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Abstract. The main goal of this paper is to present a novel formal approach to the
verification of cognitive task analysis (CTA), an analytic tool that has been success-
fully used in the design of reactive behaviours, on multi-agent architectures. To
achieve this, a formal logical system is developed, whose purpose is to formally
check the possible success or failure of the resulting implementation. This logic’s
focus is on modelling an agent’s behaviour based on her goals, perceptions and
actions. The article starts by giving a brief introduction to current research in reac-
tive systems and cognitive task analysis. Simple definitions are offered of the basic
concepts in these fields: agent, object, reactive behaviour, control, etc. As illustra-
tion, the paper offers the results of applying CTA to a simple model of postal
delivery. Then, the syntax and semantics of the proposed logic are defined.
Finally, the logic is applied to the verification of some of the behaviours resulting
of the previous CTA analysis.
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1. Introduction: agent based systems

These kinds of systems represent a new approach to distributed artificial intelligence
that deals with problems of human behaviour simulation. This new way of behaviour
modelling originated through 1980s research on mobile robots. As a result, its use
has become widespread and it has been extended to solve different problems in the
artificial intelligence area, such as intelligent teaching systems, expert systems,
interface design, simulation and ecosystems. Hence, a good deal of theoretical
research is being performed to model, design and implement agent based systems,
also known as multi-agent (MA) systems.
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This paper deals with the analysis and design stages of MA systems. This is
achieved using a formal language, showing that cognitive task analysis is an excellent
tool for designing such systems. This paper assumes that the reader is familiar with
agent based systems and basic knowledge of the subject can be found in Brooks
(1991a), Maes (1993), Nwana (1996), Jennings (2000) and Laureano (1998, 2000).
Nevertheless, a basic conceptual framework will be discussed, which will provide
understanding of the methodology suggested in this work.

The crux of this analysis is to solve complex problems of the real world, leading to
the development of robust and escalated software systems that require autonomous
agents, which in turn are able to achieve their goals when they are situated in a
dynamic uncertain environment.

1.1. Differences and definitions between objects and agents
It must be emphasized that a unique and pure definition of the ‘agent’ concept is not
possible due to the very different braches of computer science (cognitive psychology,
artificial intelligence and software engineering) that use it. Nevertheless, the general
idea of the concept remains the same for all areas. The definition of the agent
concept given by Jennings (2000) is as follows: ‘An agent is an encapsulated
computing system that is situated in an environment, which is able to show flexibility
in the execution of autonomous actions that allows achievement of its goals’.

Besides, an agent must: (1) have the problem to solve perfectly defined, with its
limits and interfaces well established (Laureano and de Arriga 1998, 2000); (2) be
reactive and situated in a specific environment, having a good definition of the
environment stimuli that will produce a reaction (Brooks 1991b, Laureano and de
Arriaga 1999): (3) have specific goals that allow the system’s global goal to be
achieved (Nwana 1996); and (4) be autonomous, meaning that it is able to control its
internal state and behaviour. Thus, agents have a flexible behaviour when solving
problems in a dynamic environment.

The main characteristic of an agent is its autonomy, which provides the capacity
of action within the environment in order to achieve its goals. In addition, this
characteristic distinguishes them from objects. In other words, objects are able to
encapsulate behaviour states, lacking the capacity to activate such behaviour.
Accordingly, any object can call for the methods of other objects and, as a result,
they are executed. In this sense, objects may be considered as software servers. Thus,
they have no autonomy over their action capacity. On the other hand, agents know
when they have to act or update their state.

Another characteristic of agents is that they can be seen as behaviour generators.
For instance, a walking agent represents the walking behaviour. Similarly, the
optimization agent is the one that optimizes a path. More example can be found in
Brooks (1991a), Maes (1993), Laureano and de Arriaga (2000) and Laureano et al.
(2001). Actually, the agent and object concepts are not new, since the theory
emerged at the end of the 1970s. What is new is the proposal of analysis and
design methodologies (Beer 1990, Atkinson-Abutridy and Carrasco 1999, d’Inver-
no and Luck 2000, Laureano et al. 2001) to deal with the implementation of MA
systems, as far as they can be seen as behaviour generators. Hence, it is possible to
say that agents are specializations of objects (Luck and d’Inverno 1995), where the
object is the class and the specialization is the agent. The specialization consists of
the level of autonomy that allows the agent to act in an environment based on
received stimuli.
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So far, the reaction characteristics of the agent to certain environment stimuli have
been discussed, but it is necessary to clarify the environment concept. An environ-
ment is formed by objects and attributes. This means that an attribute is what an
agent can sense according to its capabilities and situation. Therefore, attributes can
be physical or abstract notions, according to the behaviour design. On the other
hand, actions are developed to achieve agent goals, leading to appropriate
modifications of the environment and therefore to proper alteration of the internal
agent states (Laureano and de Arriaga 1998). In addition, MA systems can be
formed by agents that, at the same time, can be organized into behavioural layers
(Garcı́a-Alegre et al. 1995).

