
Thematic Section - Enacting Chance

Possibility Studies & Society
2023, Vol. 1(3) 279–299
� The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/27538699231176523
journals.sagepub.com/home/pst

Scientific understanding through big
data: From ignorance to insights to
understanding

Marı́a del Rosario Martı́nez-Ordaz
Centrale Lille, France

Federal University of Rio de Janeiro, Brazil

Abstract
Here I argue that scientists can achieve some understanding of both the products of big data implementation as well
as of the target phenomenon to which they are expected to refer—even when these products were obtained through
essentially epistemically opaque processes. The general aim of the paper is to provide a road map for how this is
done; going from the use of big data to epistemic opacity (Sec. 2), from epistemic opacity to ignorance (Sec. 3), from
ignorance to insights (Sec. 4), and finally, from insights to understanding (Sec. 5, 6)
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Introduction

Among scientists, there is a shared impression
that, in the last couple of decades, science has
moved from being computationally aided to
being data-driven (Cf. Zhou et al., 2019, p.
1018). This transition is seen as changing radi-
cally the ways in which knowledge is achieved,
novel phenomena are reached, and discoveries
are made, among other things. Methodologically
speaking, this transition is often reduced to the
incorporation of big data and the necessary tools
to work such data—like Artificial Intelligence
(AI), Machine Learning (ML), Deep Learning
(DL), neural networks, etc. Epistemically speak-
ing, this transition has undoubtedly been linked
to novelty, increasing in scope and depth of sci-
entific knowledge, and the strengthening of the
web of knowledge.

And while philosophers of science have sys-
tematically paid attention to how these changes
affected disciplines like astronomy and ecology—
which have a very long history of being data-

driven, it is a fact that at this point, almost all sci-
entific disciplines are making important use of
these novel techniques. For instance, in molecu-
lar and materials science, big data and machine
learning have started playing a central role in the
discovery and testing of catalysts1:

Catalysts are used in many industrial processes.
Traditionally, the optimal design of catalysts has
been empirical or has mostly depended on experi-
mentation. Quantum chemical calculations provide
the possibility for first-principles catalyst design.
However, the large computational cost limits their
application to relatively simple reactions and to a
small number of catalyst candidates. With the rap-
idly increasing amount of available experimental
and computational data, as well as the
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development of catalysis informatics, catalyst
structure and activity relationships can now be well
described using ML models, which are very useful
for catalyst development (...) It has been shown
that compared with traditional computational and
experimental trial-and-error approaches, ML
methods possess great potential for accelerating
the discovery of high-performance heterogeneous
catalysts. (Cf. Zhou et al., 2019, p. 1023).

In this context, ML has become key for the
development of the so-called data-intensive
materials design (or inverse design) protocol, in
which the desired function of a material is spec-
ified beforehand, and then candidates are
extracted from a database (which can be either
computational or experimental). This allows
scientists to predict ‘‘the properties of sub-
stances, including those of unknown molecules/
materials (.) Therefore, if a single physical
property is dominant in governing the perfor-
mance of a material, molecular/materials infor-
matics serves as an ideal tool to identify a novel
functional material’’ (Toyao et al., 2020, p.
2261). This helps scientists not only to run anal-
yses faster and more efficiently, but also pro-
vides them with novel information about
scientific objects that might still remain
unknown to them.

The use of ML methods for the design, dis-
covery, and testing of catalysts, has changed
experimental practices as well as helped scien-
tists broaden the scope of what they could con-
sider observable and knowable. In this sense, it
is clear that ML and similar methods have
become central not only for the furthering of
scientific research in fundamental (and mostly
theoretical) sciences but also in those with key
roles for dealing with pressing practical issues—
environmental, health-related, among others.
This change has generated the impression that
science is growing in such a way that we, human
agents, are every day more capable of under-
standing the world than we were the day before.
But what would that mean to understand the
world through science?

Scientific understanding—henceforth,
‘‘understanding’’—consists ‘‘of knowledge

about relations of dependence. When one
understands something, one can make all kinds
of correct inferences about it’’ (Ylikoski, 2009,
p. 100). Thus, understanding is a matter of
relating doxastic bodies to make specific
domains clearer, and in this sense, it consists in
building more exhaustive and better-integrated
pictures of reality. Given its comprehensiveness,
understanding is commonly considered to be
one of the ultimate goals of science.

However, with the emergence and implemen-
tation of new technologies in different scientific
disciplines, the possibility of achieving under-
standing has reduced significantly. The increase
in both the amount of data and the speed at
which it is collected generates scenarios in which
scientists are profoundly ignorant of both (i)
how to interpret the reliability and the content
of the data, as well as (ii) how different doxastic
bodies about it relate to one another. This
leaves scientists in a precarious position when
pursuing understanding and gives rise to the
dilemma of either accepting that our traditional
view on understanding should change in light of
new scientific methodologies or committing to
the fact that some novel technological resources
pull us away from understanding them, their
outputs and their target objects—leaving under-
standing unattainable in some areas of scientific
research.

In this paper, I aim at drawing connections
between the use of big data in the sciences and
issues of epistemic opacity, ignorance, and
understanding. Particularly, I focus on the cir-
cumstances under which agents can overcome
their ignorance and achieve understanding
when using big data in their disciplines. I
explain how scientists deal satisfactorily with
the challenges that ignorance poses for under-
standing in contexts of big data implementation
in the empirical disciplines. The general aim of
the paper is to provide a road map for how this
is done; going from the use of big data to epis-
temic opacity (Sec. 2), from epistemic opacity
to ignorance (Sec. 3), from ignorance to insights
(Sec. 4), and finally, from insights to under-
standing (Sec. 5 and Sec. 6).
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From big data to epistemic opacity

A significant part of the current success in sci-
ence is due to the implementation of extremely
complex technological resources, in particular,
the use of big data and computational methods.
Intuitively, such a level of technological complex-
ity should make us feel assured that the products
obtained through these technologies are in many
senses reliable.2 Nonetheless, when looking at
these products with much more attention, one
would notice that there is very little certainty
about the types of epistemic commitments that
one can and should endorse toward them.

This section is devoted to addressing some of
the main epistemic challenges from the imple-
mentation of big data in empirical sciences.

Preliminaries about big data

Let data be anything that can be soundly
recorded in a relational database respecting
semantic and pragmatic requirements. ‘‘The
semantics require that the recordings be under-
stood as true or false statements. The pragmatics
suggest that we favor recording what seems to
be concrete facts (i.e. singular and relatively
weak statements) and that interpreted recordings
to be true statements’’ (Fricke, 2015, p. 652).

Data should meet, at least one of, the follow-
ing criteria:

- Data whose raw form is so large that we
must qualitatively change the way in
which we reduce, store, and access it.

- Data whose reduced form is so large that
we must qualitatively change the way in
which we interact with and explore it.

- Data whose structure is so complex that
our current tools cannot efficiently extract
the scientific information we seek.

