Seeing How It Goes:
Paper-and-Pencil Reasoning in Mathematical Practice*

Danielle Macbeth

What is the role of writing in mathematics? If one thinks of a problem in
arithmetic, say, that of dividing eight hundred and seventy-three by seventeen, the
writing seems essential insofar as, although practically anyone can solve this
problem, most of us can solve it only in the positional system of Arabic numeration.
One simply cannot calculate in English, or any other natural language, as one can in
Arabic numeration; and again, for most of us, there is just no other way to solve
arithmetical problems of any degree of difficulty.! In other cases the notation, even
any writing at all, seems utterly irrelevant. Although I cannot say a calculation in
Arabic numeration but only show it, or describe what it would look like if one
performed it, one does say, for instance, the proof, known already to the ancient

Greeks, that there is no largest prime. Here it is.

Suppose that there are only finitely many primes, and that we have an ordered list of all of them. Now

consider the number that is the product of all these primes plus one. Either this new number is prime

* An earlier version of this paper was presented at the conference, “From Practice to
Results in Logic and Mathematics”, organized by the PratiScienS group and held at
the University of Nancy 2, Nancy, France, June 21-23, 2010. [ am grateful for
comments received at that conference, and also for those of an anonymous
reviewer.

1 As Whitehead once remarked, “probably nothing in the modern world would have
more astonished a Greek mathematician than to learn that, under the influence of
compulsory education, the whole population of Western Europe, from the highest to
the lowest, could perform the operation of division for the largest numbers. This fact
would have seemed to him a sheer impossibility”. Alfred North Whitehead,
Introduction to Mathematics (Barnes and Noble Books, 2005), pp. 32-3; first
published in 1911.



or it is not. If it is prime then we have a prime number that is larger than all those originally listed;
and if it is not prime then, because none of the numbers on our list divide this new number without
remainder (because it is the product of all those primes plus one), this new number must have a
prime divisor larger than any of the primes on our list. Either way there is a prime number larger

than any with which we began. Q.E.D.

This proof clearly does not rely on any system of written signs. It depends not on the
capacity to write but on the capacity to reflect on ideas, and to think, that is, to
reason or infer.?

A calculation in Arabic numeration is essentially written—though of course the
writing can be merely imaginatively performed rather than actually performed. The
proof that there is no largest prime is not. Although the words clearly do convey the
line of reasoning, the proof is not in the words (whether spoken or written); it is not
the words that one attends to in the proof that there is no largest prime, but instead
the relevant ideas, central among them the idea of a number that is the product of a
collection of primes plus one. The task of the proof is to think through what follows
in the case of such a number. It can furthermore seem that this is a paradigm case of
reasoning in mathematics, that the various systems of written marks that have been
devised for mathematics are merely useful devices that simplify the work of
mathematics but are in no way essential to it. In one way this is obviously right: the
systems of written signs that have been devised for mathematics were devised for

mathematics that already existed. [t would be impossible to design a notation for

2 As Kant might think of it, whereas a calculation in Arabic numeration involves an
intuitive use of reason, a construction (in pure intuition), the reasoning involved in
the ancient proof that there is no largest prime instead makes a discursive use of
reason directly from concepts. See the first section of the first chapter of the
Transcendental Doctrine of Method (especially A712/B740-A723/B751).



mathematics without already knowing at least some of the mathematics the
notation was designed to capture. But in another way it is not right, not if it is taken
to mean that the systems of signs that have been devised for various sorts of
mathematics are merely a convenience, a kind of shorthand writing. The system of
Arabic numeration is not shorthand for something one could also do in the longhand
of written natural language. And yet the received view, both in mathematics and in
philosophy, is that mathematical languages, that is, the systems of written signs we
devise in mathematics, are exactly that: convenient shorthand. We think that
mathematical languages are merely a specialized bit of natural language, a “suburb”
of our language as Wittgenstein puts it in his Philosophical Investigations (§18), that
“mathematics is written using a variety of English”.3

According to the received view, writing in mathematics serves, as written
natural language does, to register or record results that are obtained independently.

Jourdain takes a different view:

it is important to realize that the long and strenuous work of the most gifted minds was necessary to
provide us with simple and expressive notation which, in nearly all parts of mathematics, enables
even the less gifted of us to reproduce theorems which needed the greatest genius to discover. Each
improvement in notation seems, to the uninitiated, but a small thing; and yet, in a calculation, the pen

sometimes seems to be more intelligent than the user.*

Jourdain claims that a good—that is, simple and expressive—mathematical

notation, although not necessary to the practice of mathematics, enables even the

3 Carol Schumacher, Chapter Zero: Fundamental Notions of Abstract Mathematics
(Addison-Wesley, 2001), p. 5.

4 Philip E. B. Jourdain, The Nature of Mathematics (London: T. C. and E. C. Jack, and
New York: Dodge Publishing Co., 1912), p. 16.



less gifted of us to reproduce theorems. But if so, then collections of signs in
mathematics do not merely record results; they actually embody the relevant bits of
mathematical reasoning. They put the reasoning itself before our eyes in a way that
is simply impossible in written natural language. And this seems right, at least for
some cases: a calculation in Arabic numeration, for instance, embodies the
reasoning. [t shows how it goes in a way that the words we use to convey the proof
that there is no largest prime do not. The same is true, we will see, for the other
major systems of written signs that have been developed and used over the course
of mathematics’ long history.
I. Some Preliminary Reflections on Notation

The words of natural language are obviously different from the things those
words are used to refer to and talk about. This difference in turn suggests a
distinction between written natural language, which is first and foremost a record of
speech, of the myriad utterances that speakers of natural language are capable of
making, and systems of written notation that more directly express, record, or
picture the things about which we speak. The (written) word ‘four’ traces the
sounds speakers make in uttering the English word for a particular number; a
collection of four strokes, ////, directly pictures a collection of four things. The
(written) word ‘circle’ traces sounds; a drawn circle provides an instance of the
shape the word names. But although this distinction between the two sorts of
writing—on the one hand, written natural language, and on the other, systems of

written marks that more directly trace or map things we talk about—is quite



obvious and natural, it is, I think, unable to provide us with any real insight into the
role of writing in mathematical practice.

