-
 ymous with the verb 'to provide' understood as 1 have said, in Sect. 1.2, p. 68. The phrase 'to obtain a'
 where 'a' refers to a geometric object, is then intended to indicate the action of giving a (actively), i.e. of
 putting a at one's disposal, which, in the context of EPG, means that a is constructed in an appropriate way.

 78 Cf. footnote (60), above.
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 one of its extremities in the given point can be drawn; hence, if a segment and

 a point distinct from the extremities of this segment are given another such
 segment is susceptible of being given.

 It is easy to see how this new rule can be applied, together with a construction
 inspired by the one that solves proposition 1 .1 , in order to construct a triangle whose

 sides are equal to three given segments.79 But the solution of proposition 1.2 implicitly
 provides also a sufficient condition of equality of two given segments that do not share
 an extremity: they are equal if one of them is given insofar as it is supposed to have
 been constructed starting from the other one by performing the construction that solves

 proposition 1.2. 80. Hence, the solution of proposition 1.2 provides all the necessary
 resources for understanding the supposition on which the proof of proposition 1.4 is
 based, except for the condition of equality of the two relevant angles, which Euclid
 cannot but leave unclarified.

 Also proposition 1.5 is a theorem and states that "the angles at the base of isosceles
 triangles are equal to one another, and, if the equal straight [lines] are produced further,

 the angles under the base will [also] be equal to one another". Once proposition 1.4 is
 admitted, its proof presents no difficulty.
 Let ABC (Fig. 10) be a given triangle whose sides BA and CA are equal to each

 other. Euclid applies postulate 1.2, so as to produce these sides at will on the side of В
 and C, then takes a point F at random on the prolongation of BA and a point G on the
 prolongation of CA such that GA = FA. Since what is essential in the proof is merely
 this last equality, one could avoid both extending BA and CA at will and taking a point
 at random on the prolongation of the former,81 by rather proceeding as follows: apply
 rule R.3 so as to obtain a circle passing through A with centre in B; apply R.2 so as to
 extend BA up to meet this circle in F; apply R.3 again so as to obtain a circle passing
 through F with centre in A; and finally, apply R.2 again so as to extend CA to meet
 this last circle in G.

 Howsoever the points F and G are constructed, the rest of Eucliďs argument goes
 as follows. Apply R.l so as to obtain two segments joining the points F and G to

 79 Of course, for the construction to be possible, these segments have to be such that any two of them
 are, if taken together, greater than the remaining one. This is made clear by proposition 1.20, which is a
 theorem asserting that any two sides of a triangle are, if taken together, greater than the remaining one. This
 explains why Euclid postpones the exposition of this construction until proposition 1.22, which is a problem
 requiring the construction of a triangle whose sides are equal to three given segments, under the condition
 that they satisfy this condition: clearly, he wants to avoid stating a problem that is possibly unsolvable.
 On the construction of generic triangles, cf. also Proclus ' CEELF, 218.12-220.6 (Proclus CEEEM, pp.
 171-172).

 80 By coupling this condition with the solution of proposition 1.3, already discussed in Sects. 1 .2 and 1 .3.2,
 one then gets a sufficient condition for a segment to be greater or smaller than another one.

 81 I have already discussed Euclid's practice of extending segments at will in Sect. 2.2, above (cf. footnote
 (63), in particular). The practice of taking points at random, both on given lines or not is different and,
 strictly speaking, not assimilable to the practice of supposing that isolated points are given as starting points
 of constructions (on which, cf. footnotes (38) and (60), above). Still, like the latter practice, the former is
 not allowed by the constructive rules admitted in my reconstruction, and can be avoided though appropriate
 constructions agreeing with these rules. Hence, 1 understand Euclid's appeal to this practice as a shortcut
 that replace these latter constructions. But, as before, nothing forbids one who prefers a reconstruction
 more faithful to the textual evidence to admit another appropriate constructive rule. This would require no
 substantial change in my account.
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 the points С and В, respectively. According to the twofold role of diagrams, the two

 triangles ABG and AFC are thus given, and include the same angle at vertex ВАС.
 Hence, since BA = CA, FA = GA and equality of angles is required to be reflexive
 (by common notion 1.7), these triangles satisfy the condition of proposition 1.4, to

 and: ABG = FCA, BGA = AFC, FC = GB. Moreover, according to rule R.2 and,
 again, by the twofold role of diagrams, segments FB and GC, and triangles BFC and
 BGC are also given, and segment FA is formed by the two segments FB and BA, just
 as the segment GA is formed by the two segments GC and CA. Hence, it is enough
 to reduce the non-diagrammatic relation among three collinear segments a , b and с
 that these segments have to each other when с results from cutting off b from a to the

 diagrammatic relation that these segments have when a is formed by b and c, in order
 to conclude, according to the common notion 1.3, that FB = GC. The triangles BFC

 and BGC satisfy, then, the condition of proposition 1.4, to the effect that CBF = GCB