In addition, when concerning big data, there are
five main characteristics that datasets possess:
volume (the amount of data i.e. being managed,
measurable in terabytes, petabytes, and even
exabytes), velocity (the data generation rate and
the processing time requirement), variety (the

data-type, which can be structured, semi-struc-
tured, unstructured, and mixed), veracity (how
accurate or truthful a dataset or a data source
may be) and value (the possibility of turning
data into something useful).

Furthermore, the computational complexity
of a particular task (problem) results from the
number of resources required for its realization
(solution). The resources commonly considered
when determining the computational complex-
ity of a task are time and space—and when
addressing the complexity of algorithms one
should also take into account bit complexity
(the number of operations on bits that are
needed for running such algorithm), and com-
munication (the amount of communication
between the executing parties), among others.
The combination of the different characteristics
of big data makes the processing of the data
extremely computationally complex.

The complexity of big data analytics, and the
management of big data, has strengthened the
exploitation of AI, ML, DL, among other com-
putational resources. In recent decades, the evo-
lution of both big data and artificial intelligence
has had a large impact on the methodological
grounds of any scientific discipline, nowadays
both are implemented not only to gather evi-
dence but also to explore alternative scenarios
and their consequences, to identify interesting
and novel (possible) results of theories, models,
and experiments, among others.

AI is a rapidly evolving field that involves various
domains, such as reasoning, knowledge represen-
tation, and machine learning (ML). Machine
learning has been widely implemented for numer-
ous drug discovery applications pertaining to
large data sets. It uses various algorithms and
techniques to recognize templates and patterns
within the given data set (...)ML methods have
been classified under two broad subcategories,
supervised learning and unsupervised learning
methods (Tripathi et al., 2021, p. 1440).

That said, it is clear that big data does not come
solely with large amounts of data, but with the
implementation and improvement of resources

Martı́nez-Ordaz 281



such as AI, ML, DL, neural networks, and their
mutual combinations, among others. As a mat-
ter of fact, and contrary to what its name sug-
gests, the salient feature of big data is not the
quantity of information that is gathered. The
amount of data that is managed is an important
aspect of it, however, what characterizes big
data are ‘‘the methods, infrastructures, technol-
ogies, and skills developed to handle (format,
disseminate, retrieve, model and interpret) data.
These developments generate the impression
that data-intensive research is a whole new
mode of doing science, with its own epistemol-
ogy and norms’’ (Leonelli, 2014, p. 2). The com-
bination of these changes generates different
types of epistemic opacity.

The basics of epistemic opacity and big data

O is epistemically opaque to an agent, in a par-
ticular context, if the agent ignores all the fea-
tures of O that are relevant to a specific task
within the context. Depending on the object of
the epistemic opacity, one can recognize at least
two types of opacity present when agents carry
out or scrutinize complex computational tasks:
opacity about the status of the products of such
tasks and opacity about the procedures that
underlie those tasks.

- Opacity regarding the status of the prod-
ucts: consists of a lack of clarity on
whether the models that are created by
computer-based methods are substitutes
for empirical observations and experi-
mental results, or if they are closer to the-
oretical abstractions and idealizations
(Cf. Barberousse & Vorms, 2014,
Morrison, 2015: Chap. 7). This opacity
has an effect on the doxastic commit-
ments that scientists are justified to have
toward the products of computer-based
methods, and how trustworthy they con-
sider them to be.

- Opacity regarding the procedures: consists
of a cognitive agent ignoring all of the
epistemically relevant elements of a

particular process (Cf. Humphreys, 2009,
p. 618). When a process is epistemically
opaque to an agent, this often has the
effect of undermining the strength of the
agent’s justification for each of the steps
of the process –as well as weakening the
justification for the outputs of the pro-
cess. This type of opacity can be over-
come if the agent knows when a step in a
procedure is relevant (weak transparency)
as well as when it is not (strong transpar-
ency) (Cf. Boghossian, 1994).

While many of our daily processes are opaque
to us to different degrees, what is special about
big data practices and the corresponding com-
putational processes, is that some of these pro-
cesses are essentially opaque.

- Essential Epistemic Opacity: ‘‘A process is
essentially epistemically opaque to X if
and only if it is impossible, given the
nature of X, for X to have access to and
be able to survey all of the relevant ele-
ments of the justification’’ (Durán &
Formanek, 2018, p. 651). This type of
opacity can equally be about either the
steps within computational processes or
the resulting status of the outputs of such
processes.

While the types of epistemic opacity that have
been described above could be present in many
other contexts that do not involve big data,
what is relevant for the case of big data imple-
mentation is that, once a process or a product is
essentially opaque, agents working with it are
(or at least, should be) in trouble when addres-
sing their trust in it. This is, on the one hand,
essentially opaque computational processes—
even when known to be so, are implemented
because they are key for achieving scientific suc-
cess, either novel predictions, measurements,
etc. On the other hand, these processes ‘‘are so
fast and so complex that no human or group of
humans can in practice reproduce or under-
stand the processes’’ (Humphreys, 2009, p. 618);
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weakening the agents’ capability for rationally
justifying their trust in them.

Take the case of contemporary discoveries
made in catalysis using big data and data-
driven computational techniques. On the one
hand, big data and these techniques have been
crucial for streamlining the discovery of novel
high-performance materials. On the other hand,
the data that underlies the identification of such
materials is often treated by implementing
extremely complex computational processes—
that go beyond human computational capabil-
ities. The combination of the above makes the
nature of such discoveries very unique.

While not all big data implementation entails
epistemically opaque processes and results,
there are some that are necessarily considered
to be the result of black-box models. Black box
models are extremely computationally complex
models whose internal logic is not readily inter-
pretable, this is, in general, the processes carried
out within them are unknown to the agents.
The large majority of black box models cur-
rently used in catalyst materials discovery are
essentially epistemically opaque for human
agents; these models include Gaussian process
models and neural networks. ‘‘The motivation
for using these approaches is that, in many
cases, the design space of possible catalysts is
too large to be studied using quantum chemical
methods alone. ML models serve as computa-
tionally efficient surrogates to minimize expen-
sive quantum chemical calculations, enabling
an accelerated screening of the catalyst design
space’’ (Esterhuizen et al., 2022, p. 175).3

The above leaves chemists often able to satis-
factorily address the relevance of the discoveries
made by using black box models, but rarely
meeting the same success when having to disen-
tangle the processes followed in such discoveries.
This is, at the same time that big data has revo-
lutionized the methodologies of catalyst materi-
als discovery, it has done so by incorporating
new veils into the epistemology of the discipline.

It is important to notice that while computer
scientists have extensively researched ways to
convert black-box models into glass-box models,

these attempts even if successful do not suffice
to provide scientists with the exact knowledge
that they were initially looking for. For instance,
Explainable Artificial Intelligence (XAI) aims at
producing possible reconstructions and explana-
tions of processes and methods that are essen-
tially opaque to humans, these explanations are
most of the time only alternatives—this is, are
made in such a way that they are accessible for
humans to understand and trust but not neces-
sarily to ‘‘open’’ the actual black box of the pro-
cesses that were carried out.4

Summing up, in big data contexts, epistemic
opacity (either essential, about products, or
processes) comes as a direct result of the com-
plexity of the computational tools that are used
in collecting, reducing, and structuring immense
amounts of data (Figure 1):

I now turn to explain how all these chal-
lenges relate to a more familiar one: ignorance.