The first problem with the distinction is that even natural language, whether
spoken or written, can be conceived as a means of picturing states of affairs. This is,
for instance, Wittgenstein’s view in the Tractatus. To say or write that (say) Andy is
taller than Bill is, on this view, to picture a certain state of affairs that obtains
between two objects, the same state of affairs as can be expressed or pictured in a
convenient shorthand of standard logical notation: aTb, with ‘a’ standing in for
Andy, ‘b’ for Bill, and the manner of writing those names, namely, to the left and
right of the letter “T’, respectively, showing how things stand with the objects so
designated.® If we conceive natural language in this way then it will be quite natural
to think that the signs we introduce in mathematics are similarly convenient
shorthand for words of natural language.

And there is another problem as well. Suppose that we accept the distinction
between the words of natural language, and their written counterparts, on the one
hand, and systems of notation that more directly express, record, or picture that
about which we speak, on the other. What then are we to say about the signs of
Arabic numeration or about equations in the symbolic language of arithmetic and
algebra more generally? The Arabic numeral ‘4’ neither records the sounds speakers
of a natural language make nor pictures any collection of things. The familiar

equation for a circle traced out in Cartesian coordinates about the origin, ‘x? + y? =

5 Ludwig Wittgenstein, Tractatus Logico-Philosophicus, trans. D. F. Pears and B. F.
McGuinness (London and Henley: Routledge and Kegan Paul, 1961); see especially
§§ 3.1432 and 4.0311.



r?’, although it can be read aloud in a sense, is not an abbreviation of a sentence of
English—as becomes evident when one has a speaker of another natural language,
say, Japanese or French, read it aloud. The sounds such speakers will make are very
different from the sounds a speaker of English makes in reading that equation. But
nor does it seem helpful to say that the equation pictures something that the words
of natural language can only name. Indeed, we will see, this is true even of a drawn
figure (say, a circle) in a Euclidean demonstration; a drawn circle in Euclid is not
usefully thought of as giving us a picture or instance of the thing that the word
‘circle’ names.

But although the simple and obvious distinction between (written) natural
language and systems of signs that more directly picture or map the things about
which we speak is not very illuminating, other, related distinctions are, we will see,
more useful. The first is suggested by differences between the Roman and the Arabic
systems of numeration.

Roman numeration is a natural extension of the idea of using individual marks
to stand for the objects in a collection so as to record how many of them there are. It
provides a convenient shorthand: ‘V’ in place of ‘IIIII’, ‘X’ in place of ‘VV’, and so on.®
Like the more primitive use of marks, one for each object in a collection, the system
of Roman numeration enables one to record how many. The positional system of
Arabic numeration is essentially different insofar as it was designed not to record

how many but instead to enable paper-and-pencil calculations; it was to provide an

6 Roman numeration today includes also a subtractive convention according to
which, for example, ‘1V’ stands for a collection of four things. This was not a part of
the original system devised by the Romans but a much later addition.



alternative to the technology of the counting board as a means of solving basic
arithmetical problems. And it can be so used because it formulates the arithmetical
content of numbers in a way that enables one to break a problem down into a series
of small, directly solvable steps. Unlike the system of Roman numeration, the Arabic
system provides even the less gifted of us with a simple and expressive notation
within which to solve arithmetical problems of arbitrary difficulty.”

A notation of the sort that Jourdain seems to have in mind is one that, like the
system of Arabic numeration and unlike that of Roman numeration, enables one not
merely to record information but to reason in the system. Furthermore, though this
is not made explicit in Jourdain’s remarks, what is needed in the latter case is
something that really does function as a system, that is, as a means of reasoning
through to results generally in some domain of mathematics rather than merely
establishing some one particular result. There are, for example, many picture proofs
of the Pythagorean theorem, or of a special case of it (as in Plato’s Meno). One very

familiar one is this:

One can (with a little thought) see in this display that the Pythagorean theorem

holds, but the form of the demonstration does not generalize to other cases. Euclid’s

7 Although it is possible to draw conclusions from a collection of signs in Roman
numeration, one is not in that case reasoning in the system of signs as one does in
Arabic numeration. The distinction is subtle and cannot be explored here.



demonstration of that same theorem in Book I of the Elements, Proposition 1.47, is
different insofar as it is only one of a truly remarkable array of results that are
demonstrated using the system of diagrammatic notation that Euclid employs in
that work. A picture proof may well convince one of the truth of a theorem but it
does not, as a proper mathematical notation does, provide a medium of reasoning
more generally.8

Another distinction, more exactly, pair of distinctions, that will be helpful in the
discussion to follow, is that between, on the one hand, reasoning intra-
configurationally and reasoning trans-configurationally, and on the other, signs that
function (as we will say) graphically and signs that function symbolically.? The first
of these distinctions is straightforward. Picture proofs, Venn diagrams, and
Euclidean diagrammatic demonstration are all intra-configurational insofar as the
reasoning “stays within the diagram”. It is by looking at the drawn diagram in
various ways, usually in an ordered series of steps, that one sees that what the
diagram shows is so. Reasoning in the notation of arithmetic and algebra is instead
trans-configurational insofar as the steps of reasoning in these systems require new

writing. The second distinction is subtler insofar as it is not so much a distinction

8 Euler and Venn diagrams seem to provide a kind of intermediate case insofar as
they are neither merely “once-off” nor very powerful means of establishing results.
They provide what might be described as a system of picture proofs for modes of
syllogistic reasoning.

9 The distinction between intra-configurational and trans-configurational reasoning
borrows from Marco Panza’s discussion in “On the Notion of Algebra in Early
Modern Mathematics and its Relations with Analysis: Some Reflections on Bos’
Definitions”, which was presented at a conference on varieties of analysis at St.
Catherine’s College, Oxford, in the spring of 2005. Although my account of the
distinction between graphic and symbolic notations is somewhat different from
hers, the distinction itself is due to Sun-Joo Shin in The Iconic Logic of Peirce’s Graphs
(Cambridge Mass.: The MIT Press, 2002), Chapter Four.



between different systems of written signs as it is a distinction between different
sorts of uses to which such signs can be put. Roughly speaking, a notation functions
symbolically just if each primitive sign in the system has its meaning independent of
any context of use; in a graphical system it is only in a context of use and relative to
some particular way of regarding the collection of signs that the signs, or collections
of them, have any designation.10

We learn, for example, Peirce’s system of alpha graphs by at first treating its
primitive signs symbolically (in our technical sense). There are two sorts of written
signs in the system, sentential signs, ‘A’, ‘B’, ‘C’, and so on, and circles that enclose
(simple and complex) sentential signs, which are called “cuts” and function to negate
what they enclose. There is also a convention according to which the juxtaposition
of signs, whether simple or complex, is read as conjunction. For example, let ‘A’
signify the proposition that apples are red and ‘B’ the proposition that berries are
blue. To juxtapose the two signs on a page is to express their conjunction, that
apples are red and berries are blue. Because a cut negates whatever it encloses,
juxtaposing an encircled ‘A’ and an encircled ‘B’ thus (using brackets to mark cuts
for ease of typing):

(A) (B)

expresses the thought that it is not the case that apples are red and not the case that
berries are blue. Similarly, enclosing both letters within a single cut thus:

(A B)

10 We will see that there can be a kind of intermediate case, that of signs that
designate only in the context of a proposition, but not relative to any particular way
of regarding them in that context. In this case, in effect, an analysis or particular way
of regarding the collection, is always already assumed.



expresses the thought that it is not the case both that apples are red and that berries
are blue.

