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1. The Problem of Mathemat ical Objects 

a. Foundational Onto logy 

Twentieth Century (analytic) philosophy of mathematics placed mathematical objects at the 

center of their foundational program. Ever since Frege’s seminal Foundations of Arithmetic 

(1884), the central debate in the field has been between Platonism – the view that mathematical 

objects exist as abstract objects – and different varieties of Anti-Platonism: psychologism, 

nominalism, immanent realism, and Meinongianism (Balaguer 1998). Different 

epistemological, logical and semantical accounts of mathematics have all set themselves forth in 

relation to their ontological consequences (Shapiro 2000). At least since Benacerraf’s deeply 

influential paper “Mathematical Truth” (1973), for example, the central epistemological 

problem for mathematics has been to account for our human capacity – as finite material beings 

– to have reliable knowledge of abstract mathematical entities. A similar semantic problem can 

be raised about our linguistic capacity to reliably refer to them. It is no exaggeration to say that 

the putatively abstract nature of mathematical objects has defined the philosophical agenda in 

the field, and few philosophers have dared to venture far from the central questions about 

mathematical objects: 

• What (and which ones) are they? 

• What kind of properties do they have? 

• How can we know anything about them? 

• What kind of (epistemic) access do we have to them? 

                                                
1. This research was sponsored by ANUIES-ECOS project “El Desarrollo del Análisis, 1736-1905: La 
Reorganización del Análisis Real, la Aparción del Análisis Complejo y el Nacimiento de la Mecánica 
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• How do we develop concepts to think about them? 

• How can we talk about them? What can we say about them? 

 

b. Abstract Objects 

This foundational kind of analytic philosophy of mathematics has taken what I considered a 

misjudged path to develop an appropriate ontology for mathematics. It is based on two 

apparently intuitive theses that create a fundamental tension: that mathematical objects and 

everyday middle-sized physical objects are both somehow similar and deeply different. Both are 

similar, in so far as they are objects in the very same sense, and those that exist, do in the same 

single sense of existence (cf. Azounni 2004, Burgess & Rosen 1997, Panza forthcoming). The 

main difference between them, in contrast, is commonly stated in terms of each kind being 

respectively paradigmatically abstract and paradigmatically concrete. Today, despite the many 

difficulties in drawing a sharp boundary between abstract and concrete objects (Burgess & 

Rosen 1997), “it is universally acknowledged that numbers and the other objects of pure 

mathematics are abstract, whereas rocks and trees and human beings are concrete.” (Rosen 

2001) This means that they possess the paradigmatic properties of this ontological category, i.e. 

they are: 

• Not spatio-temporally located 

• Causally inert (they are neither causes of anything nor caused by anything) 

• Ideal, and 

• Formal 

The goal of this brief paper is to advance a study on how this image of mathematical objects has 

historically emerged. Think of it as a Wittgensteinean exercise on looking for or whether 

‘language went on a pic nic’ while we developed the idea that mathematics deals with a specific 

type of objects2: abstract objects. In particular, I will focus on the development of the idea that 

mathematical objects are formal. I am interested in the sense in which mathematical objects are 

said to be formal. But, ideally, the answer to this question must throw some further light on how 

                                                                                                                                               
Analítica”, and  PAPIIT project IN 401106-3 “¿Qué es el Análisis?”. 
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this peculiar feature of mathematical objects is related to the other aspects of mathematical 

objects’ putative abstract nature. 

 Before even trying to answer a question like ‘do mathematical objects exist?’, it is 

imperative to determine whether such a question makes any sense. This Carnapian strategy has 

been recently pursued by Azzzouni (1994), Burgess and Rosen (1997), among others. However, 

while Azzouni and most other philosophers of mathematics have focused on the notion of 

existence (or being there) involved in the question, I would like to follow Burgess and Rosen 

(1997, 11) in analyzing first and foremost the notion of mathematical object, especially the 

characteristics that such objects, were they to exist, would exhibit. In this article, as I have 

mentioned, I will focus on their formal character. 