From Epistemic Opacity to
Ignorance

This section is devoted to explaining how epis-
temic opacity relates to one particular type of
ignorance: ignorance of theoretical structure
with reliable consequences.

Figure 1. From computational complexity to
epistemic opacity.
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Opacity and ignorance of theoretical structure

Intuitively, epistemic opacity resembles that of
ignorance. Traditionally, ignorance has been
characterized as a ‘‘lack of knowledge.’’5

Epistemic opacity about the status of a proce-
dure’s output might be considered a case of fac-
tual ignorance, given a certain proposition,
lacking knowledge of whether it refers to a fact,
or even if it is true. Opacity regarding the pro-
cedures might seem like an instance of proce-
dural ignorance, just not knowing a procedure.
Yet, this translation of epistemic opacity into
ignorance is a bit simplistic, it makes epistemic
challenges of computational procedures into
cases of ordinary epistemic problems.

The question is whether there is anything
special about the ignorance involved in big data
practices. Here I contend that the ignorance
that underlies big data implementation is of an
inferentialist-spirited type: ignorance of theoreti-
cal structure with reliable consequences. The rea-
soning is the following:

- First, take a structure of a theory to be,
broadly constructed, a set of inference
patterns that, when put together over the
elements of the theory, constrain it and
allow it to make sense of both the content
of the theory as well as the domains on
which the theory is correctly applied.

- Second, ignorance of theoretical structure
has been characterized as lacking knowl-
edge of the (relevant) inference patterns
that scientific theories allow for. When
ignoring (the relevant parts of) the theo-
retical structure of a theory, scientists are
not capable of grasping abstract causal
connections between the propositions of
their theory, they can neither identify the
logical consequences of the propositions
that they are working with nor can
explain under which conditions the truth
value of such propositions will be false
(Martı́nez-Ordaz, 2021, p. 12)6

- Third, big data implementation requires
the gathering of data of different types

(images, redshifts, time series data, and
simulation data, among others) coming
from sources of also very different kinds,
it isn’t surprising that the sets of data are
not always fully compatible. To solve this
issue scientists rely on extremely complex
computer-based resources to filter and
structure the information; yet, when these
resources go further human cognitive
abilities, this has the effect of scientists
losing track of the inferential mechanisms
that determined the later structure of the
data. When scientists ‘‘cannot provide
inferential explanations about why an
output obtains, they are not ignoring only
a specific recipe, they are ignorant of how
the bits of data relate to one another—at
least, inferentially; and this is indicative
of ignorance of theoretical structure’’
(Martı́nez-Ordaz, 2022, p. 127). It is
important to notice that the presence of
ignorance of theoretical structure often is
the source of other, more traditional,
instances of ignorance, such as factual,
objectual, and procedural ignorance.

- Fourth, the standard reason for which
scientists tolerate these high degrees of
ignorance is the quality of the most suc-
cessful outputs of computer-based pro-
cesses. This is, it is well-known that the
incorporation of big data into the empiri-
cal sciences comes with new levels of epis-
temic opacity; however, scientists are
willing to pay this price because the use
of these resources helps science to grasp
distant or complex objects that without
them would have never been at our reach,
it also helps us to conceive novel scenar-
ios and to ‘‘witness’’ new phenomena,
among other things.7

The most successful outputs of big data
implementation in science, those that jus-
tified our reliance on big data, are often
(1) novel in their fields, (2) empirically
adequate, (3) fruitful (crucial for the
development of related research pro-
grams), and (4) hold possible evidential
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relations with models or theories within
the discipline (cf. Martı́nez-Ordaz, 2022).

/:. Therefore, the ignorance that underlies
big data implementation in the sciences
has two salient components: its inferen-
tial nature and the reliability of the prod-
ucts obtained through big data.

From the outset, I want to be clear about the
dialectic. I am not claiming that all successful
products and processes of big data implementa-
tion are epistemically opaque for us. Yet, in
those cases in which epistemic opacity is pres-
ent, scientists are ignorant of the theoretical
structure that constrains the building of such
products. I am aware that there are many more
epistemic problems associated with complex
computational procedures and epistemic opa-
city, problems that often deal with these issues
from a computational perspective. However,
here I only focus exclusively on the challenges
that scientists as individual human epistemic
agents might find when working with big data
in their disciplines.

Going back to current practices in catalysis.
In 2021, the Schoenebeck Research Group
reported having predicted 21 phosphine ligands
using unsupervised machine learning with only
five experimental data points (along with in-
silico data);8 remarkably, such a set of ligands
included never made ones (Cf. Hueffel et al.,
2021). One of the most interesting features of
this prediction was that the phosphine ligands
form air-stable Palladium(I) dimers, whose geo-
metry and air stability were over the ones of
Palladium(0) and Palladium(II) species, and
this made them very promising catalysts (Cf.
Welter, 2021). Yet, the novelty of this predic-
tion is stressed by the fact that their chemistry
is still not well understood yet, and while the
implementation of ML helped to predict new
theoretical entities, it also helped to highlight
the important gaps of explanatory knowledge
that might exist around them.

The combination of the above leaves che-
mists in a peculiar position in which they can
address the relevance and reliability of the

discovery for the discipline, even to the point to
develop new lines of research around such a dis-
covery; but at the same time, struggle explaining
the internal logic of the models through which
the discovery was obtained as well as the theore-
tical framework in which this discovery fits.

Summing up, while the epistemic feature of
big data implementation that is the easiest to
spot is epistemic opacity (either about products
or procedures), what underlies it is an ignorance
of theoretical structure (Figure 2).

To repeat: I take this section to have shown
that there is a strong relation between epistemic
opacity and ignorance, they are not the same
but when epistemic opacity is present, it causes
different presentations of ignorance of theoreti-
cal structure with reliable consequences. First,
the reason why agents fail at figuring out the
status of certain products or at determining the
steps that are followed in procedures is that
they lack knowledge of the inferential con-
straints of the building of these products and
procedures. Second, when the outputs of big
data are extremely successful—either because
of their novelty, their accuracy, their scope,
etc., they are commonly considered

Figure 2. Epistemic opacity and ignorance of
theoretical structure with reliable consequences.
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epistemically reliable; even if coming from opa-
que processes. Of course, successful conse-
quences of big data implementation can also
come from not opaque processes; however,
what justifies the toleration of epistemic opa-
city, is the salient reliability of some of the
products that result from epistemic opaque
scenarios.