MA systems’ main features are: (1) the possibility to model complex systems in a
distributed way, using a behaviour generation approach where different control
locations are available; (2) the decentralization that offers less complexity in system’s
control, which in turn leads to a lower coupling between components; and (3) the
control circuits of the action-selection, which are based on local statements of the
problem to solve. Finally, it is necessary to emphasize that different types of agents
can exist (Nwana 1996). However, there is a stronger tendency to avoid agent
specialization and to design hybrid agents with different grades of: reactivity,
cognition, and learning.

Therefore, a new design point of view can be formulated for distributed
systems from what has been discussed so far, that is, the reactive behaviour
design can be performed through the design and analysis of MA systems. A
short definition of reactive behaviours along with their principal characteristics
will be given in the next subsection. For a deeper study the reader is referred to
Brooks (1991a, 1991b), Maes (1993), Laureano and de Arriaga (2000) and Beer
(1990).

1.2. Reactive behaviours
The reactive behaviour trend is strongly influenced by behaviour psychology. Thus,
implemented reactive agents can also be known as: (1) behaviour based agents, (2)
situated agents or, simply, (3) reactive agents. Their behaviour involves decision
making during execution using incomplete information based on simple rules of
situated-action. Brooks is known as one of the main supporters of this trend,
rejecting the necessity of an exhaustive symbolic representation (Brooks 1991b).
Besides, he promotes the use of agent’s reaction based on sensory inputs, which
belong to partial views of the environment. Brooks states that the world is the best
model to reason and this way he builds reactive systems based on perception and
action (intelligence essentials).

Classic artificial intelligence decomposes an intelligent system in a functional way,
that is, in a group of independent processors of information. The trend of reactive
behaviours provides a guided decomposition oriented to behaviour activity. So, a
group of activity processors (behaviours) are now available, which work in parallel
and are connected to the real world through agent perception-action. Behavioural
layers work individually and they can only extract those stimuli of the environment
that are important for their performance. The environment is divided in sub-spaces
or situations.

Behaviours are designed taking into account a sort of behavioural abstraction that
allows sophisticated behaviours to be assembled of simple behaviours (one of the
main ideas proposed by Brooks). The inferior layers are used to assemble basic
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behaviours. For instance, basic robot behaviours can be to avoid hitting things, have
wandering performance, etc. Superior layers are implemented to have abilities
(goals) like delivering correspondence, looking for and gathering things, while
wandering, and turning on lights.

1.3. Control
The control of this kind of system can be of several kinds; here are some
examples:

. That of Brooks is based on two general mechanisms: inhibition and suppres-
sion. A control exists for each layer and superior layers include the control of
the inferior layers when someone takes control. (architecture included). Each
layer is able to substitute (to suppress) the inputs and to remove (to inhibit) the
outputs of inferior layers; for pre-programmed finite intervals of time. The
robot’s ability (multi-agent architecture) of achieving its final goal, while the
attention of the crucial goals continues in the inferior levels (monitoring process
of critical situations), depends on the among-layers control programming, using
the two previously mentioned mechanisms.

. In the architecture proposed by Kaelbling (1987), mediators are used. The
mediators produce the desired combinations of the necessary agents; based
on a certain stimulus.

. In the architecture of Garcı́a-Alegre et al. (1995), the control is guided to tasks
(Cañas and Garcı́a-Alegre 1999). Each behavioural level counts with control
cycles, goals and perceptions. When collisions of behaviours take place, the
agent of the superior level will solve the problem. This control is guided to a
specific task, that is, the agent of the superior level knows the situations that
can be presented ahead of time and it knows who it should give the control
according to its goal.

1.4. Cognitive analysis of reactive behaviours
Atkinson-Abutridy and Carrasco (1999) propose three different ways to design a
reactive system: etiologic guide design, experimental design and situated action
design.