 

2 . Descartes & The Bir th of Formal Objects 

It would be an impossible – and rather pointless – task to try to designate a particular date or 

event as the birth of formal objects. It makes little sense to draw a line between a time when 

mathematical objects were worldly, and a later time when they became fully formal. 

Nevertheless, it is still illuminating to single out certain episodes as particularly meaningful 

within this long process. Within this history, Descartes’ analytic method may be correctly 

singled out as bearing birth to modern formal mathematical objects. These new objects lived 

alongside the previous, more traditional objects for a long time during the development of 

modern mathematics. It was not until the XIX and XXth centuries that formal objects overtook 

the whole of mathematics. In this paper, I will not cover this later phenomenon3, but the 

emergence of the first early formal objects. In other words, my aim is not to explain how 

mathematical objects became formal, but how the first formal mathematical objects were born. 

 

a. Descartes’ Ingredients 

The main object of my project is to single out the main ingredients that allowed Descartes to 

develop a new conception of mathematical objects, and explain how they were combined into 

                                                                                                                                               
2. What mathematical true statements are about, what mathematical knowledge is knowledge of. 
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this new conception. These elements were already present, and many of them developed by 

other mathematicians and philosophers besides Descartes. However, their conjunction is 

especially salient in the work of the French mathematician. These are: 

1. Analysis as universal method 

2. The synthesis of regressive, decompositional and transformative modes of analysis in a 

single conception 

3. The algebraic lingüistic turn 

4. The use of abstract variables in terminal terms 

In the following sections, I will develop each element and, finally, in the last section will join 

them together in a simple and straightforward argument that gives us what we want: the birth of 

formal mathematical objects. 

 

b. Ana lysi s as univer sal method 
Omnia apud me mathematica fiunt 

Descartes (Attributed) 

It may seem like a controversial thesis to maintain that Descartes’ analysis purported to be a 

universal method. After all, the opening remarks of his Geometry (1637) explicitly expresses as 

the goal of his analytic language, unlike the previous algebraic language of Vietá,4 to have a 

single intended interpretation in geometrical magnitudes. Nevertheless, there is further evidence 

that, even this remark is better understood in universal terms. In his famous letter to Isaac 

Beeckman from 1619, he is very explicit about his goal of formulating a universal method “by 

which all questions may be resolved as regards any sort of quantity, continuous or discrete.” 

(1965, X, 156-158). This must be understood in the context of what Descartes understands as a 

quantity, which is, in short, everything: 

I openly acknowledge that I can point to no other kind of thing than that which can be 

divided, shaped, and moved in all kinds of way, and that geometers call quantity and 

take as the object of their demonstrations.” (Principles Pt. II §64, 1965, IX-2, 102) 

                                                                                                                                               
3. A path excellently followed by Corry (2003) 
4. Cf. Panza (2006) 
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Descartes’ quest for universality, in method and notation, is very closely linked to its unifying 

impetus.5 Application establishes the crucial link between unification and universality. For a 

method to be universal, it is not enough for it to be topic-neutral (that is, it is not enough for it 

to be non-particular), it must also be universally applicable (it must still be broadly applicable to 

different particular fields and objects, even if it is strictly not about them, that is, even if it says 

nothing particular about them). Thus, there is a negative and a positive dimension to 

universality. On its negative aspect, being universal is the opposite of being particular, i.e. not 

being about anything in particular. From its positive side, universality is the broadest generality. 

Without being about anything, it is still – in a different sense – about everything. It must be 

applicable to everything. 

 The philosophical project of developing a universal method and a universal language 

for mathematics, both at the times of Descartes and today, exploits both dimensions of 

universality. The negative dimension of universality, its topic-neutrality, serves to obtain a 

desired purity of knowledge. Many foundational issues in mathematics have been formulated in 

these terms: mathematics cannot be on firm grounding unless we remove from its method and 

its language any element coming from any particular of its fields. 