From Ignorance to Insights

The word ‘‘insight’’ is commonly used to indi-
cate either an epistemic product or a belief-
formation process. Regardless of its usage, how-
ever, insight typically denotes a sense of envi-
sioning a solution to a problem through an
opaque process that remains unclear to the
agent who experienced it. This creates a seeming
inconsistency in the nature of insights: on one
hand, they often engender a feeling of certainty,
even in the absence of clear justification; on the
other hand, the opacity of the process by which
insights are formed should logically diminish
one’s trust in them.

Similarly, agents may form strong beliefs
based on the outputs of big data, even when
they are aware of the opacity of the processes
that produced these outputs. Such high levels
of trust are typically based on the perceived
reliability of the outputs at a given moment,
such as their accuracy, innovativeness, preci-
sion, or overall utility.

This section deals with the question of which
the doxastic commitments that epistemic agents
endorse toward products of opaque or unclear
processes. In order to do so, here I explore the
connection between epistemic opacity, ignor-
ance, and insights.

Insights

Insight consists of a sudden realization or dis-
covery of a solution path that allows one to
solve a problem. The inferential mechanism
that underlies the building of insights is amplia-
tive, this is, the result is novel to the agent who

experiences the insight. While there is common
agreement on the fact that these are the key ele-
ments of insights, it remains unclear the com-
plexity of the entity referred to as ‘‘insight.’’

The term ‘‘insight’’ is used in literature to
refer to either the solution of a particular prob-
lem or to the process through which that solu-
tion is achieved. The latter definition, which
encompasses mostly the process of insight, is
based on Pierce’s characterization and has been
endorsed by philosophers and cognitive scien-
tists.9 Pierce’s (1992) work was instrumental in
identifying the type of reasoning involved in
producing insights, which is often ampliative,
creative, and outside-the-box, and it is often
present in abductive contexts. Furthermore,
insights are typically accompanied by a feeling
of surprise. When experiencing an insight, an
individual may report having discovered new
information that they believe to be efficient,
trustworthy, or functional for solving a specific
problem. However, it is also acknowledged that
this information has been obtained through an
unclear path. Contemporary studies that view
insight as a process typically emphasize the cog-
nitive elements that limit mental processes
related to discovery and innovative problem-
solving. While these studies aim at providing
detailed explanations of how human agents
produce insights, they often neglect two impor-
tant factors: the potential role of external aids
in facilitating insights, and the attitudes that
epistemic agents should adopt toward them.

In contrast, the understanding of insight as
an epistemic product pertains to the type of
commitment (epistemic) agents have toward the
solution that is produced through a given infer-
ential path. When looking at insights as episte-
mic products, one centers the attention on the
commitments that agents have toward the solu-
tion of a problem that resulted from following a
very creative and unclear path. At first glance,
insights involve forming the belief that ‘‘X is the
solution for Y problem.’’10 This understanding
of insights suggests that this type of beliefs con-
sist of three key components:
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- they are formed through an unclear or
unrigorous process as a response for a
given problem,

- they appear to be strong and robust
enough to guide our acceptance or rejec-
tion of other beliefs.

- Additionally, insights are an indication of
our grasping of a specific problem, object,
domain, or phenomenon.

Given the normative perspective taken in this
paper, I adopt the second approach to insights,
which retains both the opaque nature of belief
formation processes and the strong epistemic
commitment to the achieved solution of a prob-
lem. These features are essential to insights,
regardless of one’s preferred general view of
them. However, considering insights as beliefs
allows us to avoid the elements of human psy-
chology involved in the reasoning that gave rise
to them and to offer an interpretation that
brings together (human) epistemology and
advanced technological implementation.11

The fundamental characteristics of insights
suggest that, at their best, they present a con-
flict, and at their worst, a contradiction. How
can a belief that is endorsed so strongly also
result from an unclear process? Moreover, how
can insights be considered rational beliefs?
These questions arise from the apparent tension
between the strength of insights and the lack of
clarity in the process that generates them.

First of all, human agents endorse insights so
strongly because they allow us to evaluate some
epistemic virtues of specific sets of beliefs con-
sidering the ways in which other beliefs relate to
them. But this endorsement does not mean that
agents never give up insights, what it means is
that they do it only when they are faced with
either the falsity of the insight or with strong
evidence of the incompatibility between the spe-
cific insight and a set of core beliefs (that are
better supported than the insight in question).
Furthermore, for agents to be rational when
endorsing a specific insight they have to expli-
citly regard it as being ‘‘trustworthy.’’ One is
rational when trusting something (or someone),

if such a trust is justified, at least, either truth-
directly or end-directly.12

This considered, beliefs formed through
insights share similarities with both scientific
hypotheses and knowledge. Scientific hypoth-
eses are proposed explanations about a particu-
lar domain that result from a problem-solving
process. They are tentative statements that are
subject to testing and revision in light of new
data, yet they also serve as a starting point for
new lines of research. In contrast with hypoth-
eses, when endorsing an insight, the process of
testing their truth is not as pressing; as a matter
of fact, in the case of insights, what matters the
most is how they are taken as a starting point
to both deal with the problem that gave rise to
them as well as pursuing further research.
Insights share some similarities with factual
knowledge (knowledge of facts), mainly, both
involve believing that something is the case.
Yet, in the case of insights, there is also an
acknowledgment that the belief forming process
is unclear or unknown. This recognition sets
insights apart from knowledge, which is typi-
cally grounded on the possibility of providing
justification for the reliability of the process
that gave rise to the belief. As such, insights
represent a unique type of belief that is both
tentative and based on a process of problem-
solving, yet also acknowledges the limitations
of its formation.

Finally, it is important to emphasize that
because the rationality of the endorsement of
insight comes from gathering evidence in favor
of either its truth or its role in the achievement
of specific goals, its rational character is only
temporary. This is, through this search of evi-
dence either we succeed or we get to a point in
which we have to admit that the strength of the
insight should have degenerated in absence of
new evidence that supported either its truth or
its value for meeting goals.

Ignorance and insights in big data

Very often, the most salient scientific achieve-
ments that are produced through big data
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implementation are taken as touchstones for
the development and pursuit of novel research
lines. And, regardless of the presentation of
such findings, whether they are predictions,
measurements, etc.; they are often indicative of
knowledge of objects or phenomena.
Nonetheless, the large majority of them are
obtained through processes that are opaque
and unclear for human agents. This resembles
the situation of insights.

Take for instance the case of the prediction
of 21 phosphine ligands obtained by the
Schoenebeck Research Group when employing
unsupervised machine learning algorithms.
First, it is clear to the scientists that this result
was produced via epistemically opaque meth-
ods. In particular, some of the most novel out-
puts were very likely to have been never
investigated without the implementation of ML
techniques (or similar tools)—as the algorithms
followed a research route very distant from
those intuitive for the experts (Cf. Hueffel
et al., 2021, p. 1138). However, the accuracy of
the predictions is considered to be remarkable
and the prediction in itself is taken as revealing
something about an object in the world that
deserves further analysis (Cf. Hueffel et al.,
2021; Welter, 2021).

