Numbers seem to occupy a paradoxical place within our ontology. On the one hand,
they are the stuff of everyday life, what we appeal to when we count the days until our
birthday, when we add the calories in our diet, when we calculate our taxes, etc.; on
the other, they are the stuff of sophisticated studies in technical journals where
people try to crack mysteries like the construction of quasirandom points for efficient
multidimensional numerical integration. They seem to be an integral part of our
concrete and natural world, the sort of thing we cannot do without if we want a fully
integrated scientific picture of the world — they are heavily involved in many of our
best theories of natural and social science; but they also seem to belong to a
sui-generis realm of abstract objects with no spatial location or causal powers. They
are both the most familiar and the most esoteric of objects. They are so simple that
even non-human animals have been shown to have at least the most basic of
numerical abilities, and some have even been shown to be able to perform simple
arithmetic operations; but they are so complex that to state even some of the most
simple questions has proved to be extremely difficult to answer. They are so common
that it seems that every culture in every historical period has been able to discover at
least some basic mathematical truths and being able to develop some mathematical
skills; yet most of what we know about numbers has been discovered in the last
couple of centuries as mathematics became an academic scientific endeavour.

It is not surprising, therefore, that numbers have awoken the curiosity of
philosophers throughout history, trying to make sense of these strange, yet familiar,
entities. The task, however, has proved to be elusive. It has been extremely difficult to
generate an account that integrates all these dimensions of the phenomenon and that

is able to harmonize all these tensions: Philosophical accounts of numbers that link



them closely to our everyday practices of counting and calculating have had a very
hard time explaining their being infinite in number and complex in their structure.
In contrast, if we pay too close attention to the many historical contingencies that
have shaped their development, we might be tempted to conceive them as artificial
constructions of our culture — that “the mathematician is an inventor, not a
discoverer” as Wittgenstein famously argued (1978: 99) —; but this would make it
very hard to explain why they seem to pop up independently in every human culture
or why they are so useful in the formulation of successful theories in the natural
sciences. In general, the more we try to ground numbers in one of their many
fundamental aspects, the more puzzling others become.

Numbers themselves are a heterogenous bunch. They come in all sizes and
shapes. Some are simple and small like two and three, while others are weird like the
octanions of string theory, or huge like inaccessible cardinals. Integers like 35 or
2,345,000 are complete in a way that rational numbers like 0.35 or 27/34 are not.
Some are finite, others are infinite. Some are real, others are imaginary. Some are
fascinating and serve as touchstones of amazing theories, like Pi or e, while others
are run of the mill and dull, like 1,269,787, while even number 30 can be deemed
interesting in so far as it happens to be the largest integer such that all smaller
integers with which it has no common divisor are prime numbers. Yet, most
mathematicians and philosophers have focused their attention on the so-called
natural numbers, i.e., 0, 1, 2, 3, 4, etc. It is commonly assumed, but hardly ever fully

defended, that if we can account for the nature of these simple numbers, we would



have cracked a sufficient entrance into the mathematical real from which we can
reach the rest of the numerical world.

Natural numbers are the simplest cardinal numbers, i.e., the simplest (and
until recently, the only) numbers we use for counting (finite sets or pluralities). As a
matter of fact, it is commonly assumed that natural numbers and counting are so
essentially linked that one cannot have one without the other (Comrie 2006). Real
numbers, like three and a half, 12.735 or pi, in comparison, are not as good for
counting — after all, it seems impossible to count up to 3.45 — and work better for
measuring magnitudes — hence, I do not say that I am 178 cms tall, but instead say
that I am 1.78 m tall.

In close kinship with the issue of how essential is counting to the very nature
of cardinal numbers is the question of how arithmetical truths and theorems of
mathematical number theory like the fundamental theorem that “every integer
greater than 1 either is a prime number itself or can be represented as the product of
prime numbers” are related to everyday statements like “Kris Bryant hit a homerun
for the sixth time in twelve games last monday”. There is a common tendency among
contemporary philosophers of mathematics, at least since Gottlob Frege, to argue
that numbers are essentially just what we use to count and that arithmetic and
number theory are nothing but the abstract mathematical theories we use to study

them. Gomez-Torrente, for example, has argued that

1. For a dissenting view, consider Brandom’s claim that “Semanticists, metaphysicians, and
ontologists interested in mathematics cannot safely confine themselves, as so many have done, to

looking only at the natural numbers.” (Brandom 1996, §6) apud. Shapiro (2008).