 The positive dimension, on the other hand, allows for mathematics to be broadly 

applied. Even before naturalists of the XXth Century started looking at application as a primary 

foundation for mathematics, it was understood that only a universally applicable mathematics – 

that is, a universally applicable mathematical method and notation – could serve as the basic 

foundation for the whole of mathematics – that is, for all particular mathematical fields. The 

positive dimension of mathematical universality gives it its unifying power. 

 The goal of developing a formal foundation for mathematics – including a formal 

regime of representation – therefore, was to keep mathematics pure but undivided. What 

Descartes sought in his method of analysis was a system of universal representation in which 

representatives would stand neither for any particular mathematical sector, nor much the less 

for any non-mathematical element, but for all of them. 

                                                
5. Thanks to Guillermo Zambrana for stressing this point to me. 
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c. Descartes ’ Ana lyt ic Syn thes is 6 

According to Michael Beaney (2002, 2003), throughout western modern philosophy, the notion 

of analysis has manifested itself in three different conceptions or modes: regressive, 

decompositional and transformative. Cartesian analysis, perhaps for the first time synthesizes all 

the aforementioned modes of analysis: regression, decomposition and transformation. 

Descartes inherited the regressive mode of analysis from ancient Greek Geometry 

(particularly, from Pappus’ commentary on Euclides7). In this mode – which more or less 

corresponds to what Hintikka and Remes (1974) call directional analysis –, analyzing a problem 

“involves working back to the principles, premises, causes, etc., by means of which something 

can be derived or explained.” (Beaney 2002, 55) Beaney calls this mode ‘regressive’, because of 

its inverse direction regarding its complementary method of synthesis. However, it is important 

to identify two different senses in which analysis may be characterized by its ‘inverse’ direction. 

On the one sense, analysis goes in the inverse direction with respect to synthesis. Thus, 

synthesis just traces forward the steps analysis laid out for it. On the second sense, analysis 

works backwards regarding the direction of logical consequence. Under the otherwise 

reasonable assumption that what is sought is a deductive proof (such that synthesis ought to 

follow the direction of logical consequence, from axioms, definitions and postulates to 

theorems), both senses become equivalent. However, such assumption stops being reasonable, 

once we leave such cases behind (cases which were not even paradigmatic neither in ancient nor 

in cartesian geometry). First of all, in constructive cases (where what is sought is the construction 

of a figure) it makes little sense to talk about a logical direction among concomitants 

[akóloytha]. Second of all, in theoretical cases (where what is sought is a proof for a theorem), 

regressive analysis is, above all, a deductive hypothetical method, not an abductive one.8 Thus, 

this is the most natural way to read Pappus remark that proof is the reverse of analysis9, and, 

later, Alexander of Aphrodisias claim that analysis is the return from the end to the principles. 

                                                
6. The following section borrows heavily from my Barceló (2004). 
7. The mathematical source of the term ‘analysis’ has been recognized at least, since (Blancanus 1615), 
Waitz’s comments to the translation of Aristotle’s Organon (1844-46, I 366) and (Solmsen 1929). Cf. 
Einarson (1936, 36). 
8. For more on the relation between analysis and abduction see Aliseda (2006) 
9. On Pappus’ Mathematical Collection, composed around 300 AD. 
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(Gilbert 1960, 32 apud. Beaney 2003) The directions of proof and analysis are mutually 

inverse, not because only one of them follows the natural direction of logical consequence, but 

only because the starting point of one is the final point of the other. The conclusion of the 

synthetic proof is the hypothetical premise from which analysis starts. It is only in this sense that 

analysis is said to “work backwards”. 

 Thus, instead of stressing the putative ‘inverse’ direction of analysis, it is better to 

characterize the regressive mode of analysis by its hypothetical and foundational dimension: (i) 

it starts with an assumption of already having what is sought and (ii) arrives to the principles, 

premises, causes, etc., by means of which something can be derived or explained. This is what 

Volker Peckhaus (2002) has called the “foundational” sense of analysis. 