With regard to the scientists’ commitments
toward (some of) the successful products of big
data implementation, there is a peculiar combi-
nation of a strong acceptance of their trust-
worthiness with the awareness of the
opaqueness of the processes through which they
were obtained. This gives the impression that
the belief-forming mechanisms that are used to
bring beliefs around the trustworthiness of the
outputs of big data are similar to those underly-
ing the beliefs about the trustworthiness of a
solution to a given problem –in insight-
contexts.

It is important to notice that scientists’ confi-
dence over certain products of big data is not
formed via hunches –as we tend to imagine that
insights in our daily life are. Nevertheless, the
beliefs behind this confidence satisfy the condi-
tions for insights by recognizing that the

products that determine their content were
formed through unclear and opaque processes,
as well as by being strongly accepted to the
point in which they help to determine the
acceptance/rejection of other beliefs.

In these scenarios, it seems significantly chal-
lenging to assess the trustworthiness of the out-
puts of big data and computer-based methods.
First of all, because there is no clarity about the
status of many of these outputs, it becomes
hard to appeal to their truth in order to estab-
lish their trustworthiness. In addition, due to
the opaqueness of the procedures behind them,
it is impossible for us to ‘‘infer’’ the truth of the
products by tracking down the steps through
which they were built. Furthermore, determin-
ing their trustworthiness by appealing to the
role that they might play is a possibility, partic-
ularly, in those in which the output was being
explicitly searched for. Yet, the large majority
of saliently novel products of big data imple-
mentation are unexpected discoveries that end
up grounding new research programs –which,
most of the time, aim at explaining them. So, to
establish their trustworthiness by pointing to
their role in scientific research seems a quite dif-
ficult task.

When seeking ways to justify the trust-
worthiness of a particular novel output, it often
becomes obvious that the scientists’ acceptance
of the output comes from the fact that success-
ful products of big data, most of the time, pro-
vide scientists with ‘‘access to empirical
phenomena—especially if those phenomena
that wouldn’t be accessible to humans without
the aid of big data and computational pro-
cesses—, and enhances the achievement of
objectual knowledge regarding such phenom-
ena.’’ (Martı́nez-Ordaz, 2022, p. 128). This is, in
order to justify the end-directed trustworthiness
of a product of essentially opaque processes,
the most common way to do so is to indicate
which is the role that this output might play in
the achievement of further epistemic products
such as knowledge and understanding—even if
in the long run, the output is discovered to be
not true.
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Summing up, when the products of big data
implementation are extremely novel, scientists
are inclined to (strongly) endorse them even if
they ignore the inferential patterns that con-
strained the products’ building (Figure 3).

The reliability of such products clashes sig-
nificantly with the fact that agents are ignorant
of not only the steps followed by procedures
but, more importantly, of the inferential con-
straints of such products and procedures. So,
the fact that simultaneously certain products
can ground beliefs that are crucial for scientific
development, and at the same time, scientists
cannot explain the basis of their building, leaves
us with the impression of these beliefs being
insights. It is important to say that, for the pur-
poses of the next section, only those beliefs that
are grounded by or contain part of the reliable
products are to be considered insights—leaving
undetermined the role that beliefs about other
consequences of datasets may play.

In the following sections, I deal with the role
that these insights play in the moving forward
of science.

From Insights to Understanding (I)

This section addresses the basic notions behind
scientific understanding. In addition, it also
scrutinizes some of the challenges to the
achievement of understanding in big data
contexts.

The basics of understanding

Scientific understanding consists in putting
together bits of knowledge in such a way that
the result is a cohesive picture of a specific
domain—at least, a more cohesive one than the
resulting ones from each of these bits of knowl-
edge alone. Considering its integrative nature,
understanding is often seen as the ultimate goal
of science. The (ideal) scientist is expected to be
capable of knowing, explaining, and under-
standing her theories, the phenomena that such
theories depict, as well as the procedures that
are followed in her discipline.

Yet, understanding a theory or a particular
phenomenon is very different, epistemically
speaking, from understanding a procedure. This
indicates that there can be two main types of
understanding in science, a theoretical under-
standing and a practical one (cf. Bengson, 2017).
The former is rooted in the acquisition and
exercise of explanatory knowledge; this is,
knowing why certain things occur the way they
do within (or according to) a particular theory
or model. The latter relates to the ability to per-
form tasks in a successful way, and it is often
linked to procedural knowledge.

Another salient feature of scientific under-
standing is the combination of a strong psycho-
logical component with an objective one.

- The former is the feeling of grasping:
Take grasping to refer (at least) to ‘‘a cog-
nitive state bearing some resemblance to

Figure 3. From ignorance to insights.
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scientific knowledge of some part of the
explanatory nexus’’ (Khalifa, 2017, p. 11).
The feeling of grasping refers to the sense
of satisfaction that comes with realizing
one has acquired the ability to put
together bits of information that shed
light on parts of an explanation. 13

However, this sensation depends solely on the
individual agent’s experiences, which often can
be misguided. For this reason, the objectivity of
understanding comes from requiring

- that what is grasped is a fragment of real-
ity (Cf. Elgin, 2007, p. 35). While this
condition could inspire many philosophi-
cal discussions, the basic idea is that the
agent should possess significant evidence
of the content of her understanding being
grounded in the world. This is, for the
case of empirical sciences, legitimately
understanding an empirical domain
would require that the agent can interact
with it in a satisfactory way—explaining
it, predicting it, accounting for its parts
and the ways in which they relate, etc.

Additional to these two features, understanding
also requires order and coherence, which when
combined, allow intelligibility to emerge.

First, because understanding is an integrative
task, order is key. As it was explained in the
previous paragraph, the difference between
legitimately understanding something and just
having the feeling of grasping it lies in the mind-
independent grounds of such a feeling. This sug-
gests that, while the same elements could be
arranged in many different ways, only some of
them are privileged regarding their correspon-
dence with the domain. So the identification of
these orders and structures is a necessary com-
ponent of the objectivity of understanding.
Second, coherence results from the combination
of consistency, compatibility, and reinforcement
(Cf. Elsamahi, 2005). A cluster of bits of knowl-
edge is consistent if and only if it is impossible
to form a contradiction from them. Two bits of

knowledge within a cluster are mutually compa-
tible if they are mutually consistent and they
‘‘talk’’ (at least partially) about the same
domain; this, of course, strengthens the motiva-
tion for their later union. Two bits of knowl-
edge in a cluster reinforce each other if either
one provides a ‘‘rationale’’ for the other or if, at
least, one supports the basic assumptions of the
other or explains it (Cf. Elsamahi, 2005). Third,
intelligibility is ‘‘the value that scientists attri-
bute to the cluster of virtues (of a theory in one
or more of its representations) that facilitate the
use of the theory for the construction of mod-
els’’ (de Regt, 2009, p. 31).

