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In this paper I show, with a rich and systematized diet of examples, that many contra-classical logics

can be presented as variants of FDE, obtained by modifying at least one of the truth or falsity con-

ditions of some connective. Then I argue that using Dunn semantics provides a clear understanding

of the source of contra-classicality, namely, connectives that have either the classical truth or the

classical falsity condition of another connective. This requires a fine-grained analysis of the sorts of

modifications that can be made to an evaluation condition, analysis which I offer here as well.

1 Introduction

Said briefly, Dunn semantics is a modelling of formal languages where truth and falsity are the only

truth values but they are not always related functionally to formulas. In Dunn semantics, there are four

admissible interpretations for a formula: it can be just true, just false, neither true nor false and both

true and false. Dunn semantics is especially associated to the logic FDE, which is important because

its generality has proved to be fruitful as a basis for developing further logics. There are three well-

known logics that can be obtained as extensions of FDE, that is, by eliminating one of the admissible

interpretations in the most general Dunn semantics. One of those logics is (strong) Kleene logic, K3,

which leaves the both true and false interpretation out; another is González-Asenjo/Priest’s LP, which

leaves the neither true nor false interpretation out. The third one is classical logic, which leaves out the

two that are left out in K3 and LP.

But those are not the only logics that can be studied as variations on FDE. David Nelson [14] clearly

distinguished between truth and falsity constructive conditions for the connectives, very much in the

spirit of Dunn semantics for FDE to be made explicit below. It was precisely working with Nelson’s

logic N41 that Wansing [29] obtained his connexive logic C. He changed the falsity condition for A → B

in N4 and the resulting logic was no longer subclassical, but contra-classical. This means that, without

enriching the language, it validates arguments that are not valid in classical logic.2
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Hitoshi Omori, Elisángela Ramı́rez-Cámara, Christian Romero and many, many others for useful discussions closely related to

the present topic. I want to thank the support from the following sources: DGAPA-UNAM through a PASPA sabbatical grant
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1See [11] for an overview of this logic.
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After Wansing, Omori [16] used the same idea, modifying the falsity condition for the conditional

on top of LFI1 to get another connexive logic, dLP. After that, he has shown (cf. [15]) that a number of

well-known and new paraconsistent and relevant logics can be obtained also by modifying appropriately

the falsity condition for some connectives while leaving the FDE-like truth and falsity conditions for the

remaining ones, in most cases even negation, fixed. More recently, Wansing and Unterhuber [31] modi-

fied the falsity condition of Chellas’ basic conditional logic CK and they obtained a (weakly) connexive

logic. Such a general approach to logics —viz. starting with Dunn-like evaluations for FDE and then

modify them to obtain different logics— has been called the ‘Bochum Plan’.

But Dunn semantics is not only a tool for crafting new logics, but also to provide new understand-

ings of already existing ones. For example, Omori and Wansing [19] have put forward a systematiza-

tion of connexive logics based on certain controlled modifications in the conditional’s truth and falsity

conditions, showing that, in general, modifying the truth condition has led only to weak connexivity

(Boethius’ Theses hold only in rule form, if at all), whereas modifying the falsity condition has led to

hyper-connexivity (i.e. not only do Boethius’ Theses hold, but also their converses). More recently,

Estrada-González and Cano-Jorge [6] showed how a Dunn semantics can help to address some of the

objections raised against Reichenbach’s three-valued logic.

With this background, the aim of this paper is twofold. First, to show that many contra-classical

logics can be presented as variants of FDE, obtained by modifying at least one of the truth or falsity

conditions of some connective. Whereas this way of presenting contra-classical logics is not new, my

contribution here is that the diet of examples will be enriched and systematized: examples will be given

for all the possible modifications in the given language; when possible, taken from existing literature.

Second, to give a precise explanation of how and why the contra-classicality is obtained. The presenta-

tion using Dunn semantics provides a clear understanding of the source of contra-classicality, namely,

connectives that have either the classical truth or the classical falsity condition of another connective.

This requires a fine-grained analysis of the sorts of modifications that can be made to an evaluation

condition, and I provide such analysis here.