Having learned in this way to read the system of signs symbolically
(juxtaposition always meaning conjunction, a cut always meaning negation), we can
now learn to read it graphically. Instead of starting with the sentential symbols and
reading outward, each cut as negation and juxtapositions as conjunction, we instead
simply regard the whole graph as a given totality that is amenable to a variety of
analyses, among them those that accord with the following two principles:

1. A sentential sign is negated if it is enclosed within an odd number of

cuts; it is left unnegated otherwise.

2. The juxtaposition of two sentential signs, whether simple or compley, is

a disjunction if both are enclosed within a single cut, as conjunction

otherwise.
Although on our first way of reading the graph, ‘((A) (B))’, expresses the negation of
a conjunction of negations, that is, in standard symbolism, that ~(~A&~B), we can
also read it according to the above principles as expressing the disjunction of A and
B, that is, in standard notation, ‘A v B’. Read graphically rather than symbolically,
this expression in Peirce’s system of alpha graphs does not express either a negated
conjunction or a disjunction independent of an analysis of it. Independent of an
analysis it simply presents A and B in a logical relationship; to say which logical
relationship, one has to regard it in some particular way, provide it with an analysis.
And there is a third way of reading Peirce’s graphs as well, namely, as involving

what Peirce calls a “scroll”, that is, something of the form ‘(X (Y))'—or alternatively

10



‘((Y) X)’ because the order of juxtaposition does not matter—, which expresses the
thought that is expressed in standard notation using the horseshoe: X D Y. Standard
notation is always read symbolically, but it should be clear that even that notation
could be read graphically, as a notation within which signs, simple or complex, have
a designation only in a context of use and relative to an analysis.

We have distinguished between reasoning intra-configurationally and
reasoning trans-configurationally, and also between a system of signs functioning
symbolically and functioning graphically. It is not hard to see that these two
distinctions interact in interesting ways. First, and most obviously, if a system of
signs is functioning symbolically, each primitive sign having its meaning prior to and
independent of any context of use, then, assuming that the system of signs supports
any reasoning at all, that reasoning must be trans-configurational. Because the
meanings of the signs are fixed, the only way to move from one thought to another
in such a system is by rewriting. Similarly, and for essentially the same reason, intra-
configurational reasoning is possible only in a system of signs that function
graphically. If one’s reasoning stays within the diagram, as, for example, it does in a
Euclidean demonstration, that can only be because it is possible to regard the
collection of signs now in one way now in another. There can be no intra-

configurational reasoning in a system of signs that functions symbolically.1l What is

11 Picture proofs and Venn and Euler diagrams are not counter-examples to the
claim because they are not properly speaking systems of signs within which to
reason as Euclid’s system is.

11



not ruled out, at least in principle, is a system of notation in which the signs function
graphically and the reasoning is trans-configurational.l?

We turn now, first, to what [ have already suggested is a paradigm example of a
system of signs, a mathematical notation, that functions graphically and intra-
configurationally, namely, the system of Euclidean diagrammatic reasoning. We will
then consider a system that involves trans-configurational reasoning in a system of
signs that functions (largely) symbolically, namely, the familiar language of
elementary algebra. Our discussion concludes with some reflections on a much less
familiar system, one the signs of which, we will see, function graphically, though the
reasoning is trans-configurational. Taken together, we will see, these three systems
of written signs provide very good evidence (drawn from actual mathematical
practice) that Jourdain is right, that a good mathematical notation can enable even
the less gifted of us to reproduce mathematical results that may have needed the
greatest genius to discover.

II. Diagrammatic Reasoning in Euclid’s Elements

Consider Euclid’s first proposition, .1, which is a construction problem: to

construct an equilateral triangle on a given straight line. We are given a finite

straight line. A circle is then drawn with the given line as radius and one endpoint as

12 The relationship between our two distinctions is thus isomorphic to that between
Kant’s two distinctions, between the analytic/synthetic distinction and the a
priori/a posteriori distinction. What is analytic must be knowable a priori (much as
signs functioning symbolically can support only trans-configurational reasoning).
What is known a posteriori must be synthetic (as intra-configurational reasoning
requires signs that function graphically). There can then be no analytic a posteriori
judgments (as there cannot be intra-configurational reasoning in a system of signs
functioning symbolically), though the possibility remains that there might be
synthetic apriori judgments (as there might be trans-configurational reasoning in a
system of signs functioning graphically).

12



center, as licensed by one of Euclid’s postulates, and then another circle is drawn
with the given line again as radius and the other endpoint as center. Two further
lines are drawn, as licensed by another postulate, one from a point of intersection of
the two circles to one endpoint of the given line, and the other from that point of

intersection to the other endpoint of the given line. The result is this:
C
D , A é E

Now we reason through the diagram. Because AB and AC are radii of circle BCD,
they are equal in length. Similarly, BA and BC are equal in length because they are
both radii of circle ACE. It follows (from the fact that things equal to the same are
equal to each other) that all three lines, AB, AC, and BC are equal in length. The
triangle ABC, constructed on the given line, is equilateral. The desired construction
has been achieved. Euclid similarly shows us how to construct a parallel given a line
and a point not on the line, a square on a line, and so on. All such constructions
function as derived postulates in Euclid’s system; they enable the construction of the
diagrams that are needed in demonstrations in more complicated cases.