Considering all of the above, to understand
something is to be able to order the compo-
nents of what has been understood in a coher-
ent way (Cf. Bengson, 2017, p. 19). Scientific
understanding is gradual, and can always be
improved (with regards to either its depth or its
scope). Understanding is an extremely valuable
product because it requires an exhaustive effort
to be attained. In addition, it used to be
thought that understanding should be both fac-
tive, meaning that its content ought to include
only true propositions, and explanatory, this is,
the acquisition of understanding should follow
the prior acquisition of explanatory knowl-
edge.14 These two criteria are independently
motivated, but they are mutually reinforcing as
they head in the same direction: the epistemic
robustness of understanding.

The conflicts between understanding and big
data

When big data is implemented in scientific con-
texts, our first intuition would be that it will
help us to gain an understanding of novel phe-
nomena or at least contribute to the improve-
ment of the understanding that has been
previously gained. However, according to many
epistemologists, this is not necessarily the case.
Unfortunately, there are three conflicts between
understanding and big data that have been put
forward in the literature: the first concerns the
relation between understanding and
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explanation, the second, the relation between
truth and understanding, and the third focuses
on the challenges for the identification of rela-
tions of dependence.15

Explanation. Since Hempel, understanding has
been continuously linked to explanation g (Cf.
Kvanvig, 2003; Grimm, 2006, 2014; Kelp, 2014;
Lawler, 2016, 2018; Sliwa, 2015). The most sali-
ent cases of scientific understanding are those
that involve the previous acquisition of explana-
tory knowledge about the phenomenon that will
be later understood. Now, because the outputs
of big data implementation are only in the form
of correlations, and because correlations do not
suffice for an explanation, philosophers of sci-
ence have concluded that these outputs won’t
suffice for the achievement of understanding.

Factivity. Another element of scientific under-
standing that conflicts with big data are the
truth value of the content of understanding—
the so-called factivity condition. Not only
because of its alleged relationship with explana-
tion but also due to its objective component,
scientific understanding has been traditionally
considered to only include true propositions. If
we expect to grasp a segment of the actual
world, this can be only possible if the elements
that constitute what we understand are true in
the actual world. According to this view, we are
allowed to use fictions, idealizations, and other
non-true items when seeking for understanding;
yet, this does not imply that those items are in
any significant way part of what we have
understood, only that they were useful tools
(Cf. Lawler, 2021). If epistemic opacity sur-
rounds the status of the outcomes of big data
and, because of this, it is impossible for the
agents to determine whether a specific outcome
should be seen as a punctual description of real-
ity, as an abstraction, etc.; one will also be
unable to include it in the content of under-
standing around a target phenomenon. This
challenges both the understanding of the output

as well as its inclusion in the understanding of
the target phenomenon.

Relations of dependence. Because agents are
ignorant of the theoretical structure behind the
datasets that originated the outputs, these agents
cannot identify the relations of dependence from
which the outputs are obtained. And in this
sense, it seems impossible to understand both
the outputs and their associated procedures.

Furthermore, traditionally, and in spite of
big data implementation being a source of
groundbreaking results, the understanding of
its products and processes, as well as of the
phenomena described through these products,
seems extremely complicated—if not impossi-
ble. It is important to clarify that I am not say-
ing that the traditional view on understanding
and big data is that the products of big data
implementation are useless for the pursuit of
scientific understanding. What has been said in
the literature is that these products cannot
alone promote our understanding, that the pro-
cesses that generated them cannot be under-
stood, and that they cannot play a central role
in the achievement of understanding.

From Insights to Understanding (II)

This section addresses how the ignorance of
theoretical structure can be (partially) overcome
allowing some understanding to be achieved.
Here, I particularly deal with the role that
insights play in this matter.

The road to understanding

As it might be obvious to the reader at this
point, the possibility of achieving understand-
ing requires, at least, the partial overcoming of
the scientists’ ignorance. In particular, as the
underlying ignorance in big data practices is of
a relational (inference) nature, and because
understanding is also a relational phenomenon,
the overcoming of the former seems necessary
for the achievement of the latter. The resources
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that scientists have to do so are their theoretical
frameworks (independent theories, models,
etc.), their most important scientific observa-
tions, as well as the salient products of big data
implementation that have been accepted as
groundbreaking—and around which scientists
have formed insights.

The main claim here is that the reliable out-
puts of big data implementation are keystones
in the achievement of scientific understanding,
without them, understanding would be unat-
tainable to scientists.

The road that takes scientists from ignorance
of theoretical structure to scientific understand-
ing can be broadly described through the fol-
lowing five steps:

Acknowledgment of ignorance. The starting point
is for scientists to recognize that the key ele-
ments of the ignorance that underlies big data
implementation are inferential relations. This
acknowledgment leads to seeing how the infer-
ential nature of their ignorance prevents them
from explaining the procedures that they guide,
cannot determine the constraints of the set of
information that gave rise to the successful out-
puts, and cannot determine the truth value of
such outputs.

Going back to the Schoenebeck Research
Group’s prediction of 21 phosphine ligands.
First, it is necessary to say that the reason why
this research was conducted using opaque
resources was that

To accurately predict the favored speciation of
catalysts on the basis of mechanistic and quantum
mechanical considerations, it is necessary to have
precise knowledge of the various potential species
in solution that may (or may not) form, their
coordination states (with or without solvent), spin
or charge states, and potential dynamic intercon-
versions. Such information is rarely accessible in
full, and it is therefore not surprising that there is
to date so little understanding of the factors that
dictate catalyst speciation. (Cf. Hueffel et al.,
2021, p. 1134).

For instance, gray-box methods like High-
Throughput Experimentation (HTE) and
SubGroup-Discovery (SGD) require around
100 to 10,000 experimental data points to be
able to satisfactorily navigate the number of
possible materials (which is practically infinite)
and arrive at a neat identification of the needed
catalyst material (Cf. Foppa et al., 2022).
Because alternative methods, including insight-
driven strategies, do not suffice for this specia-
tion challenge, scientists were in need of
employing opaque methods to do so. As a
result, they were fully aware of their ignorance
about the road taken by the algorithms, and
the ways in which, from only five experimental
data points, it was possible to arrive at such a
novel prediction.

Identification of reliable consequences. A crucial
element for the rational toleration of ignorance
and epistemic opacity is the identification of the
payoffs of big data implementation in their dis-
ciplines. What justifies such toleration is the
identification of the outputs of big data imple-
mentation that are considered to be extremely
reliable and crucial for the development of sci-
ence and the explanation of the role that they
play that matter.16

Formation of beliefs grounded around the most reliable
consequences (insights). This involves both beliefs,
about the reliability of these consequences as
well as beliefs grounded in the consequences
themselves. These beliefs are considered to be
insights. On the one hand, because they are
firmly endorsed by scientists because of their
role in scientific development—this warrants
the doxastic strength of insights. On the other
hand, because their truth cannot be stated by
tracing the quality of the output (through the
procedure that generated it) nor by ‘‘checking’’
its relation with the actual world—which pro-
vides the unclear/opaque/unrigorous basis of
the belief.
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Going back to our case study. The novelty
of the prediction resulting from the implemen-
tation of unsupervised machine learning for the
identification of palladium catalyst, was taken
by the scientists as extremely reliable. As a mat-
ter of fact, it was taken as ‘‘a clear demonstra-
tion of the power of machine learning
techniques to accelerate catalyst development
with suggestions that are beyond a scientist’s
intuition. Our future efforts are directed at
exploring the potential of the new dimers in cat-
alysis’’ (Cf. Hueffel et al., 2021, p. 6). This
should be taken as indicative of both the identi-
fication of the prediction as novel and reliable
as well as the acceptance of such a prediction as
reliable—at least for the purposes of guiding
future research round its most novel results.