The structure of the remaining of the paper is as follows. In Section 2, I revisit, at tutorial speed,

the basics of Dunn semantics for FDE. In Section 3, I show how to treat systematically some contra-

classical logics through modifications of the truth and falsity conditions for the connectives in FDE.

This procedure opens at least two problems. One is to explain where the contra-classicality comes from;

the other is to explain whether the modified connectives are still the intended connectives and why. In

Section 4, I will argue that the systematization using Dunn semantics provides a clear understanding of

the source of contra-classicality, namely, connectives that have either the classical truth or the classical

falsity condition of another connective. The second problem is left open and it will be tackled in a

separate work.

logic is hyper-connexive, because besides validating the core connexive schemas, namely

∼(A →∼A) Aristotle’s Thesis

∼(∼A → A) Variant of Aristotle’s Thesis

(A → B)→∼(A →∼B) Boethius’ Thesis

(A →∼B)→∼(A → B) Variant of Boethius’ Thesis

it also validates the converses of Boethius’ Theses.
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2 Dunn semantics and FDE

Consider a language L consisting of formulas built, in the usual way, from propositional variables with

the connectives {∼,∧,∨,→}.3 I will use the first capital letters of the Latin alphabet, ‘A’, ‘B’, ‘C’. . . as

variables ranging over arbitrary formulas.

A key feature of Dunn semantics is that, to achieve full generality with respect to the relations be-

tween formulas and truth values, the predicates “is true” and “is false” should not be understood func-

tionally, that is, being true does not imply not being false —nor vice versa—, and being false does not

imply not being true —nor vice versa—. More formally, a Dunn model for a formal language L is a

relation σ between propositional variables and values 1 (truth) and 0 (falsity), that can be extended to

cover all formulas. Said otherwise, a formula can be related to the truth values, via an assignment σ , in

one of the following four ways:

• A is true but not false, represented ‘1 ∈ σ(A) and 0 /∈ σ(A)’; more briefly, σ(A) = {1}

• A is true but also false, represented ‘1 ∈ σ(A) and 0 ∈ σ(A)’; more briefly, σ(A) = {1,0}

• A is neither true nor false, represented ‘1 /∈ σ(A) and 0 /∈ σ(A)’; more briefly, σ(A) = { }

• A is false but not true, represented ‘0 ∈ σ(A) and 1 /∈ σ(A)’; more briefly, σ(A) = {0}

Now, let Γ be a set of formulas of a logic L. A is a logical consequence of Γ in L, Γ |=L A, if and only

if, for every evaluation σ , 1 ∈ σ(A) if 1 ∈ σ(B) for every B ∈ Γ. A is a logical truth in L if and only if

Γ |=L A and Γ =∅. An argument is invalid in L if an only if there is an evaluation in which the premises

are true, i.e. 1 ∈ σ(B) for every B ∈ Γ, but the conclusion is not, i.e. 1 /∈ σ(A).4

FDE is a logic that can be presented as the result of evaluating formulas and arguments, built in the

usual way from a countable set of propositional variables and the connectives {∼,∧,∨,→}, according

to the following assignments, where A and B stand for any formula:

• ∼A is true iff A is false; ∼A is false iff A is true

• A∧B is true iff A is true and B is true; A∧B is false iff A is false or B is false

• A∨B is true iff A is true or B is true; A∨B is false iff A is false and B is false

• A → B is true iff A is false or B is true; A → B is false iff A is true and B is false

Using a Dunn model, the evaluation of formulas in FDE is defined recursively as follows:

Either 1 ∈ σ(p) or 1 /∈ σ(p), and either 0 ∈ σ(p) or 0 /∈ σ(p)
1 ∈ σ(∼A) iff 0 ∈ σ(A)
0 ∈ σ(∼A) iff 1 ∈ σ(A)
1 ∈ σ(A∧B) iff 1 ∈ σ(A) and 1 ∈ σ(B)

0 ∈ σ(A∧B) iff either 0 ∈ σ(A) or 0 ∈ σ(B)
1 ∈ σ(A∨B) iff either 1 ∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A∨B) iff 0 ∈ σ(A) and 0 ∈ σ(B)

1 ∈ σ(A → B) iff 0 ∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A → B) iff 1 ∈ σ(A) and 0 ∈ σ(B)

3The treatment of additional standard connectives, like 0-ary connectives —⊤, ⊥—, modal connectives —at least the alethic

ones, �, ♦— and the usual quantifiers —∀x, ∃x—, is left for a future work.
4For simplicity, these definitions will be adapted for the other logics in this paper, just with the respective changes in

language.
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Although A → B can be defined as ∼A∨B, considering it explicitly right from the start with a separate

sign will greatly simplify the exposition. A biconditional, A ↔ B, can be defined as (A → B)∧ (B → A).