As just indicated, one reasons in the diagram in a Euclidean demonstration: one

begins by constructing the needed diagram, and then one reasons through it in an

13



ordered series of steps to the desired conclusion. We need to understand (if only in
outline here) how this works.13

Consider first the fact that lines that are at one stage in the reasoning regarded
as radii of a circle—as they must be to determine that they are equal in length—are
later regarded as sides of a triangle—as they must be if we are to conclude that we
have constructed the desired equilateral triangle. One and the same lines are now
regarded as parts of a circle and later as parts of a triangle. The diagram as a whole,
then, is functioning graphically in Shin’s sense. Also, and equally importantly, it has
three clearly discernable levels of articulation. First, there are the primitive parts
out of which everything is composed: points, lines, angles, and areas. Then there are
the geometrical figures that are composed of those primitive parts, that form the
subject matter of geometry, and that can be discerned in the diagram: circles with
their centers, circumferences, radii, and areas; triangles with their sides, angles, and
areas; squares with their sides, angles, and areas, and so on. And finally, there is the
whole diagram, the whole collection of lines, points, angles, and areas, whose
various proper parts can be seen now this way and now that. It is precisely because
the figures of interest—those at the second, middle level—both have (primitive)
parts and are parts of the diagram as a whole that one can, for instance, introduce
circles and radii into a diagram and then take out of it an equilateral triangle. The
demonstration is fruitful, a real extension of our knowledge for just this reason:

because we are able perceptually to take parts of one whole and combine them with

13 A much more detailed analysis can be found in my “Diagrammatic Reasoning in
Euclid’s Elements”, in Philosophical Perspectives on Mathematical Practice, Texts in
Philosophy, vol. 12, ed. Bart Van Kerkhove, Jonas De Vuyst, and Jean Paul Van
Bendegem (London: College Publications, 2010).
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parts of another whole to form a new whole, we are able to discover something that
was simply not there, even implicitly, in the materials with which we began.

Euclid’s first little demonstration in the Elements shows that an equilateral
triangle can be constructed on a given straight line by actually generating a triangle
with, demonstrably, the requisite features. But not all problems in Euclid are
construction problems. In some cases the task is instead to demonstrate the truth of
a theorem, for instance, this (Prop. I1.5): if a straight line be cut into equal and
unequal segments, the rectangle contained by the unequal segments of the whole
together with the square on the line between the points of section is equal to the
square in the half. Again we begin by constructing the needed diagram.

We set out a line that is cut into equal and unequal segments as required by the
problem. Then we draw a square on the half, and add the diagonal. The next step is
to draw a series of parallel lines: one parallel to the side from the point of the
unequal cut, one parallel to the original line through the point of intersection of the
diagonal and the first line, and another again parallel to the side from the left end of

the original line. The diagram that results is this:

A ¢ D 8
o
£ n
K gN 7
P
E G F
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Notice that here again we regard the various lines in multiple ways depending on
the context we consider them in; just as in our earlier example, we take them to
designate now this and now that depending on the context of lines we consider
them in. The line CB, for example, is first taken to be the half of line AB, but then as a
side of square CEFB. BM is a line equal in length to DB but also a part of the line BF,
which is another side of that same square. It is in virtue of these various relations of
parts iconically presented in the diagram, together with the possibility of various
reconfigurings of its parts, that the diagram enables one to show that the theorem is
true.

1. These (differently shaded) areas are

‘ equal, as is shown by Prop. .43: the

A complements of a parallelogram about

the diameter (the two differently

shaded areas) are equal to one another.

2. ” It follows from (1) that these (now

Tl overlapping, differently shaded) areas

=l
e =)=

are equal, because the same has been

added to the same.

3. ’ These two (differently shaded) areas

are known to be equal on the basis of

what we know about the relationships

that obtain among the lines that form

the boundaries of the two shaded areas.
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4. _ It follows from (2) and (3) that these

areas are equal because things equal to

the same are equal to each other.

5. ‘ It follows from (4) that these areas are

the same because the same (namely, the

doubly shaded area) has been added to

equals, that is, to the two areas shaped

in (4).

6. e It follows from (5) that these areas are

equal because the same, namely, the

little square left unshaded in (4), has

been added to equals.

But that is just what we wanted to show: that the square on the half is equal to the
rectangle contained by the unequal segments plus the square on the line between
the points of section. By construing various aspects of the diagram in these various
ways in the appropriate sequence one comes to see that the theorem is, indeed,
must be, true.

Itis, I think, obvious that one calculates in the Arabic numeration system.
Similarly, though less obviously, one reasons in the diagram in Euclid. In Euclid, the

reasoning is not merely diagram-based; it is diagrammatic. One reasons in the
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system of signs just as one does in Arabic numeration.* Of course there are
differences between the two systems of signs. Euclid’s diagrams are, for instance,
more iconic in Peirce’s sense and Arabic numerals more symbolic (in Peirce’s
sense). Also, and more significant for our purposes, an arithmetical calculation is
strictly algorithmic. No genius is required to do arithmetic in the system of Arabic
numeration; all that is required is that one follows the rules governing the
manipulation of signs that we were all taught as school children. There are no such
rules for finding the diagram that will mediate one’s passage in a Euclidean
demonstration. Once one has been shown the diagram, and has been shown how to
use it to make the passage from the starting point to the desired endpoint, one can
see how the diagram serves to establish the result, and one can reproduce that
result. The hard part, the part that can take real mathematical genius, is finding the
diagram. But once the mathematician has done that, any of us can reproduce the
result.

Diagrams in Euclid provide a mathematical language within which to reason in
geometry; they enable one to formulate content in a mathematically tractable way
through a system of written signs. The notation functions graphically insofar as
what a particular written mark, say, a line, signifies, whether, say, a radius of a circle
or a side of a triangle or a part of a larger line, is determined only in the context of a
diagram and relative to a way of regarding it. Because the notation functions
graphically, the reasoning can be, and is, intra-configurational. It stays within the

diagram. Furthermore, as the Elements makes clear, Euclid does not provide merely

14 This is argued at length in my “Diagrammatic Reasoning in Euclid’s Elements” for
more details.
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a collection of unrelated picture proofs but instead a system of written signs, a
proper notation within which to reason in mathematics. Finally, as our examples
aimed to illustrate, written marks in Euclid do not merely record something but
instead formulate content in a way that enables reasoning in the system. Much as
the system of Arabic numeration does, Euclid’s system of written marks serves as a
vehicle of reasoning that enables even the less gifted of us to reproduce significant
results about the logical relations of various concepts of geometry; and it does so in
virtue of the distinctive way it formulates the contents of those concepts in written
marks. Euclidean diagrammatic practice, for two millennia the paradigm of
mathematical practice, uses a simple and expressive notation that does just what
Jourdain says any good mathematical notation does. It enables one to reason in the
system so as to reproduce results.
III. Reasoning in the Formula Language of Algebra

The second system of mathematical signs that we will consider—the familiar
symbolic language of elementary algebra that was first introduced by Descartes>—
functions in a very different way from the Euclid’s system works. Nevertheless, we
will see that it too enables one not merely to record but to reproduce mathematical
results.