Bealey’s second mode of analysis, the decompositional, has deeper philosophical 

roots,10 since it is a direct descendant of Plato’s mature method of collection and division (as it 

appears in the Phaedrus, Sophist, Politics and Philebus), where concepts are analyzed – 

decomposed, that is – into other more general concepts.11 A similar mode is observed in the 

Aristotelian method of definition through genus and specific difference.12 So, for example, the 

concept of human being is decomposed in the concepts of animal and political. Even though 

the latter are extensionally broader than the original concept, this later concept intensionally 

contains them, in so far as its definition presupposes them. 

However, it is the third mode of analysis that that gives our modern conception its 

idiosyncratic sense. Bealey calls this mode, ‘transformative’ because it involves paraphrasing or 

changing the problem’s representation.13 Even though there is a transformative element easily 

                                                
10 Nevertheless, it is reasonable to assume that ancient Greek geometry had a strong influence on both 
Plato and Aristotle. Cf. Beaney (2003) Therefore, all three modes of analysis have strong mathematical 
roots. Cf. Benedict (1936, 36-39). 
11. Furthermore, Beaney (2003) finds in the decomposotional mode another bridge between the formal 
and the analytical. In his interpretation, Plato’s method of dihairesis lays the basic groundwork not only 
of the decompositional mode of conceptual analysis, but also of its formal dimension. Although Plato 
did not use the term ‘analysis’– his word for ‘division’ was ‘dihairesis’ – its goal was finding of the 
appropriate ‘forms’ and, subsequently, laying down synthetic definitions. 
12 Aristotle follows a decompositional kind of analysis in his analysis of figures. (An. Pr.I32, 42-10) See 
Benedict (1936,39) 
13 It is very important not to confuse the use of the term ‘representation’ in contemporary philosophy of 
science, and in the philosophy of mind and language. In this paper I restrict my use of the term to the 
first sense. 
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identifiable in ancient geometrical analysis,14 it only acquires a special significance in modern 

analysis. It was Rene Descartes who turned analysis into a formal transformational method. 

 Taking classical geometric analysis as paradigm,15 Descartes’ analysis aims to find the 

fundamental principles to build all knowledge –either geometrical or philosophical – upon in a 

synthetic fashion.16 Given that, he could find very little explicit information about this method in 

the available classic texts,17 his reconstruction is, instead, the creation of a new analytic 

method.18 This new method includes as much a change of representation as a method of 

regression19 and decomposition.20 In his Geometry, Descartes creates a new formal framework 

for the representation of geometrical problems. An essential element of this framework is the 

use of an algebraic language. As we will see in further detail, this change of notation is in itself a 

radical revolution in mathematics. Still, Cartesian method also involves an element of 

decomposition. However, such decomposition is completely dependant on the change of 

notation. Thus, Cartesian analysis synthesizes the three modes of analysis in a single method. 

The idea of Cartesian method as a revolutionary change in scientific representation is 

already found in authors as diverse as Martin Heidegger (1977), Ernst Cassirer (1957), Michel 

Foucault (1970) and Jonathan Crary (1990), all of whom place it at the very origin of modern 

thought. Beaney’s study, on the other hand, goes one step further by analyzing this modern 

notion into its decompositional, regressive, and transformative components. In other words, 

while the previous authors succeeded in identifying a transformative element in Cartesian 

analysis, they had not separated it from its regressive and decompositional elements.21 Thus, 