Identification of inferential patterns. The (partial)
overcoming of ignorance of theoretical struc-
ture requires the identification of particular
inference paths that connect the reliable outputs
of big data with the best theoretical frameworks
at the scientists’ disposal and the most
entrenched observations (Cf. Martı́nez-Ordaz,
2022). The search for these paths requires tak-
ing the big data outputs, the frameworks, and
the observation as fixed points that are
assumed to be true.

In the case study described above, there are
two mutually complementary ways in which the
identification of inferential patterns should be
carried out. On the one hand, the theoretical
path, which consists in taking the palladium(I)
dimmers (particularly, the one that had never
been made), whose chemistry has not been well
studied, as their synthesis seemed unpredict-
able, and search for adequate embeddings
within theoretical and experimental models. On
the other hand, the methodological path con-
sists in assessing the reliability of the methods
used for the production of the prediction of the
palladium (I) dimmers. For this matter, scien-
tists might employ tools like Interpreatbe ML
(IML) methods, that aims at ‘‘translating the

hidden patterns identified by ML models into
interpretable information formats can lead to
testable theories and hypotheses, further advan-
cing scientific understanding.’’ (Esterhuizen
et al., 2022, p. 175). The combination of these
two paths will shed light on the epistemological
status of the output taking into account its rele-
vance within the discipline as well as the
method that was used for its production.

Building networks of understanding. Scientific
understanding consists of building networks
that successfully connect our scientific beliefs
about the world and allow us to obtain a
detailed map of specific regions of it. The most
reliable outputs of big data implementation, the
theories, and the most robust scientific observa-
tions work as the nodes of the network; mean-
while, the inference paths that the scientists
have selected to connect them shape the net-
work and determine its strength and its robust-
ness. Furthermore, these inferential paths also
define the (logical) constraints of the network
of understanding.

The importance of doing such an integration
of the product of big data into a broader net-
work is that of strengthening its value within a
particular theoretical view on the domain. This
is especially important taking into account the
epistemic limitations of tools like IML and
XAI; whose reconstructions and explanations
are, most of the time, only alternatives to what
actually happened in the black box. ‘‘As helpful
as interpretation tools might be, ML cannot
eliminate the role of catalysis scientists in
advancing scientific theories and hypotheses.
(...) We believe that, if possible, the best prac-
tice is to use features that align with earlier
physical explanations, as the interpretation is
likely to be more insightful if it reinforces or
connects to pre-existing domain knowledge.’’
(Esterhuizen et al., 2022, p. 182).

That said, the general picture is the following
(Figure 4):
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Now, there are crucial questions to be
addressed: which type of understanding is
achievable in big data practices? In the follow-
ing paragraphs, I focus on this issue.

Interpreting understanding

Let’s deepen the particularities of the under-
standing that results from following the road
that I just described above.

First, the integration of the insights from big
data implementation into specific theoretical
frameworks is crucial for both the understand-
ing of the target phenomena as well as of the
corresponding product of big data. And
because of the nature of the ignorance that
scientists deal with in these contexts, such inte-
gration has to take place, at least, at an inferen-
tial level. Second, when connecting the
successful products of big data implementation
to a specific theory or model, scientists identify
or produce the logical bridges (inference pat-
terns) that would make the product trust-
worthy, and therefore, legitimize the insights
about its reliability. This constitutes the build-
ing of a specific logical space.

This logical space is constrained by the con-
ditions according to which the selected products
of big data are reliable and the target phenom-
enon is coherently described by the theory or
model. It is important to notice that the result-
ing logical space is constrained by the theoreti-
cal framework, the insights around the
trustworthiness of the big data product as well
as the scientists’ previous knowledge of the tar-
get phenomenon; and because of this, it will be
narrower than the ones build taking into
account only one of these components. Yet,
these logical spaces can only tell a possible
story, a story that might be the case.

How informative really are both the rela-
tions of dependence that might constrain the
trustworthiness of the product of big data as
well as those that might constrain the informa-
tion about the target phenomenon? And more
importantly, do they suffice for understanding?
These questions are grounded in the fact that
while the identification of inference paths might
lead scientists to a cohesive picture of a particu-
lar domain using the outputs of big data imple-
mentation, this does not mean that this
particular picture is in any relevant sense con-
nected to the target phenomena. Therefore, as
the integration of elements does not suffice for
understanding, it is not clear that the finish line
described above matches any type of under-
standing. However, the building of a logical
space around the insights into the trustworthi-
ness of the products of big data provides scien-
tists with a particular type of scientific
understanding: modal understanding. It is often
said that someone has a modal understanding
of X when that person knows how to navigate
the possibility space associated with X (Cf. Le
Bihan, 2017, p. 112).

In big data contexts, a modal understanding
of the reliability of the products of big data is
achieved when scientists are able to determine
under which circumstances, theoretically and
empirically speaking, these products are reliable.
As well as when they are able to navigate the
associated possibility space in order to connect

Figure 4. From ignorance to understanding.
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the reliability of such products with one of the
other similar future outcomes of technological
implementation. For the case of the target phe-
nomenon ‘‘to achieve a modal understanding of
the behavior of novel objects in an established
theoretical domain would be to determine the
set of possible worlds that correspond to the
generic structural features assumed by the theo-
retical view that such a cluster of data substanti-
ates.’’ (Martı́nez-Ordaz, 2022, p. 131).

It is important to emphasize that while
insights do not suffice for understanding, they
work as fixed nodes within a structure, playing
a crucial role in the constraining of the possibil-
ity space associated with the outputs of big data
as well as with the target phenomenon. The
resulting logical space is built around the
insights that scientists have about the outputs
of big data. Furthermore, because this type of
understanding is surrounded by the procedural
epistemic opacity that underlies the building of
big data products, its scope is narrow. Modal
understanding in this case refers to the identifi-
cation of the inferential conditions under which
it would make sense to use a theoretical frame-
work together with outputs of big data imple-
mentation to justify, explain and use our
empirical knowledge about a target phenom-
enon. This shouldn’t be confused with having
acquired knowledge of relations of dependence
between doxastic bodies that we know occur in
the actual world.

If what has been said here is on the right
track, it helps to motivate discussions about the
role of scientific community for the achievement
of understanding. Because with the advance of
big data a growing inter/transdisciplinary colla-
boration is needed, this suggest that the social
component will also play a significant role in
the acceptance and rejection of products of big
data, as well as in the building of networks of
knowledge and scientific understanding around
those products. And although this issue is
extremely important for assessing the particula-
rities of scientific understanding in data-driven
scientific research, it is beyond the scope of this
work.17

Final remarks

Here I addressed the possibility of achieving
scientific understanding in contexts of big data
implementation in science. I focused on those
cases in which reliable products of big data are
obtained through essential epistemically opaque
procedures.