Think again of the second problem we considered from Euclid’s Elements, but
this time, following Descartes, from the perspective of algebra. We are given a line

ACDB that is cut into equal segments at C and unequal segments at D:

15 ] argue in “Viete, Descartes, and the Emergence of Modern Mathematics”,
Graduate Faculty Philosophy Journal 25 (2004): 87-117, that it is Descartes, rather
than Viete, who should been seen as the first to use symbols in the way to be
described.
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We first assign names to the three lengths, say, a to AC, b to CD, and c to DB. We
know, then, that a = b + ¢; that is, we interpret the claim that a line is cut into equal
and unequal segments as a claim about an arithmetical relationship between the
three segments that are generated by the two cuts. What is to be shown is similarly
interpreted. The idea of a rectangle contained by the unequal segments is
interpreted as (a + b)c; the square on the line between the points of section is b?;
and the square on the half is a?. What is to be shown, then, is that (a + b)c +b? = a?,
given that a = b + c. This is easily done: simply replace all occurrences of ‘a’ in what
is to be shown by ‘b + ¢’, and using the familiar rewrite rules of algebra, perform the
appropriate symbol manipulations until the expressions on both sides of the
equation are the same:

((b+c)+b)c+b2=(b+c)?

(2b + c)c+ b2 = (b + c)?

2bc + c? + b? = b% + 2bc + c?

b? + 2bc + c? = b? + 2bc + 2.

But how is it that we come to interpret an expression such as ‘the rectangle
contained by the unequal segments’ arithmetically, that is, as ‘(a + b)c’? A rectangle
is an object, a geometrical figure, that is, certain parts in a particular (spatial)
relation that as a whole has a characteristic look. How does such an object come to

be conceived as something expressible in the formula language of arithmetic? As

20



obvious and natural as it may seem to us, this use of symbols was not at all easy to
achieve.

In Euclid’s practice, diagrams formulate the contents of geometrical concepts. A
drawn circle iconically presents the relations of parts that are constitutive of a
circle; a drawn triangle iconically presents the relation of parts that are constitutive
of a triangle; and so on. Descartes learns to see such drawings differently. For him a
visual display of lines, for instance, a drawing of a right triangle, is not a drawing of
an object but is instead a graphic representation of an arithmetical relation, of one
way—in the case of a right triangle, an especially interesting and revealing way—
that measurable quantities can be related one to another.1¢ For Descartes the drawn
right triangle formulates not geometrical content but instead arithmetical content,
content that can as well be exhibited in symbols: a? + b? = ¢2, where c is the length of
the hypotenuse and a and b the lengths of the other two sides. A circle similarly is,
for Descartes, not an object but instead the path traced out by a moving point
governed by the law that x? + y2 = r2. After Descartes, the science of mathematics
becomes a science not of objects as it had been for the ancient Greeks, but of
arithmetical relations and the patterns that are expressible in such laws as that x? +
y? =r2. Once again, we will see, it is the notation, the mathematical language, that
enables those of us less gifted to follow where mathematical geniuses such as
Descartes have led.

Consider this problem. It is given that the sum of a number and its reciprocal is

equal to one; the task is to find the sum of the cube of that number and the

16 See my “Viete, Descartes, and the Emergence of Modern Mathematics” for further
discussion of what this new way of seeing involves.
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reciprocal of the cube. I assume that a mathematical genius could discover the
solution merely by reflecting on the relevant ideas as we did in the case of the
ancient proof that there is no largest prime. For those of us less gifted, the language
of elementary algebra provides a much easier route. As one would do in a
calculation in Arabic numeration, we begin by formulating the problem in the
symbolic language: we are given that x + 1/x = 1, and must find the value of x3 +
1/x3. An obvious strategy is to try cubing both sides of the given equation: (x + 1/x)3
=13.So x3 + 3x?(1/x) + 3x(1/x)? + 1/x3 = 1. Thatis, x3 + 3x+ 3/x+ 1/x3=1,0r x3 +
3(x+ 1/x) + 1/x3 = 1. But we know that x + 1/x = 1; so, putting equals for equals, x3 +
3(1) + 1/x3 = 1. And we have our answer: x3 + 1/x3 =- 2.

The problem we just solved is a kind of construction problem; the task was to
produce a number meeting certain specifications. But one also can prove theorems
in the formula language of algebra, for instance, Euler’s Theorem that e = cos(x) +
isin(x)—widely regarded as, in Feynman'’s words, “one of the most remarkable,
almost astonishing, formulas in all of mathematics”.1”

The number e is the number, whatever it is, such that the derivative of e* just is
e*. (It can be shown that there is such a number.) Knowing only that ex is its own
derivative, and that e® = 1, as well as familiar basic rewrite rules of calculus such as
that the derivative of x" is nx"-1, we can express the function f(x) = ex as a power
series:

ex=1+x+x2/21+x3/3! +x*/4!+ ... +x2/nl +...

17 Richard Feynman, The Feynman Lectures on Physics, vol. I (Addison-Wesley,
1977), pp. 21-2. It is also the theorem that is the basis for Euler’s famous equation
thate-+1=0
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And we can see that this has to be right because taking the derivative of this series
just gives the same series again. The derivative of the first term, 1, is 0; the
derivative of the second term, x, is 1, that is, the original first term; the derivative of
the third term, x2/2!, is 2x/2!, that is, simply x, which is the original second term; the
derivative of the fourth term is the third term, and so on. Because the derivative of
each subsequent term is the previous term (and there are infinitely many terms), to
take the derivative of the whole series is to get the same series again. So we know
that our infinite series is equal to the function ex.

We can also write the trigonometric functions f{x) = sin(x) and f{x) = cos(x) as
power series; indeed, they can be defined by the following series expansions:

sin(x) =x-x3/3!+x5/5! -x7/7!1 + ...

cos(x)=1-x2/21 +x*/4!1 -x6/6! +...
This is very suggestive. Between the two trigonometric functions, expressed as
power series, we have precisely the terms we find in the power series expansion of
e*. Only the signs are different. Euler determined how to get around this. Because
the number i is, by definition, such that i is equal to minus one, it follows that i3 = -j,
that i* = 1, that i®> = i, and then the cycle repeats beginning with i2. Suppose now that
we replace ‘X’ with ‘ix’ in our function e*. That gives us:

ex =1+ ix + (ix)?/2! + (ix)3/3! + (ix)*/4! + (ix)>/5! +. ..
Now we do some standard algebraic manipulations to get:

ex=1+ix-x2/2!-ix3/3! +x*/4! + ix5/5! - x6/6! - ...