The above model-theoretic semantics for FDE can be represented in a tabular way as follows:

∼A A

{0} {1}
{1,0} {1,0}
{ } { }
{1} {0}

A∧B {1} {1,0} { } {0}

{1} {1} {1,0} { } {0}
{1,0} {1,0} {1,0} {0} {0}
{ } { } {0} { } {0}
{0} {0} {0} {0} {0}

A∨B {1} {1,0} { } {0}

{1} {1} {1} {1} {1}
{1,0} {1} {1,0} {1} {1,0}
{ } {1} {1} { } { }
{0} {1} {1,0} { } {0}

A → B {1} {1,0} { } {0}

{1} {1} {1,0} { } {0}
{1,0} {1} {1,0} {1} {1,0}
{ } {1} {1} { } { }
{0} {1} {1} {1} {1}

Note that {1}, {0}, {1,0} and { } are not truth values, but assignments or evaluations; more precisely,

collections of truth values.5 So, under this presentation, it would be rather wrong to call FDE ‘a four-

valued logic’.

Now it can be seen more clearly how three well-known logics, (strong) Kleene logic, K3, González-

Asenjo/Priest’s LP and classical logic can be obtained as extensions of FDE, as I mentioned in the

Introduction. K3 is obtained by ignoring the evaluation {1,0}; LP is obtained by ignoring the evaluation

{ }; by ignoring those two evaluations at once, one obtains classical logic. Let us move now to the less

familiar cases.

3 Dunn semantics for contra-classical logics

The evaluation conditions for the binary connectives above have the following general shape

1 ∈ σ(A©B) iff 1 ∈ σ(A) copyright 1 ∈ σ(B)

0 ∈ σ(A©B) iff vi ∈ σ(A) connective 0 ∈ σ(B)

where vi ∈ {1,0}, ‘copyright’ stands for a metalinguistic counterpart of © and ‘connective’ stands for a

metalinguistic counterpart of some other connective, in general distinct from ©.6 Even more generally,

an evaluation condition, regardless of whether it is a truth or falsity condition, has the following general

shape:

vi ∈ σ(A©B) iff v j ∈ σ(A) relation vk ∈ σ(B)

i.e. a value —truth or falsity– is assigned to a formula iff there is a certain relation between the assign-

ments of the components.

With this in mind, the changes in an evaluation condition might be of one among the following kinds

(the list is not meant to be exhaustive):

5One might say that they are generalized truth values. (See for example [27].) Let that be. It is still the case that they are

not truth values like 1 and 0.
6Note that I assume classical reasoning at the meta-theoretical level —not because I think it is unavoidable but to make

things simpler— and take “A is false or B is true” as equivalent to “If A is true then B is true”. Thus, the truth condition for

A → B also fits the general shape of truth conditions.
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• C1. The value assigned to at least one of the components is changed —ex. gr. from 1 ∈ σ(A) to

0 ∈ σ(A)—;

• C2. At least one kind of assignment is changed —ex. gr. from 1 ∈ σ(A) to 1 /∈ σ(A)—;

• C3. The relation between the assignments is changed —ex. gr. from “1 ∈ σ(A) and 0 ∈ σ(B)” to

“if 1 ∈ σ(A) then 0 ∈ σ(B)”—;

• C4. Extra conditions are added —ex. gr. from “1 /∈ σ(A) or 0 ∈ σ(B)” to “1 /∈ σ(A) or 0 ∈ σ(B),
and 0 /∈ σ(B) or 0 ∈ σ(A)”—;

• C5. A mixture of the above —ex. gr. from “1 ∈ σ(A) and 0 ∈ σ(B)” to “1 /∈ σ(A) or 0 ∈ σ(B)”—.