 and FCB = CBG. The former equality corresponds to the second part of the theorem
 to be proved. The latter provides a lemma to prove the first part. For this purpose, it
 is enough to apply to angles an argument analogous to that just applied to segments:

 angle FCA is formed by the two angles FCB and BCA, and angle ABG is formed by

 the two angles CBG and CBA, hence, it is enough to reduce the non-diagrammatic
 relation among three angles with the same vertex a, ß, Ç that these angles have to
 each other when у results from cutting off ß from a to the diagrammatic relation that

 these angles have when a is formed by ß and y, in order to conclude, according to

 the common notion 1.3 again, that BCA = CBA, as it was to be proved.
 Once propositions 1.4 and 1.5 are proved, the solution of propositions 1.11-12

 presents no further difficulties.
 Consider first proposition 1.1 1. Let AB be a given segment and С a given point on

 it (Fig. 1 1). The problem consists in constructing a perpendicular to AB through C.
 The first step is the construction of a segment collinear to AB having С as is its middle
 point. To do it, Euclid suggests taking another point at random on AB in such a way
 that the circle of centre С that passes through this point, constructed according to rule
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 R.3, cuts AB. The same can be achieved by avoiding to take points at random,82 by
 directly applying rule R.3 so as to obtain the circle of centre С passing through one
 of the extremities of AB, leťs say A. If this circle cuts AB in another point D, then the
 segment AD having С as is its middle point is given by the twofold role of diagrams.
 If this circle does not cut AB in another point, apply rule R.2 so as to extend AB on
 the side of В to meet this circle in D and to obtain the segment AD having, again,
 С as is its middle point. To construct the required perpendicular it is then enough to
 apply rule R.6, so as to obtain an equilateral triangle AED, and then rule R.l, so as to
 obtain the segment CE. By the twofold role of diagrams, triangles ACE and CDE are

 thus given, together with the adjacent angles ACE and ECD. These angles are equal
 to each other and, consequently, right. To prove it, Euclid relies on proposition 1.8,
 by remarking that the sides of the triangles ACE and CDE are respectively equal. It
 is however obvious that propositions 1.4 and 1.5 are also appropriate for this purpose,

 since triangle AED is isosceles, to the effect that EAC = CDE.
 The solution of proposition 1.12 requires a bit more work. Let AB be a given seg-

 ment and С a given point off it, for example an extremity of another segment CD. If
 these objects are arbitrary, there is no warrant that a perpendicular to AB through С
 be susceptible of being given. To avoid distinguishing the case where it is (Fig. 12a.l)
 from that where it isn't (Fig. 12b. 1 ), Euclid supposes to be given an "unlimited straight
 line" (that is, a straight line in the modern sense of this term) - which is a quite infre-
 quent supposition in the Elements - and a point off it, and requires the construction of
 a perpendicular to the line from the point. There is however a quite simple way to pro-
 ceed in order to construct a perpendicular through С either to AB or to a prolongation
 of AB, if С does not lay on this prolongation.

 It is enough to apply R.3 so as to obtain the two circles with centre С passing
 through A and B, respectively, and distinguish two cases: (/) one of these circles, for

 82 Cf. footnote (81), above.
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 example the one passing through В, meets AB twice (Fig. 12a.2): (ii) neither circle
 does. If case (ii) obtains, apply rule R.2, so as to produce AB up to meet one of these
 circles, for example the one passing through B, in G. Two sub-cases are possible: (ii.i)
 point С does not lay on the prolongation of AB (Fig. 12b.2); (ii.ii) point С does lay
 on the prolongation of AB (Fig. 12b.3). In this last case, no perpendicular through С
 either to AB or to a prolongation of AB is susceptible of being given. In the two other
 cases, this perpendicular can be constructed through analogous constructions.

 Here is how it works in the case (ii.i): apply rule R.2 so as to obtain the segments
 ВС and GC; then apply rule R.6 so as to obtain the equilateral triangle BKG; finally,
 apply rule R.l, so as to obtain the segment КС. By the twofold role of diagrams the
 triangles BGC, BKC, KGC, BHC and HGC are also given. By reasoning on these
 triangles and on the triangle BKG according to propositions 1.4 and 1.5, it is easy to

 prove that BHC = CHG, so that HC is the perpendicular that was to be constructed.
 The argument goes as follows: as the triangle BKG is isosceles, by proposition 1.5

 it follows that GBK = KGB; as ВС and GC are radii of the same circle, by definition
 1.5 they are equal, to the effect that triangle CBG, is isosceles, in turn, and, by prop-

 osition 1.5, CBG = BGC; it is then enough to reduce the non-diagrammatic relation
 among three angles with the same vertex a, ß, Ç that these angles have to each other
 when a results from taking ß and у together to the diagrammatic relation that these
 angles have when a is formed by ß and y, in order to conclude, according to common

 notion 1.2, that CBK = KGC; hence, the triangles BKC, KGC meet the conditions
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 of proposition 1.4, to the effect that KCB = GCK; but then also the triangles BHC
 and HGC meet these same conditions, to the effect that BHC = CHG, as it was to be