Rearranging things a bit, by collecting together the terms that contain i, gives:
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ex=(1-x2/2'+x*/4!-x6/6!+...) +i(x-x3/3! +x5/5!-...).

And now we can see that the first of the bracketed series is the power series of
cos(x), and the second is that of sin(x). So putting equals for equals gives us Euler’s
Theorem. “All” we had to do to see that Euler’s Theorem is true was to think of the
power series expansions of our functions—on the one hand, the logarithmic
function e, and on the other, the trigonometric functions sin(x) and cos(x)—and
replace X’ with ‘ix’, and we could see that they are related in a certain arithmetical
way. Of course it takes the genius of Euler to discover the result. But once it has been
discovered, anyone knowing the symbolic language can reproduce it.

We have looked at three examples of reasoning in algebra. The first example, in
which we proved Euclid’s Proposition I1.5 algebraically, reveals a fundamental
connection between Euclidean diagrammatic reasoning and algebraic reasoning.
The second example, to find the sum of a cube and its reciprocal given that the sum
of the root and its reciprocal equals one, aimed to supply a simple and clear
illustration of Jourdain’s thesis about the role of writing in mathematics. Others
could have been given instead insofar as we know, as a matter of historical fact, that
many algebraic results were discovered by gifted mathematicians before any
adequate notation of algebra was devised. But, as historians of mathematics are well
aware, without the notation it is often very difficult to understand how the
reasoning goes, why the relevant theorem is true. With it, almost anyone can
understand the proof. Our third example, the (here, rather sketchy) proof of Euler’s
theorem, provides some indication of the enormous power of this system of

notation. As this result indicates, the genius of Euler did not lie in what he could
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discover without the help of any notation but instead in what he was able to reveal
given that notation, and given in particular, the way it formulates content, for
instance, in an infinite series, in written signs.

When reasoning in the symbolic language of arithmetic and algebra one does
not, as one does in Euclid, write a bunch of stuff down and only after one has
finished writing reason through what one has written. Rather the writing is itself the
reasoning in the sense that the steps of reasoning are at the same time steps of
writing. Whereas in Euclid the reasoning is intra-configurational insofar as the
reasoning stays within the diagram and involves only a perceptual reconfiguring of
parts, in arithmetic and algebra the reasoning is trans-configurational insofar as the
successive steps of reasoning require new writing. We have seen already that intra-
configurational reasoning is possible only given a system of signs that functions
graphically (in Shin’s sense), but also that, at least in principle, trans-configurational
reasoning can involve signs that function either graphically or symbolically. In fact,
what our three algebraic examples, most obviously that of Euler’s theorem, suggest
is that the symbolic/graphic distinction does not cut finely enough. Whereas in our
first example the signs seem to function symbolically in a quite straightforward
sense, in the case of Euler’s theorem the primitive signs are used to formulate
complex names for functions and to do so in a way that enables one to show the
identity of functions. What Euler shows is that what might appear to be names for
radically different functions are in fact names for one and the same function. As
Frege would put the point, Euler shows that although the function expressions ‘e¥’

and ‘cos(x) + isin(x)’ express radically different senses, they nonetheless designate
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one and the same function; they differ in the Sinn expressed but not in their
Bedeutung. And if that is right, then one can, in this system of signs, form complex
names for functions out of the primitive signs of the language. But in order to
designate functions using collections of signs, it must be the case that the primitive
signs do not designate independent of a context of use; and that suggests that the
signs are functioning graphically. Nevertheless, in algebra one does not, as one does
in Euclid, perceptually reconfigure such collections of signs in the course of
reasoning. To see an expression in a new way in this system requires writing it in a
new way, for instance, now as a product of sums, say, as ‘(a + b)(a + b)’, and now as a
sum of products, ‘a? + 2ab + b?’.

Reasoning in algebra is trans-configurational and the notation functions in a
way that is symbolic, at least in the sense the nothing like the perceptual
reconfiguring of parts that we find in Euclid is possible. It is furthermore obvious
that we have here a system of signs, a notation properly speaking that supports the
demonstration of an extraordinary range of results. Once again, in this notation, one
does not merely record something but instead formulates content in a
mathematically tractable way. Much as a drawn figure in Euclid formulates the
contents of the concepts of geometry in a way that enables reasoning about those
concepts, so an algebraic expression of a function can formulate content in a way
enabling one to demonstrate truths about the functions so designated. It is, for
example, the particular complexity of the expression ‘1 + x + x2/2! + x3/3! + ... x"/n!

+ ...  that enables us to conclude that this series designates precisely the same

26



function as the expression ‘e¥. Without that result we could not establish Euler’s
Theorem.

We saw that Euclidean diagrammatic reasoning is fruitful because one can
perceptually reconfigure parts of different wholes within a diagram into a new
whole. Parts of wholes that are at first conceived separately, as parts of different
geometrical figures, are later conceived together, as parts of one and the same
geometrical figure. In algebraic reasoning one instead combines content by putting
equals for equals. And much as the genius required for Euclidean mathematical
practice lies in finding the diagram that will provide the vehicle of reasoning from
one’s starting point to the desired conclusion, so the genius that is required to
discover, say, Euler’s Theorem lies in discovering just what will serve as what we
can think of as the middle that will show that two interestingly different, and
apparently unrelated, expressions for a function are in fact expressions for one and
the same function. The expression “e*” does not look anything like the expression
“cos(x) + isin(x)”, and the functions they designate appear to have no mathematical
relation, and yet Euler shows that they are alternative formulations for one and the
same function by showing that they can be, each of them, equated with a certain
power series. This power series serves as the middle connecting the two apparently
unrelated functions. In algebraic reasoning, then, there are two very different sorts
of rewritings, both the relatively mechanical rewriting according to the familiar
rules of algebra, and the creative combining of content (by putting equals for equals)
that is made possible by such rewriting.

IV. Trans-configurational Reasoning in a Graphic System of Signs
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As it had been in the seventeenth century, mathematical practice was again
transformed in the nineteenth. Rather than trying to compute, that is, construct, the
function that is wanted by paper-and-pencil manipulations as Euler had done,
mathematicians such as Riemann sought to describe the essential properties of the
desired function, and to infer deductively what must be true of a function so
described. For Riemann, “the objects of mathematics were no longer formulae but
not yet sets. They were concepts.”18 The task was (in Dedekind’s words) “to draw
the demonstrations, no longer from calculations, but directly from the characteristic
fundamental concepts, and to construct the theory in such a way that it will ... be in
a position to predict the results of the calculation”.1?