                                                
14 Beaney quotes Hankel 1874, 137-50 and Heath (1921) I, 140-2) It is especially clear in Aristotle, whose 
Analytics show very sophisticated syntactic methods of transforming a syllogism’s structure. 
15 It is important to remember that Descartes’ Geometry was originally published alongside the 
Discourse of Method as a sample application of such method. 
16 Descartes points out the simmilarities between his method and classic geometrical analysis in (1965) 
VII 424, 444-5, (1985, 1984, 1992) I 18-19, II 5, 111. Cf. (Flage 1999, 3) François Viète, the first to 
introduce variables to geometrical analysis, was of the same opinion. 
17 Descartes accuses the classics geometers of hiding their method of analysis in (1965) X 336, (1985, 
1984, 1992) I 19 and (1965) VII 157, (1985, 1984, 1992) II 111. 
18 Even though it maintains a strong continuity with Pappus’ method. Compare Pappus’ definition with 
Descartes’ in his Geometry (1965 VI 372) 
19 In the preface to the French edition of the Principles (1965 IXB 5, 1985, 1984, 1992 I181), Descartes 
describes his method of analysis as the search for ‘first causes’. See (Flage 1999, 1, 14) 
20 See (Flage 1999 32-43) 
21 Another important difference between these authors’ interpretations, and Beaney’s (and mine) is the 
strong emphasis they place on order in Cartesian analysis. True, Descartes stresses the importance of 
order in passages like (1965) X 379, 451, VI 21, VII 155, (1985, 1984, 1992) I 64, 121, II 110. See (Flage 
1999, 38-43). However, a closer reading of these passages shows that order is not important for 
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they had failed to isolate the actual innovation that defined modern analysis. As Beaney 

correctly points out, the distinction is essential to understand the truly innovate aspect of 

modern analysis. Both regression end decomposition had always been essential elements of 

analysis. It was the transformative element that Descartes deeply transformed – no pun 

intended.22 

 The following section dives deeper into those waters. In order to make better sense of 

this revolution, I will differentiate between mere symbolic representation and full-fledged 

formalization, stressing the crucial role that the introduction of abstract variables played in the 

development of formal notation. 

 

d. A lgebraic Nota tion 23 

It is easy to notice that the representational regime that operates in Cartesian analysis is not only 

symbolic but algebraic and abstract. Before Viéta’s introduction of abstract variables, 

mathematical symbolism hardly featured any means of expressing general calculations. 

Generality was expressed mostly through particular cases that worked both as examples and 

paradigms. It was not until the work of Viète and Descartes24 that proper algebraic variables 

appeared in modern mathematics. Their introduction allowed two important advances in 

mathematics: the possibility to express general forms – ‘species’, in Viète’s terminology – and, 

                                                                                                                                               
analysis, but for (mathematical) induction. Descartes himself recognizes this in (1965) X 388-9, (1985, 
1984, 1992) I 25-6. 
22. That is why this paper focuses so much on formal representational. Despite having already identified 
some representational change in formal analysis, Beaney does nothing to characterize it or contrast it 
with similar representational regimes in the history of science. 

In contrast, in (2003), Beaney attributes the origin of the hegemony of the decompositional 
mode in modern philosophical thought to Descartes. In particular, he traces it back to rule thirteen of 
the Rules for the Direction of the Mind, which states: “in order to perfectly understand a problem we 
must abstract from every superfluous conceptions, reduce it to its simplest terms and, by means of 
enumeration, divide it up into the smallest possible parts” (I, 51), and, later, to the second rule for his 
philosophical method presented in the Discourse on Method, where he instructs “to divide each of the 
difficulties I examined into as many parts as possible and as may be required in order to resolve them 
better.” (I, 120) 

Beaney stresses as an interesting fact that Descartes’ Geometry was first published together 
with the Discourse and advertised as an essay in the method laid out in the Discourse, for each part was 
responsible for the rise of a different mode of analysis on separate sides of the 
mathematics/philosophy divide that Descartes was trying to bridge. Thus, in early modern times, the 
decompositional account would become standard among philosophers, while the transformative mode 
revolutionized mathematics. 
23 The following section is an abbreviate version of the history of formal analysis in (Barceló 2004) 
24. With important contributions from Harriot, Girard, Oughtred and Hudde. See Kline (1972) 259-63. 
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even more importantly, the possibility to calculate with them. 25 In this respect, Kline (1972) has 

written: 

Viète was completely aware that when he studied the quadratic general equation ax2 + 

bx + c = 0 (in our notation), he was studying a whole class of expressions. By 

differentiating numerous from specious logistic in his Isagoge, Viète also differentiated 

between algebra and arithmetic. Algebra, the specious logistic, he said, was a method 

of calculation with species or forms. Arithmetic –the numerous– deals with numbers. 