“... a number n has essentially the property of being had by any plurality of n
things... For example, 17 essentially has the general property of being had by
any plurality of seventeen things. And in general, a number n essentially has...
the purely general property that any plurality of n things will have it.”

(Gomez-Torrente 2015, 318)

This means that the essence of cardinal numbers lies in their relation to countable
pluralities. From this essential nature stem the rest of their necessary properties, the
sort of properties that we study and systematize in arithmetic and number theory.
Thus, from this perspective, as Dedekind wrote in 1872, we can “...regard the whole
of arithmetic as a necessary, or at least natural, consequence of the simplest
arithmetic act, that of counting...” (Dedekind 1872, §1)*

In contrast, more formalist philosophers and mathematicians have argued the
contrary, i.e., that the essence of cardinal numbers is to be found not in their relation
to pluralities, but in their relation to each other (Shapiro 1997); more in mathematics
than in our everyday judgements of cardinality. For Shapiro, for instance, structural
properties like, for “...example, the property of being a prime number [tell us more
about what a number is, than, say, the] property of being the number of my
daughters, or of being one of James Ladyman’s favorite numbers...” (Shapiro 2008:
286) For this tradition, as David Fair (1988) has defended, mathematics adequately
characterizes natural numbers insofar as they have no “additional properties about

their essential nature which mathematicians had never noticed before.” (Fair 1988,

% But see Shapiro (1997: 175) for a different interpretation of this passage.
3. Except, perhaps, for exactly this, i.e., that numbers have no essential non-mathematical

properties (Shapiro 2008: 307-8).



368) Numbers, in other words, are nothing but what number theorists know them to
be.

Both traditions face the same sort of challenge, to explain how the same sort of
objects, i.e., cardinal numbers, can be both involved in our everyday practice of
counting objects, both concrete and abstract, and in the rarified formal practice of
mathematics. For the formalist, there is an important ontological separation between
the mathematical system and its application to some subject-matter outside pure
mathematics (Stenlund 2015, 46) and thus the challenge is to explain how this
application is even possible. The Fregean tradition, in turn, faces the inverse
challenge: to explain how we get from our everyday practice of counting things to the
complexities of arithmetic and number theory. Just as the problem for formalist is to
account for the application of abstract numbers to concrete instances, the challenge
for the Fregean is to account for the inverse process of abstraction, i.e., how we get
from concrete instances of cardinality to abstract numbers. The challenge is
especially difficult in the case of more complex mathematical numbers (Wigner
1960), but it is still there in the case of finite cardinal numbers.

This distinction makes an important epistemological difference. If cardinal
numbers are essentially those we use to count, then counting might also have an
epistemological preeminence as means to accessing truths about and involving
numbers. Hence the importance paid to cognitive studies of counting in developing a
naturalistic epistemology of numbers in recent decades (Giaquinto 2014). On the
other hand, if numbers are first and foremost what mathematicians study, then the

knowledge of numbers is nothing but the knowledge of mathematics.



In the end, no matter what position we assume regarding the relative
fundamentality of counting in arithmetic, we need to develop a good account of what
happens in cardinal statements. This is obviously true if we think of of cardinality as
the essential feature of cardinal numbers, but even if we think that arithmetic is an
autonomous abstract science, we still need a good account of its application, and this
is going to require a full account of what our cardinal statements like “I left three
apples on the table” or “Before I left the party, they had already played La Tusa three
times” are about. This means that the contents of| this book would be of enormous
importance for any philosopher of mathematics interested in the nature of

arithmetics and its entities.

1. Language, Linguistics and Mathematics

There is a broad area of intersection between contemporary linguistic analysis and
mathematics. Not only are mathematical tools used in different areas of linguistics,
there is also a considerable strand of linguistic research in which mathematics does
not (only) play the role of tool, but also of topic and subject of analysis. Traditionally,
the linguistic study of mathematics has come in one of two main flavours depending

on whether mathematics is seen as subject or tool for linguistic analysis.