Pace traditional views on scientific under-
standing, I argued that understanding was
available for scientists to even under these con-
ditions and that certain outputs of big data
implementation play a crucial role in this mat-
ter. In order to do this, I first explained that the
prevalent types of epistemic opacities found in
big data implementation are the result of the
way in which computational complexity pre-
vents scientists from knowing the inferential
constraints of some procedures and products
(Sec.2). I identified this lack of knowledge as
ignorance of the theoretical structure of the
datasets, the procedures that are used to man-
age these datasets and their products. I next
explained the way in which despite scientists
being ignorant in this sense, they are capable of
identifying reliable outputs of big data
implementation—which in the most fortunate
cases are considered to be groundbreaking
(Sec.3). Furthermore, I explained that the
beliefs that are built around these reliable out-
puts are insights (Sec. 4) and that they are cru-
cial for the later building of networks of
(modal) understanding (Sec.5, 6).
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Notes

1. A catalyst is a substance that expedites chemical
reactions and that is not consumed or modified
during such reactions. Catalysis is the process
of modifying the rate of a chemical reaction by
adding a catalyst. Catalysis is ubiquitous and
can be found in the human body up to large-
scale industrial processes. Nowadays, its study
and further understanding are crucial for deal-
ing with pressing environmental issues like the
production of clean fuels and other chemical
products, and it ultimately allows the mitigation
of undesired gas or liquid emissions to the envi-
ronment (see Melián-Cabrera, 2021).

2. In what follows, I use the label ‘‘products of big
data’’ to encompass a variety of outputs resulting
from heavy computational methods implemen-
ted to deal with big data; such outputs include
predictions, measurements, and classifications,
among others. These results should at best be
interpreted as models of phenomena, assuming
(at a starting point) that their connection with
the target domain is significant mediated.

3. For an analysis of black box methods and inter-
pretable machine learning in heterogeneous cat-
alysis see Esterhuizen et al. (2022) and for an
extensive discussion on epistemic opacity in
computational chemistry see Wieber and
Hocquet (2020). It is important to stress that
not all black box models use ML nor all of
them are subject of essential epistemic opacity.

4. For a comprehensive analysis of the epistemic
advantages of XAI see Páez (2009).

5. I am fully aware that there is an ongoing philoso-
phical debate about the different ways to
approach and understand ignorance. However,
given the nature of the discussions endorsed here,
the adoption of this characterization of ignor-
ance will suffice for the purposes of the paper.
Nonetheless it is important to mention that there
are two major philosophical frameworks for the
study of ignorance. The first is of an analytic
epistemological nature and the second is of a
much more naturalist scope. The former encom-
passes rival views on ignorance as a lack or
absence of knowledge and ignorance as a lack or
absence of true belief (Le Morvan & Peels, 2016,
p. 12). The latter approaches ignorance as a
more complex phenomenon that emerges from
epistemic, cognitive, psychological and even
social features. For extensive discussions on this

latter approach, see Arfini (2019) and Arfini and
Magnani (2022).

6. When ignoring a segment of the theoretical
structure of a theory or model, one cannot iden-
tify the inferences that, within it, lead to ade-
quate predictions and explanations, among
other interesting products. In addition, the ways
in which the (epistemic and logical) reliability of
such a theory or model is preservable are
unknown. The inferentialist spirit of this type of
ignorance lies in the fact that ignorance of theo-
retical structure prevents scientists from either
inferring the value of certain propositions, iden-
tifying whether distinct sequences of properties
refer to the same object, or explaining inferen-
tial procedures that underlie the management of
the information.

7. There is a sense in which these technological
tools are used to overcome our own cognitive
and physical limitations; therefore, their use is
only motivated and justified if they can help us
to do so if they can allow us to increase the rate
of success in science.
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8. The most salient feature to take into account
with respect to unsupervised ML techniques is
that they ‘‘can be applied to recognize patterns
in datasets without requiring training of the
algorithm with labeled data (and therefore with-
out the known outputs, such as experiments).
The learning process provides insights that are
fundamentally different from traditional analy-
ses, as they are derived purely by the ‘‘machine’’
without ‘‘human’’ guidance’’ (Hueffel et al.,
2021, p. 1136).

9. For current discussions on the cognitive aspects
of insights see Ross and Vallée-Tourangeau
(2022) and Bowden et al. (2005).

10. Or simply ‘‘X is the case.’’
11. A similar discussion on the epistemic merit of

outputs of insights-like processes can be found
in Aliseda-Llera (2023: In Spanish).

12. One can say that S’ trust in an insight i is
rational only if S has gathered enough evidence
in favor of the truth of claim di is trust-
worthye—despite the fact of ignoring the pro-
cesses through which i has obtained. In addi-
tion, S will be rational when trusting i, if to
assume the trustworthiness of i plays an essen-
tial role for Y, and Y is S’ goal in the relevant
context (Cf. McLeod, 2021: Sec. 2.1).

13. I am fully aware that the precise characteriza-

tion of grasping and its relation with under-
standing is still object of philosophical debate.
This, however, should not drive the attention
away from the fact that the feeling of grasping is
a combination of a psychological element with
an epistemic one, this is, is an epistemic feeling.
For general takes on epistemic feelings see
Arango-Munoz (2014) and Greely (2021).

14. One might wonder whether there is a meaningful
difference between explanation and explanatory
understanding. While this is a topic of significant
controversy among philosophers, a difference
between the two is that scientific explanation con-
cerns either causes or mechanisms that underlie a
particular phenomenon, while understanding
encompasses a broader comprehension of the
underlying principles, patterns, and relations of
dependence of a given phenomenon.

15. I am aware of the fact that there are important
ongoing debates concerning these aspects of
understanding in general. But considering the
purposes of this section, and because in the cor-
responding literature, the connections between

understanding and explanation have been pre-
sented as some of the most serious obstacles to
the achievement of understanding in big data
contexts, here I do not discuss the alternative
standpoints.

16. The acknowledgment of ignorance of theoreti-
cal structure with reliable consequences allow-
ing scientists to become aware of the target
problem to solve: the identification of inference
patterns that allows us to make sense of, at
least, the reliability of the most salient products
of big data implementation.

17. Thanks to a reviewer for raising this issue.
Discussions on the importance of transparency
and communication in (collective) epistemology
and ethics of AI can be found in Russo et al.
(2023: Sec. 4). Also discussions on the importance
of communication between expert-communities
and non-experts for the acceptance/rejection of
the outputs of black box algorithms can be found
in Durán and Jongsma (2021). Finally, see César-
Jiménez (forthcoming-in Spanish) on the value of
AI and human collaborative interactions for fur-
ther epistemic purposes.
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