Etiologic design bears in mind the fundamental steps of animal behaviour. The
experimental design is an incremental bottom-up design to be tested and evaluated in
parallel with the introduction of new behaviour patterns. The basic behaviour is the
starting point of more sophisticated behaviours. The situated action design is based
mostly on the agent’s actions and its diverse behaviours according to the different
situations of the environment. Consequently, identifying perceptions and actions is
extremely important for reproducing situated behaviour.

Agent control, independently of the kind of design, will be based on two key
aspects: behaviour representation and codification, and co-ordination among
behaviours and environment. The case that interests us is to apply this method
(CTA) to the design for located activity, of the basic behaviour of a postman.
Laureano et al. (2001) gives a detailed description of its analysis and its resulting
design. Cognitive task analysis was used to achieve this (Reeding 1992, Castañeda
1993, El Alami et al. 1998, Laureano and de Arriaga 1999), taking us to the result
shown in figure 1.
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2. Basic concepts

The following section offers basic definitions of the key concepts involved in CTA
and its proposed formalization.

2.1. Sources of information
Information is related to the perception the agent has of itself and its environment.
Perception is the mechanism through which the agent receives information. Sources
of information form three different kinds:

. Internal source. This kind of information is comparable to humans’ propiocep-
tive perception (pains, sensations). This source of information is in the agent’s
body, which we may also call its immediate environment.

. External source. Reactive agents are located, which implies that external stimuli
are in the environment and, according to the previous definitions, the best
model would be to reason in the same world.

. Internal memory. Besides her body, the agent has privileged access to certain
information stored in her memory.

In the postman’s case, for example, cognitive behaviour development requires
information exchange with sources of all three kinds: (1) from internal sources,
through sensation, the postman system receives information on whether or not it is
in physical condition to carry out the task (2) from external sources, it receives
information regarding: (a) its physical location, (b) if there are any pending letters,
(c) if they are still letters to deliver, (d) addresses for the houses and (e) the post
office, and (f) addresses printed on the letters. All these external sources of
information are resources the agent has in order to perform her task. Finally, (3)
the internal memory serves (a) to know the location of the houses, (b) to elaborate
and to follow a delivery plan; because the agent requires to keep information
accessible in its memory.
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2.2. Universe
The universe is constituted by objects, their attributes and the environment they

are situated in.

(1) Objects: defined as those whose attributes can be affected by some kind of
action. Their attributes are perceptible to other agents. In our example, objects
are the letters and the postman. In the case of the letter, one of its attributes is
the address, being this a source of external information. In the case of the
postman, it is an object with goals, given the previous agent’s
conceptualization.

(2) Environment. Following intuitions from Barwise and Perry (1983), we conceive
the environment as a frame of reference to locate objects in the world. Since
every object is located in it, the environment will be modelled as a series of
relations that assign information of different kinds to different objects. As
example of this kind of information, think of the spatial location of the houses
(which comes from the internal memory) or the fact that the agent or any
other object, is in a certain spatial location (which comes from an external
source of information). So, for example, the fact that the agent is at the post
office will be modelled as establishing a relation between that object and its
spatial location at a certain time. Intuitively, it could be modelled as a binary
relations between two objects: the relation ‘x is in y’.

(3) Attributes. An attribute is a piece of information. Of objects, only their
attributes can be perceived, for example: the spatial location of an object, the
addresses written in the letters and the delivery order inside the plan of the
day, the space location of the post office and so with the rest of the relations
that constitute the situation of an agent in its environment.

(4) World. A world is a complex system constituted by objects, their attributes
and an environment determining their relations.

(5) Facts. Besides the components that constitute the environment, the world
could be described by the facts that take place in it. Agents are constantly
perceiving the environment and each perception models the state of the
environment at a certain time, so constituting the facts. An object having an
attribute constitutes a fact. Examples of facts in the postman’s world can be:
(a) an object being at certain place, (b) that the letter x is directed to the
address y, (c) that the agent postman is at the post office and (d) that the agent
postman feels well. These are all different facts. Notice that the totality of
relations within the environment determines the world, and vice versa.

2.3. Agents
In this section, we will introduce the terms and concepts necessary to explain and
understand agents. Specification through languages as in the case of Z language
(Spivey 1988) can be used to describe states and operations, considering the agent as
an abstract machine that contains logic and an inference set.