There are special cases of C5, namely mixing C1 and C2, that will be called ‘tweakings’, as they

are not so radical changes. All the other changes will be called ‘modifications’.7 A Dunn atom is an

expression of the form vi ∈ σ(A) or v j /∈ σ(A), with vi,v j ∈ {1,0}. Let vi ∈ σ(A) (resp. v j /∈ σ(A)) be

a Dunn atom. I will say that v j /∈ σ(A) (resp. vi ∈ σ(A)), with vi,v j ∈ {1,0} and vi 6= v j, is its Boolean

counterpart. (And I will assume that the relation of being a Boolean counterpart is symmetric.) For

instance, the following cases —horizontal-wise— are Boolean counterparts of each other:

1 ∈ σ(∼ A) 0 /∈ σ(∼ A)

0 ∈ σ(A∧B) 1 /∈ σ(A∧B)

0 /∈ σ(A∨B) 1 ∈ σ(A∨B)

A tweaking is, then, a modification in the evaluation conditions of a connective by changing at least

one of its Dunn atoms by their Boolean counterparts in the right-hand side of the ‘iff’. As an illustration

of tweakings, consider negation as evaluated in FDE in the upper left corner and three connectives

obtained by changing at least part of its evaluation conditions:

1 ∈ σ(∼A) iff 0 ∈ σ(A)
0 ∈ σ(∼A) iff 1 ∈ σ(A)

1 ∈ σ(∼1 A) iff 0 ∈ σ(A)
0 ∈ σ(∼1 A) iff 0 /∈ σ(A)

1 ∈ σ(∼2 A) iff 1 /∈ σ(A)
0 ∈ σ(∼2 A) iff 1 ∈ σ(A)

1 ∈ σ(∼3 A) iff 1 /∈ σ(A)
0 ∈ σ(∼3 A) iff 0 /∈ σ(A)

In fact, ∼3 is an old acquaintance: it is Boolean negation. Having it available will make presentation

easier, and hence I will use a special sign for it: ¬A. Another connective that can be added to the language

to make presentations easier is the material conditional, A ⊃ B, evaluated as follows:

1 ∈ σ(A ⊃ B) iff 1 /∈ σ(A) or 1 ∈ σ(B)

0 ∈ σ(A ⊃ B) iff 1 ∈ σ(A) and 0 ∈ σ(B)

Note that the material conditional can be regarded in its turn as a tweaking on the evaluation conditions

for FDE’s conditional.

The truth tables for both Boolean negation and material conditional are as follows:

7This might go against some uses in the literature, as ‘tweaking’ is used for any kind of change. I try to put some order in

the terminology associated to the changes made to the evaluation conditions.
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¬A A

{0} {1}
{ } {1,0}

{1,0} { }
{1} {0}

A ⊃ B {1} {1,0} { } {0}

{1} {1} {1,0} { } {0}
{1,0} {1} {1,0} { } {0}
{ } {1} {1} {1} {1}
{0} {1} {1} {1} {1}

A material biconditional, A ≡ B, can be defined as (A ⊃ B)∧ (B ⊃ A).

Let me begin now with the examples of contra-classical logics using the machinery from above.

Examples: Modifying the evaluation conditions for negation. Let all the evaluation conditions fixed,

except the truth condition for negation,

1 ∈ σ(∼A) iff 0 ∈ σ(A)
and replace this condition by the following condition

1 ∈ σ(∼A) iff 0 /∈ σ(A)
which validates A∨ ∼∼A but not A∨ ∼A. Paul Ruet’s [26] introduced this connective with the notation

�, but I will write it ‘∼R’. Its truth table would be as follows:

∼R A A

{1,0} {1}
{0} {1,0}
{1} { }
{ } {0}

Note that the negation so modified is a demi-negation in the sense of Humberstone [9], since σ(∼R∼R A)
= σ(¬A), for all σ , as it can be easily verified.