On the one hand, it is not uncommon to consider mathematical formalisms as
a sort of technical language, substantially different from the natural languages for
which linguistic analysis was designed, but with enough language-like attributes to
justify a linguistic approach. Just like sentences of natural languages, mathematical

formulas seem to be syntactically constructed out of simpler symbols. Just like



sentences of natural languages, some of these formulas are said to be true or false. “It

is clear that the expression

is syntactically well-formed but not true” (Jansen, Marriott and Yelland, 1999) These
are the two most common features supporting the talk of mathematical languages
and the use of linguistic tools to analyze mathematical formalisms. Under this
perspective, these formalisms are seen as artificial languages, different and even
independent of any natural language.

This does not mean that mathematicians do not deploy resources from
every-day natural language to explicate the mathematical content of such formulas,
in what Wittgenstein called “mathematical prose”. Sentences like “seven is prime” or
“the semigroup ideals in a ring are identical with the ring ideals if and only if the
semigroup ideals form a linearly ordered set under set inclusion” have a strange
status in the twilight zone between mathematical and natural language. They employ
what Reuben Hersch (1997) called “mathematical lingo”, i.e., words and syntactic
structures from natural language that are borrowed with new, sui-generis senses and
functions. Like any other technical language is an open debate whether a linguistic
theory of natural language ought to account for these uses. This issue will come later,

when we compare how numerals are used as part of the mathematical lingo and in



ordinary uses. As we will see, the way mathematicians use numerals differs with the
way non-mathematicians use numerals both in grammar and semantics.

As another point of contact between mathematics and linguistics, and like
many other disciplines, several linguistic fields — most notably, syntax and semantics
— have adopted mathematical tools for the analysis and representations of their
theories. The history of how linguistics adopted these mathematical tools is
convoluted but illuminating. It starts deep within the foundational debates at the
turn of the XXth Century. From different perspectives, philosophers and
mathematicians were worried about the strange nature of their subject of study and
of numbers in particular. As is usual in debates like these, empiricist like Alfred
Tarski née Tajtelbaum, following on the steps of Kantian formalists like David
Hilbert, tried to develop different accounts of nominalist arithmetics where there
were no numbers, only numerals. Coming up with a nominalist foundation for
arithmetics required the development of a rigorous formal theory of language. Most
of the basic formal tools still used today in the formal study of semantics were thus
developed by Polish logicians like Stanistaw Le$niewski, Jan Lukasiewicz and the
aformentioned Alfred Tarski for the study of formal languages. Yet, the tools proved
so powerful that they were soon adapted for the study of natural languages too,
starting with the seminal work of Richard Montague, who famously stated that he
found no “important theoretical difference ... between formal and natural languages.”
(Montague 1970) This bold project was further developed by a long generation of
logicians and linguists like Jon Barwise and Barbara Partee who, in 1978, argued
that, given that at least within the Chomskyan paradigm, the goal of linguistic

semantics (and syntax) is to describe “the structure of a certain mental faculty, and



mathematics is the best available tool for describing structure” (Partee 1978, 2) we

could well see semantics as both a psychological and a mathematical discipline.*

2. Numbers and Numerals

Common sense makes an important distinction between world and language. This is
not to say that world and language are not intimately linked. After all, much of
language and what we do with it seems to be clearly about the world.> When we say
that the sun is shining, for example, we are saying something about the sun and the
weather. When we ask someone how they are feeling, we are asking about the actual
state of their health. These things — the sun, the weather, our health, etc. — are part
of the world, and we use words to talk about them. Yet, this does not automatically
mean that every word corresponds in some way to some element or aspect of the
world. Some do, some don’t. Perhaps the least controversial examples of words that
are about something are names. Names essentially name — or, at least, aim at naming
— something. On the other hand, there does not seem to be something in the world

that words like “neither” or “if” are about. At least since the Thirteenth Century

4 This is not to say that the project has not had its many antagonists. In (2009), for
example, Pieter A. M. Seuren complained that “Despite the ... claims made by some
schools of formal semanticists, their work has, in actual fact, very little to do with the
mind and everything to do with the development of new, sophisticated subtheories
within the overall structure of standard logic and mathematics. The mind is, in other
words, merely a playground providing an excuse for mathematical and logical
diversions.” (Seuren 2009, 4)

5. We need to understand ‘the world” here widely enough to cover not just the world

as it actually is, but also as it might be, as we would want it to be, etc. (Barcelo

forthcoming a).
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philosophers have considered these so-called syncategorematic words as having a
different sort of function in language that being about something in the world. It is
an interesting open question whether number words are closer to names or to
syncategorematic words in this regard, i.e., are they about something in the world?
— and if so, what? — or do they have an altogether different function? — and if so,
which one?