 proved.
 In Euclid's own formulation, the problem does not split into different cases. Its

 solution requires, however, that a point D be taken at random on the other side of
 the given straight line from С (Fig. 13).83 Once this is done, Euclid prescribes one
 to apply rule R.3 so as to obtain the circle with centre С passing through D. For the
 twofold role of diagrams, this circle cuts the given straight line twice, in G and E. It is
 then enough to apply rule R.6 so as to obtain the equilateral triangle GKE, and then
 rule R. 1 so as to obtain the segment КС. According to the solution of proposition 1.9,

 this segment bisects the angle ECG, and, according to the solution of proposition 1.1 0,
 it also bisects G E in H . Hence, the triangles G HC and НЕС have sides respectively

 equal, with the result that, according to proposition 1.8, G HC = CHE, as it was to be
 proved.

 It is easy to see that this argument differs from that I have offered only by the
 supposition that an "unlimited straight line" be given, the admission that a point be
 taken at random, and the appeal to the proposition 1.8 instead of the proposition 1.4.

 3 Conclusions

 The solutions of propositions 1. 1 1-12 - that I have just reconstructed - should provide
 an example of the role that diagrams play in EPG. This role appears both in con-
 structions and in proofs, and depends on the relation that diagrams have with EPG
 geometrical objects.

 My account of this relation focuses on two crucial aspects, that respectively pertain
 to claims ( C.i ) and (C. ii), and that I have tried to clarify in Sect. 1. More gener-
 ally, I have also suggested that diagrams are able to play their role since they are
 compositional objects, and each of the elementary objects that compose them (which
 are concrete lines representing segments and circles that are drawn through a single

 83 Cf. footnote (81), above.
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 construction step) is both intrinsically one and divisible: these elementary objects can
 both compose complex diagrams and be decomposed in parts.
 Intrinsic unity and divisibility are, in my reading, the two components of the notion

 of continuity that is at work in EPG. This notion, I argue, is Aristotelian, in nature.84
 Still, this is not a sufficient reason for taking my account of EPG to be Aristotelian,
 though it is certainly opposed to a conception of EPG according to which this is merely
 a matter of contemplation of ideal, eternal truths, as it is often said to be, according
 to a commonly accepted Platonic orthodoxy. But it is not my aim to take a side in the
 dispute over the Platonic or Aristotelian nature of EPG. In conclusion, I would like,
 instead, to say something about the relation between my account of EPG and Kant's
 understanding of Euclid's geometry.
 As observed by Friedman, in his paper included in the present issue, the view that

 a diagram-based account of such a geometry can be used to motivate an interpretation
 of this understanding has been advanced by Shabel (2003). In his paper, Friedman
 argues against this idea. His basic reason is that "Kant begins with general concepts
 [...] and then shows how to 'schematise' them sensibly by mean of an intellectual
 act or function of the pure productive imagination", and that this depends on Kant's
 basic thesis that "pure intuition [. . .] lies in wait prior to the reception of all sensations
 [...] as an a priori condition of the possibility of all sensory perceptions and their
 objects" (Friedman 2012), which is motivated, in turn, by his aim "to explain how
 [...] both space itself and physical nature in space necessarily acquire their objective
 mathematical nature" (Friedman 2012). This is fully convincing to me. But this is not
 all: for accounts like mine, which focus on the relation between diagrams and abstract
 objects, the situation is even worst, since, in Kant's view, there is no precise role for
 something like abstract objects in my sense.
 Still, as Friedman himself extensively argues, sensible intuition is for Kant a crucial

 (and not purely contingent) ingredient of geometry. After all, for Kant, "we cannot
 think a line without drawing it in thought, or a circle without describing it" ( KrV ,
 В 154; Kant CPRS, p. 167; also quoted by Friedman 2012), and "although [...] [the]
 principles [of mathematics], and the representation of the object with which this sci-
 ence occupies itself, are generated in the mind completely a priori, they would mean
 nothing, were we not always able to present their meaning in appearances, that is, in
 empirical objects" ( KrV , A 239-244, В 299; Kant CPRS, pp. 259-260). Moreover,
 geometric construction is, for Kant, "ostensive", and it is so insofar as it is "construc-
 tion [. . .] of the objects themselves" {KrV, A 717, В 745; Kant CPRS, p. 579). Hence,
 it seems to me that in order to account for Kant's view on geometry, it is necessary to
 account, among other things, for the relation between Kant's pure productive imagi-
 nation and some concrete objects that, according to this views, necessarily enter into
 geometry. More than that, it is the very role of these objects that have to be explained.
 Arguing that these objects result from general concepts through a schématisation

 operated by productive imagination cannot be but only a part of this account. It is
 also necessary to say what features of the relevant concepts are displayed by the cor-
 responding concrete objects, and how these objects enter into geometrical arguments

 84 Cf. footnote (40), above.
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 concerned with these features. I suggest that my notion of diagrammatic attribute can
 help achieve this purpose. But, of course, working on this matter is not a task to be
 pursued here.
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