Now, let all the evaluation conditions fixed, except the falsity condition for negation,

0 ∈ σ(∼A) iff 1 ∈ σ(A)
and replace this condition by the following condition

0 ∈ σ(∼A) iff 1 /∈ σ(A)
then one obtains Kamide’s [10] demi-negation of his logic CP, extensively studied in [18], and that I will

write as ‘∼K’. Its truth table would be as follows:

∼K A A

{ } {1}
{1} {1,0}
{0} { }
{1,0} {0}

As it is highlighted in [18], CP validates both ∼K (A∧∼K∼K A) and ∼K∼K (A∧∼K∼K A) —which makes

it negation-inconsistent—. Note that ∼K is a demi-negation too, since σ(∼K∼K A) = σ(¬A), for all σ ,

yet in general σ(∼R A) 6= σ(∼K A).

Examples: Modifying the evaluation conditions for conjunction. Let all the evaluation conditions

fixed, except the truth condition for conjunction,

1 ∈ σ(A∧B) iff 1 ∈ σ(A) and 1 ∈ σ(B)
and replace this condition by the following condition

1 ∈ σ(A∧B) iff 1 ∈ σ(A) or 1 ∈ σ(B)
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This is a version of tonk: it has the truth condition of disjunction and the falsity condition of conjunction.

Defined like that, tonk turned out to be inexpressible in classical logic, but it is in an FDE-like setting.

This is its truth table:

A∧t B {1} {1,0} { } {0}

{1} {1} {1,0} {1} {1,0}
{1,0} {1,0} {1,0} {1,0} {1,0}
{ } {1} {1,0} { } {0}
{0} {1,0} {1,0} {0} {0}

The resulting logic would be contra-classical, since ∼(A∧t ∼A)≡ (A∧t ∼A).8

Now let all the evaluation conditions fixed, except the falsity condition for conjunction,

0 ∈ σ(A∧B) iff 0 ∈ σ(A) or 0 ∈ σ(B)
and replace this condition by the following condition

0 ∈ σ(A∧B) iff 0 ∈ σ(A) and 0 ∈ σ(B)
Then one obtains Arieli and Avron’s [2] informational meet, ⊗, of their logic BL⊃. Following our

previous convention, I will write ‘∧AA’ instead of ‘⊗’. Its truth table is as follows:

A∧AA B {1} {1,0} { } {0}

{1} {1} {1} { } { }
{1,0} {1} {1,0} { } {0}
{ } { } { } { } { }
{0} { } {0} { } {0}

BL⊃ is a contra-classical logic because ∼(A∧AA B)≡ (∼A∧AA ∼B) holds in it.

Examples: Modifying the evaluation conditions for disjunction. Let all the evaluation conditions

fixed, except the truth condition for disjunction,

1 ∈ σ(A∨B) iff 1 ∈ σ(A) or 1 ∈ σ(B)
and replace this condition by the following condition

1 ∈ σ(A∨B) iff 1 ∈ σ(A) and 1 ∈ σ(B)
This is dual to the tonk presented above; its truth table is as follows:

A∨t B {1} {1,0} { } {0}

{1} {1} {1} { } { }
{1,0} {1} {1,0} { } {0}
{ } { } { } { } { }
{0} { } {0} { } {0}

It is the only modified connective for which I have not found a previous appearance in the logic literature,

so I will not say anything else about it. And maybe this is so with good reason, as the table is the same

as that for informational meet.9

Now let all the evaluation conditions fixed, except the falsity condition for disjunction,

0 ∈ σ(A∨B) iff 0 ∈ σ(A) and 0 ∈ σ(B)

8This also shows that certain classically equivalent definitions of connectives are not so in non-classical contexts. For

example, the tonk ∧t cannot be defined as a connective satisfying both the introduction rules for disjunction and the elimination

rules for conjunction, since A∧t B 6|= B when σ(A) = {1} and σ(B) = { }.
9The reader might wonder about other modifications in the truth condition, not exactly the one given above. If they have a

suggestion already studied in the literature, I would greatly appreciate it.



L. Estrada-González 305

and replace this condition by the following condition

0 ∈ σ(A∨B) iff 0 ∈ σ(A) or 0 ∈ σ(B)

Then one obtains Arieli and Avron’s [2] informational join, ⊕, of their logic BL⊃. Again, following our

previous convention, I will write ‘∨AA’ instead of ‘⊕’. The table is as follows:

A∨AA B {1} {1,0} { } {0}

{1} {1} {1,0} {1} {1,0}
{1,0} {1,0} {1,0} {1,0} {1,0}
{ } {1} {1,0} { } {0}
{0} {1,0} {1,0} {0} {0}

Contra-classicality enters BL⊃ not only through ∧AA, but also with this connective since ∼ (A∨AA B)≡
(∼A∨AA ∼B) holds in it. With this one can also show that BL⊃ is negation-inconsistent, since it validates

both ((A ⊃ A)∨AA ∼(A ⊃ A)) and ∼((A ⊃ A)∨AA ∼(A ⊃ A)).