Our starting point will be the objects, agents and environment concepts given by
Luck and d’Inverno (1995). They utilize the Z language for grounding basic
knowledge (Spivey 1988). According to Luck and d’Inverno, there is a hierarchy
between object and agent where the agent is a specialization of the object. We will
include a short summary. There is more information in specific references. This
definition form has been used in the development of different multi-agent systems

A. L. Laureano-Cruces and A. A. Barceló-Aspeitia412



(Jung 1998, Laureano and de Arriaga 1998). Next, some necessary basic definitions
are presented for formalization. Thus, we may define an Agent as any object
associated with one or more goals.

Object

Goals: P Goal
Goals 6¼ f g

An object could become an agent in serving the purposes of another agent or its own.
Once its action ends, the agent becomes again an object.

It is necessary to keep in mind that the goal of an agent can exist in an explicit or
implicit way. Hence, an agent’s behaviour can be passive or active.

Passive: their goals are imposed or assigned.
Active: it refers to the case when an agent is able to change the state of the
environment; developing actions that satisfy her goals, as in the case of a robot, an
expert system or an ITS composed by agents.

2.4. Agents in action
So far, we have defined the main characteristics of an object and an agent. Now
we will define the aspects of an agent in action. An agent’s perception capability
is fundamental because an agent acts upon what it sees and the quality of its
action depending on the quality of perception able to be implemented. For an
objective to be carried out by an agent, we must consider the following: its
capabilities, what it is able to perceive based on these capabilities, and what it
perceives at any given moment. We get the previous specification using three
sub-functions: PerceivingActions, CanPerceive and WillPerceive. Next, we will
define the functions that allow an agent to act. We will begin with the concept
of view.

2.4.1. View. It is the perception that an agent has of the environment.

2.4.2. Agent schema. The results of CTA analysis can be given in what Luck and
d’Inverno (1995) call agent schema. These schema condense the possible
perceptions and actions that define an agent according to such analysis.

Perception OfAnAgent
ActionsthatPerceive: P Action

What an agent can do according to its capabilities.
WhatCanPerceive: Environment ! P Action 7! Environment

These are the attributes that are potentially available
according to the perceptual capabilities.

WhatWillPerceive: P Goal ! Environment ! View
It represents the perceived attributes in a specific Moment,
according to its goals.

Additionally, we have the actions produced by the agent; these being the intentions
of the agent that are represented by the actions that will be executed by a selection-
action function depending on the goals, the state of the environment, and the
perceptions at a specific moment.
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AnAgent’sAction

AnAgent’sActions: P Goal ! View ! Environment ! P Action
It guarantiees that the selection-action function obtains a set
of actions belonging to the agent competence.

2.4.3. Actions. In our model, an action is a group of changes inside the world. It
is easy to see that because of the established framework, the action of a reactive
agent may involve changes of two kinds:

(1) changes in the attributes of an object; or
(2) the elimination or addition of objects to the agent’s situation.

Examples of (1) are: (a) location change of an object (because it involves the change
of the information assigned by the location attribute to an object), (b) to assign
information to an object (since it associates with the object information that it didn’t
have before). Examples of (2) changes are picking up, dropping objects, or when
objects become active.

Actions that imply changes of both kinds exist. To move in space, for example,
involves a change of kind (1); since it affects the value assigned by the location
relation. The changes of kind (2) are presented when changing location; since the
objects that conform their situations change. In normal situations, the incorporation
of an object to the world must come accompanied by a series of changes of kind (1)
that assign to the new object certain information that makes it excellent to the task in
question. These three elements—sources of information, environment and actions—
are enough to model the development of a cognitive task.

We give to both kinds of changes a homogenous logical treatment based on the
evolution of objects modelled in Bertino et al. (1999) for object databases. This will
be developed in more detail in the semantics of section 4.2.

2.4.4. Behaviour. The use of the term ‘behaviour’ in this article coincides with the
standard use in theoretical artificial intelligence, at least, since Turing started using
this term in 1936. Even though there is no definitive explicit definition of behaviour
in the artificial intelligence literature, there is a recognizable tacit agreement about
what aspects of behaviour are important for successful computer modelling.
Gregory, for example, defines behaviour as any problem that can be solved by
instructions, rules or explicit procedures (1987: 784), while Churchland and
Churchland (1990: 26) define it as any systematic pattern of reaction to the
environment in terms of a rule-governed input-output function. In both cases,
behaviour is defined in terms of rules, procedures or explicit functions.