So, in just one step, algebra was turned into a study of general types of forms and 

equations, given that what is done for the general case covers an infinite of special 

cases. (1972, 261-2)26 

 Thus, the central difference between modern and ancient algebra was that, through the 

use of variables, the former could abstract the common form of particular calculations and 

express it in a general formula. This new symbolic language allowed mathematicians to 

manipulate general forms in ways that were nearly impossible until then.  

 

3 . An Early  Geometr ica l Example of Formal Ana lys is 

Unlike philosophers, most mathematicians soon recognized the value of Descartes’ new 

method. His famous solution to the ‘three or four lines problem’27 demonstrated its 

effectiveness in the mind of many modern mathematicians. It would be good, then, to take a 

closer look at this solution to illustrate the very important role the transformative way of analysis 

plays in this kind of analysis, so to understand the radical change that formalization represented 

in the development of mathematical analysis. 

 The problem is posed the following way.28 Being AB, AD, EF and GH straight lines 

given as in the following figure: 

                                                
25 In modern mathematics, talk of ‘generality’ must not be understood in the same inductive sense it has 
outside of mathematics. Instead, every formal statement is mathematically ‘general’, in so far as it is a 
general schema for expressions or calculations of the same form. Thus, it would be justified to say that, 
in mathematics, one does not generalize, but formalizes. 
26. For Kline, Viète’s introduction of variables was “the most significant change in the character of 
algebra” during the XVI and XVII centuries (Kline 1972, 261) 
27 According to Pappus, this problem had been discussed, but not solved, by Euclides and Apolonius. 
28 I take the reconstruction of the problem from (van der Waerden 1985, 74-5). 
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Search all points C such that line segments CB, CD, CF and CH, drawn from C to the given 

four lines, satisfy the following condition: that the product of CB times CD is in a given 

proportion to the product of CF times CH. It is also asked whether such points are located 

inside a conic section – a circle, parabola, hyperbola, ellipse or similar –, or not. 

 In his analysis of the problem above, Descartes starts by assuming that the condition is 

satisfied, that is, that such a C point exists. Up until here, the method follows closely Pappus 

definition of regressive analysis, according to which the first step is to assume that which is 

sought. However, the way Descartes represents this supposition is what differentiates his 

method from classical analysis. While, in classic analysis, point C is represent by a point in a 

geometric figure (similar to the one with which I have illustrated this problem), Descartes 

represents C by a pair of algebraic coordinates. Given that C is determined by the length of 

segments AB and BC, given angle ABC, it can be modeled by an ordered pair (x,y), where x 

and y correspond to the aforementioned lengths. 

 Let me stress again the revolutionary change of representation that Descartes performs 

here. To represent geometric hypotheses, classical figurative analysis could work with, at most, 

particular instances what was sought to be constructed or demonstrated in a general way (just 

like pre-formal algebra). This risked founding some posterior inference in the particularities of 

such instance, instead of the general specifications of the problem. The introduction of 

algebraic variables solved such problem. The use of variables allowed Descartes to represent his 
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hypothesis in a formal, algebraic and universal way. In strict sense, the pair of Cartesian 

coordinates does not represent any particular point, but the general form of a point. In the 

current example, the introduction of algebraic variables allowed Descartes to represent, in a 

single view, all C points that constituted the general solution to the problem. This way, his 

analysis acquired the necessary formal and general character.  