Examples: Modifying the evaluation conditions for the conditional. Let all the evaluation condi-

tions fixed, except the truth condition for the conditional,

1 ∈ σ(A → B) iff if 0 ∈ σ(A) or 1 ∈ σ(B)

and replace it by the following condition

1 ∈ σ(A → B) iff 1 ∈ σ(A) and 1 ∈ σ(B)

then one obtains a logic with the four valued generalization of a connective that has been studied several

times in the recent history of logic although in Kleene-like three valued logics: it is Reichenbach’s [24]

and [25] quasi-implication, de Finetti’s [7] conditional (or, if not identical, at least very similar to it), and

Blamey’s [3] transplication. This is its truth table:

A →DF B {1} {1,0} { } {0}

{1} {1} {1,0} { } {0}
{1,0} {1} {1,0} { } {0}
{ } { } { } { } { }
{0} { } { } { } { }

It validates, among other things, (A →DF B) |= A.10

Now consider an expansion of FDE with the material conditional and let all the evaluation conditions

fixed, except the falsity condition for the material conditional,

0 ∈ σ(A ⊃ B) iff 1 ∈ σ(A) and 0 ∈ σ(B)

and replace it by the following condition

0 ∈ σ(A ⊃ B) iff 1 /∈ σ(A) or 0 ∈ σ(B)

then one obtains MC, ‘material connexive logic’, introduced in [30]. The truth table for such conditional

is the following one:

A →W B {1} {1,0} { } {0}

{1} {1} {1,0} { } {0}
{1,0} {1} {1,0} { } {0}
{ } {1,0} {1,0} {1,0} {1,0}
{0} {1,0} {1,0} {1,0} {1,0}

10See [4] for a recent comprehensive study of such connective in three-valued settings.
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Connexive logics including such a conditional typically validate both Boethius’ Thesis and its converse,

i.e. Wansing’s Thesis ∼(A →W B)↔W (A →W∼B).11 They are also negation-inconsistent; as witnesses,

take (A∧∼A)→W A and ∼ ((A∧ ∼A)→W A).12

Example: Modifying several evaluation conditions at the same time. If one modifies at least two

falsity conditions, for example, that for the conditional as in the connexive logic above, that for disjunc-

tion as in BL⊃, and the falsity condition for conjunction so that one gets

0 ∈ σ(A∧B) iff either 1 ∈ σ(A) and 0 ∈ σ(B), or 0 ∈ σ(A) and 1 ∈ σ(B)

then one obtains Francez’s [8] PCON, which inherits the contra-classical features of the logics on which

it is based.13 (Although, as the peculiar falsity condition for conjunction witnesses, this logic was moti-

vated by considerations independent from of those by Avron and Arieli.)

I have not found in the literature a contra-classical logic that can be described as a variant of FDE

in which the truth conditions for two or more connectives are modified. I would greatly appreciate

suggestions on this regard.

4 The source of contra-classicality

At this point, at least two questions can be asked:

(Q1) What is the connection between contra-classicality and the evaluation conditions such that certain

modifications in the latter produce the former?

(Q2) Are the modified connectives still the intended connectives?