2.4.5. Interaction. An interaction is a set of actions on a common environment.
The effect of an interaction on the environment is determined as a function of its
initial state and subsequent actions.

EffectOfInteraction: Environment ! P Action 7! Environment
where: ! represents the correspondence of one domain to an-

other.
7! represents the partial correspondence of a domain to
another.
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3. Behaviour agent schemes

The schemes of the agents, which conform the postman behaviour, are now defined
using the information given in previous sections.

Planner agent

Goal: make a delivery path considering input attributes
Class of Goal: active.

Perception
ActionsthatPerceive: follow a path to come back home.
WhatCanPerceive: walking.
WhatWillPerceive: walk back from any point where delivery has been accom-

plished.

Action
AnAgent’sActions: supply to the delivery agent the path that must be followed.

Optimiser agent

Goal: select an optimum path based on the input data given by
the planner agent.

ClassOfGoal: passive (imposed by planner).

Perception
ActionsthatPerceive: make an optimum delivery way based on: addresses and

priority order.
WhatCanPerceive: offices.
WhatWillPerceive: offices with mail at a given time.

Action
AnAgent’sActions: give to the delivery agent the optimum way to deliver.

Delivery agent

Goal: deliver mail.
ClassOfGoal: Passive (imposed by planner).

Perception
ActionsThatPerceive: deliver it.
WhatCanPerceive: walk and the offices.
WhatWillPerceive: walk and arrive to the points selected by the optimiser

agent.

Action
AnAgent’sActions: walk and deliver mail.

Return agent

Goal: Return to the beginning point.
ClassOfGoal: active (once the delivery ends, the return behaviour is

activated) or passive (if the emergency behaviour is acti-
vated).

Perception
ActionsThatPerceive: follow the optimum path to beginning point.
WhatCanPerceive: walking.
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WhatWillPerceive: walk back from any point where delivery has been accom-

plished.

Action

AnAgent’sActions: walk back to the beginning point.

Emergency agent

Goal: recharge battery and finish delivery.

ClassOfGoal: active (it is activated when the energy of batteries runs out)

Perception

ActionsThatPerceive: (a) go to recharge point, and (b) return and recharge

battery before finishing delivery.

WhatCanPerceive: (a) analyse the energy input data supplied by sensors and

(b) know whether it can continue or it needs a recharge.

WhatWillPerceive: reading of input data supplied by sensors at any given time.

Action

AnAgent’sActions: (a) path generation from the postman position to the point

of recharge, (b) recharge and (c) conclude delivery.

Walk agent

Goal: move from one point to another without accidents (crash,

fall or run out of batteries).

ClassOfGoal: Passive (imposed by delivery agent, return agent or emer-

gency agent).

Perception

ActionsThatPerceive: wandering.

WhatCanPerceive: wander in the environment-universe.

WhatWillPerceive: wander in the next environment (that involves the delivery

path).

Action

AnAgent’sActions: movements according to the goals of the: return agent or

delivery agent or emergency agent.

Battery agent

Goal: knowledge about energy levels.

ClassOfGoal: active (each cycle of time is activated when motion begins).

Perception

ActionsThatPerceive: reading of input data supplied by sensors.

WhatCanPerceive: analysis of vital information.

WhatWillPerceive: reading of input data supplied by sensors at a given time

interval.

Action

AnAgent’sActions: understand a set of input data. If operation trespass

security limits, the emergency agent is informed about this

situation.
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Based on the previous definitions of behaviours for each one of the agents, which
integrate the ability to deliver mail, a formal semantic language will be developed
that will allow to prove that an appropriate correspondence of information exists
among agents; warranting the success of the resulting capacity (postman delivery).

4. Logic

The development of formal logic in the last century has endowed artificial
intelligence with one of its most potent and rigorous tools. Originally developed
for the analysis of mathematical proofs, formal logical systems have become
standard instruments for the analysis of reasoning in general.

Given that one of the central goals of artificial intelligence is the modelling and
mechanization of human reasoning, the importance of the results and tools of formal
logical for our discipline is obvious (Gabbay 1993). Indeed, in the last few decades,
the interaction between logic and artificial intelligence has multiplied as much in its
extension as in its importance. At the moment, logic is used in artificial intelligence as
a tool for, among other things, theoretical foundations (Turing 1947, 1950),
systematic representation of information and knowledge (Newell 1981, Mylopoulos
et al. 1984), and even as imperative programming language. This interaction has
affected not only artificial intelligence, but also logic. New developments in logic, like
situation theory (Barwise and Perry 1983), have arisen with the explicit purpose of
assisting the practice of artificial intelligence. Besides, this application, has given a
new relevance to areas like epistemic logic (Meyer and van der Hoek 1995), modal
logic (Fischer and Ladner 1977, Van Benthem 1989), dynamic logic (Fischer and
Ladner 1979, Parikh 1981) and linear logic (Girard 1987).