 The next step is to show that all segments CB, CD, CF and CH are lineal functions of 

x and y.29 If so, the original condition of proportionality between CB·CD and CF·CH can be 

expressed by a quadratic expression with two variables. Each pair of coordinates (x,y) satisfying 

the equation would represent each of the C points that are sought. 

 By representing the set of C points in a quadratic equation, one does not only 

algebraically represent the original geometric concept, but also formalizes it. That way, it 

becomes possible to know the kind of conic section that such points stand on, attending merely 

to the equation’s syntactic form. In the words of W. Rouse Ball (1908), Descartes discovered 

that 

It was at once seen that in order to investigate the properties of a curve it was sufficient 

to select, as a definition, any characteristic geometrical property, and to express it by 

means of an equation between the (current) co-ordinates of any point on the curve, 

that is, to translate the definition into the language of analytical geometry. 

Notice, therefore, that the quadratic equation does not represent any particular geometrical 

curve, but a general form of solution to a general problem, and furthermore, that its syntactic 

features – qua features of an equation, not of a curve as previously understood – become 

geometrical, that is, mathematical properties. The equation, therefore, becomes a new formal 

kind of mathematical object, radically different from the previously recognized geometrical 

objects, like curves, points or lines. 

 

                                                
29 Descartes achieves this through the algebraic calculation of the arithmetic relations between AB, BC 
and the aforementioned lines. Notice that, since the segments are represented in function of 
coordinates x and y, these calculations are neither geometrical, nor arithmetical, but algebraic. 
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4. The Representa tional Problem of Ana lysis 

Generalizing from the above example, we can characterize Cartesian analysis as mainly a 

representational problem. It is my contention that, for Descartes, and for many subsequent 

mathematicians and philosophers,30 analysis sought to represent something not given, and 

to include in such representation whatever available information about the non-given object or 

property may be relevant for the solution of the problem under analysis, in such a way that the 

problem may be resolved by mere inspection, transformation and decomposition of such 

representation. It was thus Descartes’ insight that the proper ‘analytic’ representation of a 

problem must be one such that its fundamental elements are represented as parts, structured in 

such a way that the solution becomes evident from mere inspection and transformations on 

such representation. 

 The development of algebraic tools for the resolution of mathematical (i.e. geometrical 

and arithmetical) problems led to a new representational regime in mathematics, that may for 

the first time be properly called formal. Thus, formal mathematics may be best characterized as 

the solution of mathematical problems and the determination of properties of mathematical 

objects through the analysis of their representations. This sort of linguistic turn in mathematics 

is what allowed for a new conception of mathematical objects, where representation led to 

ontology. However, in order to fully characterize this link between ontology and representation 

in formal mathematics, there is still one further element to consider: the distinction between 

terminal and problematic terms. 

 

a. Terminal and Problematic Terms 

Even though there is no explicit formulation of the distinction between terminal and 

problematic terms in the current philosophical or historical literature, different version of this 

distinction can be found in the work of Ludwig Wittgenstein (1974), Saul Kripke (unpublished), 

and Marco Panza (forthcoming). The basic idea is that every mathematical calculus contains a 

basic (conventional) distinction between the way problems are represented and the way 

                                                
30. Clearly in the case of early analytic philosophy (Barceló 2004) 
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solutions are represented. This yields a parallel distinction between terminal and problematic 

representations. At the beginning of a problem or calculation, the object or property to be 

found or constructed must be somehow characterized, that is, represented in a way that is both 

explicit – it must contain every feature that may be relevant to the problem at hand – and, yet, 

somehow still problematic. Not any way of representing mathematical objects may fulfill this 

role. We will call the kind of representations that do “problematic”. Similarly, in the solution, 

the object or property sought or constructed must again be fully represented in a way that is still 

explicit but no longer problematic. This again restricts the way such objects or properties may 

be represented. Representations of this kind we will call “terminal”. 