Perhaps the second is the more pressing one. It is far from clear that, say, Kamide’s demi-negation is still

a negation, or whether the de Finetti connective is still a conditional, to mention just two examples of the

difficulty. Nonetheless, I will leave it for another occasion. Tackling at least the first one is already an

important contribution.14

As we have seen above, contra-classicality is not restricted to modifying just one of the evaluation

conditions, either the truth or the falsity condition; contra-classical logics can be obtained by modifying

either of them. As the history of connexive logic witnesses, most contra-classical logics have been

obtained by modifying the truth conditions alone. In the case of connexive logics, it has been the truth

condition for the conditional (combined with Boolean negation rather than de Morgan negation); see

for example the connexive logics so obtained in [1], [12], [20], [21] and [22]. And a recent wave of

connexive logics, after [29] —such as [16] and [31]— modify the falsity condition (using the de Morgan

negation).15

11Richard Sylvan [28] dubbed ‘hyper-connexivism’ the thesis that, in addition to Aristotle’s and Boethius’ Theses, the con-

verses of the latter also hold.
12A connexive variant of the more general version of Belnap-Dunn logic, including the negation ¬, was studied in [16] under

the name ‘dBD’.
13‘PCON’ stands for ‘poly-connexive logic’. It is multi-contra-classical in the sense that it validates contra-classical theses

for more than two connectives.
14Nonetheless, see again [18] for the question whether Kamide’s connective is a negation, and [4] and [5] for discussion

about the conditionality of the de Finetti conditional.
15In all fairness, connexive logics have been obtained by other means than model-theoretically. See for example [23] or [13],

for proof theoretic-based connexive logics. In fact, as a referee correctly points out, this sort of presentation of logics would

allow for further extensions of the Bochum Plan, in considering systematic and controlled modifications in the proof-theoretic

machinery.
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Moreover, not any change in the evaluation conditions, not even a large number of them, produces

contra-classical logics. For example, if one tweaks the falsity conditions of all of ∼, ∧, ∨ and → as

follows

0 ∈ (∼A) iff 0 /∈ σ(A)

0 ∈ σ(A∧B) iff either 1 /∈ σ(A) or 1 /∈ σ(B)

0 ∈ σ(A∨B) iff 1 /∈ σ(A) and 1 /∈ σ(B)
0 ∈ σ(A → B) iff 0 /∈ σ(A) and 1 /∈ σ(B)

one obtains a four-valued generalization of Sette’s P1, which is not contra-classical.16

What kind of modifications does the job then? Although it remains to be properly proved, the exam-

ples strongly suggest that only those modifications that make one of the evaluation conditions classically

equivalent to the corresponding classical evaluation condition for some other connective deliver contra-

classicality. In the examples on Section 3,

• the modified truth condition for negation is (classically) that of identity;

• the modified falsity condition for negation is (classically) that of identity;

• the modified truth condition for conjunction is (classically) that of disjunction;

• the modified falsity condition for conjunction is (classically) that of disjunction;

• the modified truth condition for disjunction is (classically) that of conjunction;

• the modified falsity condition for disjunction is (classically) that of conjunction;

• the modified truth condition for the conditional is (classically) that of conjunction;

• the modified falsity condition for the conditional is (classically) that of conjunction;

It is in this case of modified evaluation conditions where contra-classicality enters the scene: the

modified evaluation condition endows the connective with properties of some other connective, and

hence validates things that it does not validate in classical logic.

5 Conclusions

In this paper, by using Dunn semantics I gave systematic changes in the evaluation conditions for nega-

tion, conjunction, disjunction and the conditional, and relate most of them with already existing contra-

classical logics. This means that those contra-classical logics can be regarded as variants of FDE, ob-

tained by modifying the evaluations conditions for certain connectives. Then I argued that such sys-

tematization provides a clear understanding of the source of contra-classicality, namely, connectives that

have either the classical truth or the classical falsity condition of another connective.

A pressing question remains open at this point: are the modified connectives still the intended con-

nectives? Why? This is, as I have said, left for future work. But there are at least two more paths to

follow after this investigation. First, other standard connectives, like the 0-ary connectives or constants,

some modal connectives or the usual quantifiers, can be given Dunn semantics. Finding examples of

contra-classical logics involving those other connectives might be instructive as well to test the explana-

tory power that the Dunn semantics seems to possess. Second, the entailment relation was assumed to

be Tarskian. But it has recently been argued —see [4], [5]— that certain connectives, like transplication,

are closer to its intended connective when the entailment relation is not Tarskian, in particular, when it is

16It would be worth comparing this generalization with those studied in [17]. This is left for another work.
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non-transitive. This suggests that the underlying notion of entailment would be allowed to vary as well,

not only the truth and falsity conditions, which would make the space of contra-classical logics even

richer. This idea also deserves a systematic exploration.
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