Chains of deductive reasoning from defined concepts in this new mathematical
practice could be recorded, or reported, in natural language in much the way we
reported the proof that there is no largest prime. But there was, at least at first, no
system of written signs within which to reproduce such reasoning. Perhaps one
could be devised. Perhaps there could be a kind of concept-writing or concept-
script, a Begriffsschrift that like the earlier languages of mathematics would enable
one to reason in mathematics—in this instance, deductively from defined

concepts—in the system of signs. In 1879, Gottlob Frege, a Jena mathematician of

18 Detlef Laugwitz, Bernhard Riemann 1826-1866: Turning Points in the Conception of
Mathematics, trans. Abe Shenitzer (Basil, Berlin, and Boston: Birkhauser, 1999), p.
305.

19 Quoted in Howard Stein, “Logos, Logic, and Logistiké: Some Philosophical Remarks
on Nineteenth-Century Transformations of Mathematics”, in History and Philosophy
of Modern Mathematics, ed. William Aspray and Philip Kitcher, Minnesota Studies in
the Philosophy of Science, vol. XI (Minneapolis: Minnesota University Press, 1988), p.
241.
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the Riemann school??, published a little monograph introducing just such a
language.?! Modeled on the formula language of arithmetic, Frege’s Begriffsschrift
was to enable one to exhibit the contents of mathematical concepts in a way
enabling one to reason deductively from those contents. This system of signs, we
will see, functions graphically although the reasoning it enables is trans-
configurational.??

A drawing of a geometrical figure in Euclid displays the content of the concept
of that figure, what it is to be, say, a circle or triangle conceived as a relation of parts.
An equation in the symbolic language of Descartes and Euler is different insofar as it
instead exhibits arithmetical relations, for instance, that which holds among the
length of the hypotenuse and of the other two sides of a right triangle, or, more
subtly, that which holds between argument and value in a particular function. Frege
in effect combines these two ideas: he will exhibit the (now inferentially articulated)
contents of mathematical concepts and he will do so by displaying the (now logical)
relations that obtain among the constituents of those concepts. To do that, however,
he needs to learn to read the symbolic language in a radically new way; he needed to
learn to read it graphically, that is, as like a Euclidean diagram whose parts can be

conceived now one way and now another.

20 See Jamie Tappenden, “The Riemannian Background to Frege’s Philosophy”, in
The Architecture of Modern Mathematics: Essays in History and Philosophy, ed. ].
Ferreirds and J.]. Gray (Oxford: Oxford University Press, 2006).

21 Gottlob Frege, Conceptual Notation, a formula language of pure thought modeled
upon the formula language of arithmetic, in Conceptual Notation and Related Articles,
trans. and ed. T. W. Bynum (Cambridge, Mass.: Harvard University Press, 1970).

22 Although it is not there described in such terms, the reading of Frege’s notation
that is followed here is introduced, developed, and defended in my Frege’s Logic
(Cambridge, Mass.: Harvard University Press, 2005).
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Consider the equation ‘24 = 16’, which exhibits an arithmetical relationship
among three numbers.?23 Much as Descartes taught us to see a drawn right triangle
not as a drawing of a particular sort of geometrical object but instead as expressing
an arithmetical relation among arbitrary quantities—one that could equally well be
expressed in symbols—so Frege teaches us to see this equation differently, as
merely presenting what he calls a sense (Sinn), one that can be regarded in various
ways, that is, carved into function and argument in various ways.

Suppose that we take the numeral ‘2’ in our equation to mark the argument
place, in effect, the thing we are talking about, leaving the rest of the equation to
serve to designate the concept that is ascribed to that number. This gives us the
concept fourth root of sixteen. So analyzed, the formula is about the number two and
says of it that it is a fourth root of sixteen. But we can also see it differently. If, for
example, we instead take the numeral ‘4’ to mark the argument place then the
remainder serves to designate the concept logarithm of sixteen to the base two. And
other analyses are possible as well. The language is, then, symbolic in Peirce’s sense
(i.e., the signs are Peircean symbols rather than either icons or indices), but its
primitive signs nonetheless function in a way analogous to the way the marks for
points, lines, angles, and areas function in Euclid. In the language as Frege conceives
it, the primitive signs only express a sense independent of a context of use. Only in a

whole formula and relative to an analysis into function and argument do the sub-

23 The example is Frege’s in his discussion of the point in “Boole’s Logical Calculus
and the Concept-script”, in Posthumous Writings, trans. Peter Long and Roger White,
and ed. Hans Hermes, Friedrich Kambartel, and Friedrich Kaulbach (Chicago:
University of Chicago Press, 1979), pp. 16-17.
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sentential expressions of the language, whether simple or complex, serve to
designate anything.

In the mathematical practice of concern to Frege, theorems are established by
reasoning deductively from explicitly formulated definitions, where a definition is,
Frege thinks, a stipulation. It stipulates that some newly introduced simple,
unanalyzable sign is to have precisely the same meaning as some complex
expression formed, in the first instance, out of the primitive signs of the language.
The definition exhibits in the definiens the inferentially articulated content of the
concept being defined, and introduces in the definiendum a simple sign that has, by
stipulation, precisely the same designation. In Frege’s 1879 logic, Part [IlIl—which is,
Frege says (§23), “meant to give a general idea of how to handle” his system of
written signs—Frege provides four definitions on the basis of which to prove a
theorem in the theory of sequences. The task of the proofis to find a path from
Frege’s four definitions to theorem 133 displaying a particular logical relation
among three of Frege’s four defined signs. Somehow the defined signs that originally
occur in three different definitions are to be brought together and combined in one
formula. That is, much as three different functions—the logarithmic function and
the sine and cosine functions—are brought together, combined in Euler’s theorem,
so three different concepts are brought together, combined in Frege’s theorem. Our
interest lies in seeing, at least in outline, how this goes.?*

We saw that in Euclidean diagrammatic reasoning one perceptually

reconfigures various parts of a diagram in an ordered sequence of steps so as to

24 More details can be found in my “Diagrammatic Reasoning in Frege's
Begriffsschrift”, Synthese, forthcoming.
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discover something new. The reasoning is intra-configurational; it stays within the
diagram. The mathematical reasoning of Descartes and Euler is instead trans-
configurational; one reasons in that case by writing and rewriting according to rules.
Reasoning in Frege’s concept-script incorporates elements of both systems.
Although formulae in his language can be regarded (that is, analyzed into function
and argument) in various ways much as the various lines in a Euclidean diagram can
be regarded in different ways, the reasoning, like reasoning in Descartes and Euler,
is trans-configurational, a matter of writing and rewriting. And just as in the
reasoning of Descartes and Euler, there are two different sorts of rewritings in
Frege’s system. There are simple rewritings (in what I call linear inferences)
according to rules that are analogous to the simple transformations governed by the
rewrite rules of elementary algebra, and there are rewritings (in joining inferences)
that combine content from two different formulae. But whereas rewritings that
combine content in, say, Euler involve a middle that enables one to put equals for
equals, rewritings that combine content in Frege instead connect antecedent and
consequent using some version of hypothetical syllogism, according to which if it
can be shown that P if Q and that Q if R, then it may be concluded that P if R.