Logic is a very valuable tool whose analytic power allows us to deepen in the
results of cognitive task analysis with the maximum rigor and ease. For this purpose,
we have developed a logical and mathematical model of the behaviour of multi-agent
systems, in the tradition of computational semantics.

4.1. Syntax
4.1.1. Vocabulary. Besides the traditional vocabulary of first order modal logic
with identity—(1) the traditional logical constants &, }, 8, 9, :, ^, _, �, =, (,),
(2) object variables of the form xi, (3) predicative constants of the form Pn

i and (4)
a series of constant of the form ci—the vocabulary of our language contains a
series of information variables of the form yi and a couple of new logical constants:
the conditional deontic arrow and the arrow ) of objects-exchange !.

4.1.2. Formulae. In this section, we will define the different expressions that form
an instruction. First, any well formed formula A (open or closed) in the first order
fragment of our language is called a factual formula. These formulae have the
capacity to express facts, as defined in sections 3.3.5 and 6.1. Besides, we include as
formulae of objects-exchange those expressions of the form fti1; ti2; . . . ting !
tiðnþ1Þ; tiðnþ2Þ; ; . . . tiðnþkÞg such that ti1 6¼ ti2; ti2 6¼ ti3; . . . and tiðnþk�1Þ 6¼ tiðnþkÞ. These
formulae receive their name, because the tn terms that occur in them refer to
objects that are exchanged between the agent and its environment as a result of a
particular action. Given a factual formula A and a formula of objects-exchange B,
we call action formulae any expressions of any of the following forms: A, (A;B) or
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B. Whithin a formula of action of the form (A, B), we call A its factual component,
and B its content in terms of object change.

The role of factual formulae in the language is to express the necessary
conditions for an action according to an instruction (see definition of instruction
in 4.1.3) and, in case of being the factual component of an action, the fact that
results from the same action. In the same way, an objects-exchange formula plays
the role of determining which objects of the world come into the agent’s direct
active power and become part of her informational situation as a result of an
action. (In section 4.2.1, we will explain how this set incorporates the basic
intuition behind Situation Theory without requiring a commitment to a full fledged
situation semantics.)

4.1.3. Instruction. Finally we are in position to define what an instruction is.
An instruction is a conditional formula of the form A ) B where A is a factual
formula and B a formula of action. The intuition on which this definition rests
is that every instruction is a conditional imperative. In this sense, an instruction
A ) B tells the agent to carry out action B, if the condition A is satisfied—
given the available information and in accordance to the agent’s cognitive
capacities. Consider the following couple of examples: (a) ‘if there are letters to
be delivered and energy in battery, make a delivery plan’ would be symbolized
as ‘(9x letter(x)^ read(battery sensor)=charged) ) 9y delivery plan(y)’, (b)
‘continue delivery while there is still letters to deliver and energy in battery’ is
symbolized as ‘(9x letter(x)^ read(battery sensor)=charged)) status(delivery)=
active’, etc.