Nevertheless, if a number word like “seven” corresponds to anything in the
world, it must surely correspond to number seven. But exactly what does this relation
of ‘correspondence’ ammount to is a very difficult question we will tackle in depth in
the third chapter. Yet, before tackling this issue, it is important to sharpen our
intuitive distinction between numbers and number words. Independently of whether
there really are numbers or only number words and other number representations),
the simplest way to make the distinction is by appealing to the method of category
mistakes.

Category mistakes are a common linguistic technique used in ontology to
determine whether terms refer to entities in different categories or not. The basic
intuition behind this technique is that, just as entities can be classified in different
ontological categories — concrete or abstract, animated or inanimated, universal or
particular, etc. — properties can also be classified depending on what sort of entities
they apply to. Thus, we can classify entities in categories by identifying which
properties are properly predicated of them and which are not. For example,
sentences (1) and (3) make perfect sense, while sentences (2) and (4) not — they
express what is not known as “category errors” — because, presumably, while “John’s

arrival” refers to an event, “the building” refers to an object. Objects and events are
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different ontological categories, objects are the kind of thing that can be there at a certain
time, while events are the kind of thing that can fake place at a certain time. (Moltmann
2017, Thomasson 2019, Barcel6 forthcoming b)

(1) John’s arrival took place last week.

(2) The building took place last year.

(3) The building was already there last year.

(4) John’s arrival was already there last week.
The same method can be applied to tell numbers and numerals apart. Consider the
following examples:

(5) Seventy is even.

(6) “Seventy” rhymes with “enemy”.
Sentence (5) is about a number — number seventy, while sentence (6) is about a
number word — “seventy”. Seventy, as a number, can be odd or even, large or small,
or divisible by seven or not, etc. “Seventy”, the word, certainly cannot. It just does not
make sense to say of a number word that it is odd or even, that is divisible by seven
or not, etc. Words like “seventy”, on the other hand, have syntactic and phonological
properties, they can certainly be short or long, start with a vowel or with a consonant,
be in English or in Ainu, rhyme with “foe” or with “enemy”, etc. Numbers, however,
are not the sort of things that can have any of these later properties: they do not
contain letters of phonemes, they do not belong to languages and therefore, they
cannot rhyme or not rhyme with a word or other.

This distinction is usually cashed out also in the distinction between using

and mentioning a word. In the first sentence, the sentence about the number

seventy, the word “seventy” is used to talk about that number, seventy; in the second,
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it is just mentioned. Sometimes it is said that the word “seventy” is used to talk about
itself in sentences like (6). We also often use quotation marks around the word being
mentioned to mark this distinction.
As intuitive as this distinction goes, however, things are not that simple.

Consider sentences (77) and (8):

(7) Steffie has just learned to count up to seventy!

(8) Seventy is my favourite number.
It is not starightforward to determine whether, in these sentences, “seventy” is being
used to refer to a number or instead the sentence is talking about the number word
“seventy”. When we learn to recite the numerical sequence as kids, are we learning
something about numbers or just about the words that we use to refer to them in our
language? As we have mentioned, it is usually defended that cardinal numbers are
essentially linked to cardinality and the process of counting, however it is not clear
whether and how does learning the numerical sequence is related to the process of
counting items in a group. Similarly, it is also not obvious whether and when what we
like — or think about, or imagine, etc. — is a number or a numeral. It is not the same
to like seventy because it contains a seven, than to like it because it is divisible by
seven, for example.