The proof begins with four definitions that provide in the definiens a picture or
map, a Peircean icon, of the inferentially articulated sense of a concept word, and in
the definiendum a simple sign, newly introduced, that is stipulated to have the same
meaning (Bedeutung) as the complex of signs on the definiens. And as already
indicated, the contents of concepts can be exhibited in this way in Frege’s notation

in virtue of the fact that independent of an analysis, a particular way of regarding it,

32



a Begriffsschrift formula only expresses a sense, a Fregean Thought. In a definition,
the definiens is a concept word that, on the analysis that is stipulated by the
definition, exhibits the sense of the relevant concept word. The definiendum is a
concept word for that same concept, but unlike the definiens it is a simple sign.
Because it is simple, it cannot in the context of a judgment be variously analyzed.
What we want to construct is theorem 133:
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The task of the proofis to join the various defined signs that occur in this theorem in
the way shown in the theorem. And, again, as in Euler, there are two stages to the
process, both the stage of preparation and the stage at which contents suitably
prepared can be joined. We consider here only one small illustrative example.

We begin with definition 99 of belonging to a sequence:

(2 = x) y
A=

The first step in the preparation is to convert this definition, more exactly the
judgment that immediately derives from it, into a conditional judgment, theorem

105:
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That is, we make the definiens (the complex of signs on the left in the definition) the
condition on the content that is the definiendum of the original definition. Now we
rewrite according to the rule that if something is true on a condition that has a

condition then it is true on that condition alone to yield theorem 112:

I 7>Zﬁ)
z—x

The preparation is complete. We assume a similar preparation for the second
formula needed in the join, derived in a series of linear inferences from the

definition of being a single-valued function, namely, theorem 120:
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Because the condition in theorem 112, with a for z, is identical to the conditioned
judgment in theorem 120, read as a judgment on three conditions, together these

two formulae yield, by hypothetical syllogism, theorem 122:
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which joins in one formula two of our defined signs (plus some extra conditions). It
is in just this way that, much as in reasoning through a diagram in Euclid one
(perceptually) joins parts of different wholes into a new whole, and in reasoning in
Euler one (actually) joins parts of different wholes into a new whole by putting
equals for equals, so here one (actually) joins parts of different wholes into a new
whole by hypothetical syllogism. The rest of the proof is essentially similar.

Frege devised his concept-script as a notation within which to reason
deductively from defined concepts. The notation was designed specifically for the
new form of mathematical practice that emerged over the course of the nineteenth
century in the work of Riemann and others; Begriffsschrift was to do for that
practice what the system of Euclidean diagrams does for ancient mathematical
practice and what Descartes’ symbolic language does for algebraic practice. Like
reasoning in the formula language of algebra, reasoning in Begriffsschrift is trans-
configurational. But like the signs in Euclid, the primitive signs of Begriffsschrift
designate only in the context of a whole proposition and relative to an analysis. The
signs function graphically (in Shin’s sense) and because they do Frege is able to
exhibit the inferentially articulated contents of concepts in his language in a way
that enables deductive reasoning from those contents. Frege’s notation was not
understood, however; it was read, as it is still today, not graphically but
symbolically, as a mere notational variant of our own logical notations. As a result,
the enormous expressive power of Frege’s Begriffsschrift was never tapped by

mathematicians. Though in fact Frege’s notation provides it, we have even today no
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simple and expressive notation enabling one to reproduce the theorems that are the
fruits of our current mathematical practice.
V. Conclusion

We have seen that in Euclidean reasoning one constructs a diagram that
formulates the contents of various geometrical concepts in a way enabling one to
reason through the diagram to the desired conclusion. In the course of that
reasoning, we saw, one perceptually configures and reconfigures parts of the
diagram in ways that effectively combine parts of different wholes into new wholes.
In Descartes and Euler the reasoning is also in two parts, though in this case both
require new writing. At one stage one simply rewrites what one has in new ways
according to rules. At the other one combines content from two different formulae
by putting equals for equals. Here again, though in a different way, one combines
parts of different wholes into a new whole. The same is true, I have suggested, in the
case of reasoning in Frege. In linear inferences one rewrites what one has, beginning
with a definition, in a sequence of new ways according to rules. In joining inferences,
one combines content from two different formulae (derived ultimately from two
definitions) as mediated by a syllogistic middle. In each of the three cases one
discovers thereby something new; one extends one’s knowledge. As I have further
indicated, in all three cases the mathematical reasoning is put before our eyes. In a
demonstration in Euclid, in an algebraic proof in the symbolic language of
arithmetic, and in a deductive proof in Frege’s Begriffsschrift, one sees how it goes.

We began with a question: what is the role of writing in mathematics? What has

become clear is, first, that writing is not essential to doing mathematics. Current
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mathematics, for example, is not done in any system of notation, and yet results are
achieved, theorems proved. These results are then reported, in journal articles and
textbooks, in some natural language (often together with various abbreviations, and
perhaps some algebra). But the mathematical reasoning is not done in that language,
or in any other language, the way it is done in a diagram in Euclid or in a series of
equations in Euler. The reasoning in contemporary practice is merely reported; it is
described rather than laid out before our eyes. It is reported in essentially the way
we reported above the proof that there is no largest prime. But, [ have suggested, it
could be shown in Frege’s concept-script. That is, [ have claimed, Frege’s system of
signs, properly understood as a graphical system, provides just what Jourdain
claims any good notation of mathematics provides, a simple and expressive notation
within which even the less gifted can reproduce results that may have taken the
greatest genius to discover. It is just this that is, in general, the role of writing in

mathematics.
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