In elementary school arithmetic, for example, decimal notation is usually used for the 

canonical representation of numbers. This means that for these arithmetical problems or 

calculations, the final result must be expressed in its proper canonical notation. Numerals in 

decimal notation, therefore, play the role of terminal terms in the calculus. Algebraic 

expressions or other numerical expressions, for example, are not acceptable as solutions to 

elementary arithmetical problems, even if, in strict sense, they may represent the same correct 

numbers. If a child is asked to supply the addition of thirty five plus five, for example, she 

would be wrong in giving “35+5” or “30+10” as answers, even if these later expressions do refer 

to the same correct number, to know, forty. The child must give the answer in the stipulated 

canonical way, that is, “40”. “35+10”, “30+10”, etc. may be acceptable middle terms in the 

calculation, but they cannot be offered as final representations of the solution. Instead, they are 

commonly interpreted as leaving some work or calculation to be done. That is why they are still 

problematic, not terminal. “35+5” and “5” may refer to the same number, but they do not play 

the same role in the calculus. Expressions like the first may be used to present an arithmetical 

problem – for they represent the sought mathematical object in an explicit and determinate way, 

supplying enough information to identify it –, while expressions of the second sort are 

acceptable as final representations of the same sought object. In other, plain words, it is only 

when the object is represented in a canonical or terminal way that one may say that the object 

has actually been found. 
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To different calculus correspond different terminal and problematic representations. 

The goal of calculation – the general form of a mathematical problem – is the transformation of 

problematic representations into canonical ones, according to the rules of the calculus. The goal 

of a mathematical calculus, accordingly, is to develop a system of representations where this is 

possible, i.e. where problems are ‘easily’ represented by problematic expressions, problematic 

representations are ‘easily’ transformed into terminal ones, by the application of the rules of the 

calculus, so that suitable solutions are given in terminal terms. 

 

b. Reference and Onto logy 

Marco Panza (forthcoming) has advanced the thesis that a semantic difference rides on top of 

the distinction between terminal and problematic terms. According to him, mathematical 

objects are referred to de re by terminal terms and de dicto by problematic ones. The intuition 

behind Panza’s conjecture is that canonical mathematical terms play the role of proper names 

relative to a calculus, so that problematic terms are better understood as definite descriptions, in 

such a way that the ontological commitments associated to each sort are different. A calculus is 

ontologically committed to the existence of the reference of its canonical terms. Therefore, the 

choice of canonical representations plays a central role in determining a calculus’ ontology. 

 From Panza’s thesis, there is but one simple step to realize that representational 

changes in mathematics result in ontological changes (a claim also made recently by Madeline 

Muntelsbjorn). In other words, changes in the ways in which mathematical objects are 

represented result in changes in what mathematical objects may be. It is my contention that the 

introduction of formal mathematical representation – through the use of abstract algebraic 

variables – resulted in the birth of formal mathematical objects. 

 

 c . Abstract Canonica l Representat ions 

Summarizing our previous account of abstract variables, we have highlighted that they allow for 

a new kind of mathematical expressions which do not refer to particular quantities, magnitudes 

or their properties, but allow for (i) the representation of generality through formulae, i.e. 
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general forms of mathematical expressions, and (ii) the manipulation of such general 

representations (to calculate with forms). Given the universality of analysis sought by Descartes, 

we may add that the introduction of such abstract variables permitted the development of a 

universal analytic language, i.e. a language not tied to any particular interpretation, and available 

for any sort of mathematical analysis. 

Once all the ingredients are in place, it is not difficult to trace the emergence of proper 

formal objects. First of all, if formal expressions are allowed as terminal terms, that is, if abstract 

variables are allowed to occur in the terminal expressions of a calculus or theory – as Descartes 

allowed himself to do in the aforementioned geometrical problem –, then such formulae must 

refer de re to the proper objects of such mathematical theory or calculus. Since the occurrence 

of abstract variables in a terminal term cannot be accounted for by appeal to particular 

quantities or magnitudes, the required objects must, therefore, be of a different formal nature 

than quantities or magnitudes. Thus abstract formal objects are born! 
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