Consider now sentence (9):

(9) Seventy people showed up to the party.
Is (9) about number seventy, just as sentence (5) or not? It certainly does not seem to
be about the number word “seventy”, but it is also not obvious that it is about

number seventy either. What is happening here, then?
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For centuries, philosophers have tried to answer this very complex question
and their proposed answers have usually involved some form of linguistic analysis. It
is usually said that the main difference between (1) and (3) is that “seventy” functions
as a nominal in (1) but not in (3). However, as well will see in due course later in the
book, even if it is not a nominal, it is hard to tell exactly to what grammatical
category “seventy” belongs in (3): is it an adjective, or is it a determiner similar to a
quantifier? And if so, what does this tell us about numbers themselves?, does this
show that numbers are not objects, but properties, or processes?

Furthermore, even if we accept that numbers and numerals are entities of
different sorts, this still does not tell us what sort of entities numbers are. In other
words, even if it is fairly straightforward to say that numbers and numerals belong to
different ontological categories, this still does not tell us to what ontological category
numbers belong. As we have mentioned at the beginning of this chapter, numbers are
the kind of entities that have arithmetical properties like being divisible by some
numbers, but not others, being larger than some numbers, but smaller than others,
etc. However, besides these basic and necessary properties, it is difficult to say much
more about them. Indeed, if we apply the aforementioned technique of finding
category errors in how we talk about numbers, it is very difficult to say much about
what numbers are, yet we might find much about what numbers are not (Lewis
1986: 82-84)! Consider the following sentences (10) - (17), they all seem to be
category errors:

(10) Seventeen took place last year.
(11)  Seventeen was already there yesterday.

(12) Seventeen is here.
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(13) Ihad not noticed seventeen.

(14) Seventeen was not as heavy as I thought.

(15) Seventeen did it!

(16) Seventy was divisible by seven.

(17)  Seventy will be divisible by seven.

(18) The rain did not cause seventeen.

(19) Seventeen did not cause the rain.

etc.
Presumably, this means that numbers are neither events nor causally linked to
events, they are not spatio-temporal or material, they are not agents, etc. But again,
this tells us very little about what sort of entities numbers are! Metaphysicans of all
times have battled with this question for ages. For some, from Plato to James Robert
Brown, numbers are the inhabitants of an abstract realm. For others, like Stuart Mill,
they are universals, corresponding to properties of groups (Mill System, VII: 254).
Others, like Hartry Field, take them to be fictions ,while others, like Gottlob Frege,
Bertrand Russell, Crispin Wright or Robert Hale take them to be logical entities.
Furthermore, as we have seen at the beginning of this chapter, besides the

aformentioned arithmetical properties, numbers are also presumed to have three
other problematic properties: first, they are easily named by number words and other
representational devices, like numerals; second we know things about them, like that
they are infinite or that some of them are bigger than others and, finally, they are
usually fruitfully applied to all matters of human interest, from the explanation of
natural phenomena to the distribution and exchange of economic resources. How is

that possible, given their sui-generis ontological status? In other words, how is it
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possible for us, mortal, concrete, material beings, to know, name and apply numbers
so well and to such advantage to us?

In the previous section, we drew a distinction between two ontological
traditions in the philosophy of numbers, based on whether the essence of numbers is
found in mathematics our in our everyday judgements of cardinality. This distinction
also makes an important epistemological difference. If cardinal numbers are
essentially those we use to count, then counting might also have an epistemological
preeminence as means to accessing truths about numbers. Hence the importance
paid to cognitive studies of counting in developing a naturalistic epistemology of
numbers in recent decades (Giaquinto 2014). On the other hand, if numbers are first
and foremost what mathematicians study, then our epistemology must make use of
other tools, from formal logic to ethnology, better suited for modelling and analyzing
our scientific mathematical practices.

Each tradition offers a different account of how we access numbers. For the
first tradition, gaining cognitive access to numbers is nothing but knowing how to
use numbers to make judgments of cardinality. As aforementioned, counting is
presumed to place a central role in this process.

“According to the second account, natural number concepts depend on a

specific product of culture: a counting procedure. These concepts are recent

and unique to humans, because the first counting procedure appears to have
been invented relatively late in human prehistory. They are learned: indeed,
contemporary children master counting procedures slowly and with difficulty.

And they are culturally variable: different human groups count in different
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ways and to different extents, and some groups do not count at all.” (Spelke

2017, 148)

This means that different counting practices will give rise, and epistemic access, to
different numerical systems. As Bernard Comrie has argued,

“Speakers of languages with restricted [numeral] systems, such as Australian

languages [Mangarayi and Yidiny], typically did not engage traditionally in

counting. The number of entities was arrived at by “subitizing”, i.e.

immediately recognizing the number, as is possible up to around 5.” (Comrie

2006)

This means that peoples who do not count do not develop full fledged numeral
systems. We have the capacity to directly detect the cardinality of very small groups
without counting them. This phenomenon is commonly known as perceptual
subitizing, and most likely grounds our other arithmetic capacities. Still, by itself,
subitizing is not enough to deliver cognitive access to cardinal numbers larger than
four. In consequence, it can be only a partial ground of our capacity to think about
numbers at most.

Thus, for this tradition, counting is a necessary step in developing any
epistemic access to numbers, but it is not sufficient. Something else seems to be
needed and natural language competence is an attractive hypothesis. According to
Spelke, “... the development of natural number concepts depends on the acquisition
and use of a natural language.” (2017)

This approach to numerical knowledge contrasts to more traditional
epistemologies based on formal proof and calculation, from Frege and Hilbert’s

seminal work at the turn of last Century to the more recent proposals from
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philosophers like James Robert Brown, Stewart Shapiro and Penelope Maddy. The
main challenge faced by these more formalist epistemologies is trying to explain how
it is possible for someone to accede to abstract, universal and eternal mathematical
truths by scribbling on a notebook or blackboard. It seems natural to expect objects
to play some role in how we gain knowledge about them, yet numbers by their very
abstract nature do not seem to be the sort of entity that can interact with humans like
us. The explanation of human mathematical knowledge has thus proved to be an
enormous philosophical challenge.

Given the many difficulties in trying to determine what sort of entities
numbers are, and what place they occupy in our overall picture of the world, many
philosophers of the last centuries have opted to exclude them from their ontologies.
In other words, they have defended the view that numbers just don’t exist.

Arguments in favour of the existence of mathematical entities like numbers
can be classified into two broad kinds: on the one hand, we have those that start from
mathematical practice as a given and postulate the existence of mathematical objects
as part of the best explanation for such practice being as its. Usually, this is either
because of its success as a scientific enterprise or because of its importance for other
successful scientific and technological practices. On the other hand, there are those
that, instead, take everyday linguistic practice as starting point and postulate the
existence of mathematical objects as part of the best explanation of our using natural
languages as we do. The overall general strategy in both cases is to argue that without
numbers, it would be very hard to explain why things that we accept to be true (or, at
least, to be successful as claims about the world), i.e., simple arithmetical truths like

seventeen being prime, complex physical laws like the superposition principle or just
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everyday assertions like there being twelve judges in the Supreme Court — are
actually true. The basic idea is that something cannot be true unless the things it is
about actually exist, and that these truths are, at least in part, about numbers. Thus,
given that if we know what something is true and that it is about some category of
things, then we have good reasons to conclude that such things do exist, we must
hence conclude that numbers exist. Bob Hale, for example, has argued:

If entities belonging to a certain ontological category just are what
expressions of a certain logical category stand for, then we can argue for
the existence of entities of that kind by arguing that there are true
statements involving expressions of the relevant kind. If, for example,
there are true statements incorporating expressions functioning as
singular terms, then there are objects of some corresponding kind. If the
singular terms are such that, if they have reference at all, they refer to
numbers, there are numbers.” (Hale 2010, 406; quoted by Thomasson

2014, 133)

This line of reasoning brings forth the importance of linguistic analysis for the
ontological enterprise of determining what sort of things conform our reality and, in

particular, whether numbers do indeed exist. If Hale’s argument carries any force,
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the question of whether there are (literally) true sentences where numerals function

as singular terms would have enormous ontological importance!®

¢ Thanks to the influential work of Dummett (1991), the hypothesis that if numerals
in natural language are singular terms, then numbers exist is commonly associated
with Frege. Nevertheless, closer reading of Frege’s texts shows that the German
philosopher was not interested in natural language, but the many representational
means mathematicians employ in their work. The sense-reference distinction, for
example, is usually seen as a semantic distinction that applies to expressions in
natural language; however, when Frege introduces it in his Conceptual Notation
(1879) — before he used the terms “sense” and “reference” — he uses as illustration an

example of diagrammatic Geometry.
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