4.1.4. Program for MA systems. Let a MA systems S be a non-empty set of
agents f�1; �2; �3; . . .�ng. Define the program of the system as the structure.
PS ¼ hhP1;P2;P3; . . .Pni;Ai where each Pi is a set of instructions corresponding to
each agent �i of system S, and A is a factual modal formula expressing the
program’s goal. The function of formula A is to describe the state of the universe
expected after the program has successfully finished. Notice that the function of
formula A is not simply to describe the desired state of the world at the end of the
program’s execution. In many cases, it may be necessary to include within the
criteria of a cognitive task’s success, not only the final state of the world, but also
particular actions of the agent or intermediate states of the world. For example, in
the postman’s task that we have been using to illustrate our analysis, the goal is to
deliver the letters. The success at the end of this task is proved by checking two
kinds of conditions. One is to examine the state of the world when the task is
finished in order to check that, for example, every letter has reached its actual
destination. However, there are other conditions where satisfaction cannot be
verified in this simple way. For example, the task may be considered successfully
accomplished even if the mail is only partially delivered; either because the
addresses could not be reached or for some other justified reason. In this case, it is
not enough to examine the state of the world at the end of the program. It is also
necessary to examine the intermediate states through which the system went. In
order to consider conditions of this sort, it is necessary to extend our logic beyond
first order an incorporate a modal element. In this sense, our logic becomes a kind
of temporal logic (Galton 1995, Van Bentham 1983).
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4.2. Semantics
The goal of the following formal semantics is to provide a clear and mathematically
decidable approach to verifying the success or failure of a behavioural cognitive
analysis. The semantic proposal is an algebraic frame of possible worlds. The use of
this kind of semantics for a formal system like ours is suggested by the combination
of modal (for checking the task’s final success), dynamic (in the instructions) and first
order elements (at the moment of expressing action conditions within the instruc-
tions). Possible world semantics has proved to be flexible enough to provide semantic
structures for such heterogeneous logics (Hustadt et al. 2001). This kind of semantics
has been used to model several agent properties (Baader and Ohlbach 1995, Nwana
et al. 1996, Wolter and Zakharyaschev 1998) as well as multi-agent systems (Manna
and Pnueli 1992, Ndumu and Nwana 1999, Alvarado and Sheremetov 2001, Hustadt
et al. 2001). However, there is still a lot to do in this field. Particularly, this kind of
analysis has not yet been extended to the field of cognitive task analysis.

Given that our logic combines elements of dynamic and temporary logic, it is
necessary to take position in the current debate regarding the relation between time
and action. In this sense, we subordinate time to action, in such a way that it is
actions that generate time, instead of taking place in it (Pratt 1976, Harel 1984,
Galton 1987, Van Bentham 1983).

4.2.1. What have we learnt from situation theory? As said before, our logic
incorporates certain intuitions from Situation Theory. However, its semantics is a
possible world semantics. Hence, it is important to clarify its relation to situation
theory.

Perry and Barwise introduced Situation Theory in the early eighties as an
alternative to possible world semantics for natural language (Barwise 1989, Barwise
and Perry 1981, 1983), specially regarding epistemic problems (Barwise 1988). It was
later developed into a full fledged theory of information (Barwise and Seligman
1997). In explaining his original motivation, Barwise complained about the ‘dubious
metaphysical and epistemological assumptions’ (1989: 7) upon which possible world
semantics was built. In particular, Barwise was weary of the problem of ‘omnis-
cience’ and the ontological status of possible worlds.

The basic intuition behind situation theory is that no agent is omniscient. In other
words, no agent is in direct informational relation with the universe as a whole.
Cognitive agents like us not only never know everything there is to know about the
world, but also are in no position to find out anything they want about it.1 In any
given situation, an agent has only certain information at her disposal. The
information accessible to an agent depends on the situation she is in. Thus, what
is relevant for modelling an agent’s informational state is not the actual state of the
whole world, but only of her situation. Thus, situations must be seen as partial
descriptions of the world.

So far, we agree wholeheartedly with Barwise and Perry’s intuition and recognize
its importance. However, we also believe that, when trying to model the behaviour of
reactive agents in a system, this simple intuition can be easily incorporated into the
formal framework of possible world semantics. In no way must this be taken as a
criticism of the sophisticated and subtle theory that Barwise and others have
developed out of this intuition. It has proved to be a very helpful tool in the analysis
of very complex informational phenomena in linguistics and computer science
(Cooper et al. 1990). Furthermore, its philosophical significance for our under-
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standing of knowledge, meaning and information is also beyond doubt. Never-

theless, such complexities are aimed at better explaining information flow involving

representation (Barwise and Seligman 1997). Reactive agents, on the contrary, do

not exchange information through inner representations. This is one of their most

important characteristics. Hence, most of the technical apparatus of situation

semantics is irrelevant to their study.

Thus, the challenge is to incorporate situations into a possible world semantics.

We accomplish this by requiring that the information necessary for the application

of an instruction in an agent’s program must be information accessible to such agent.

In other words, it is not sufficient that such information be true in the world. It must

also be available in the agent’s situation. An instruction that, for example, asks an

agent � to perform certain action a conditional to certain fact f, should not be merely

interpreted as a conditional statement saying that if f is true, � must perform a.

Instead, it says that only if the information required to determine the truth of f is

available to � (in her situation), the aforementioned conditional is the case. This is

the reason why it is so important for Cognitive Task Analysis to determine the

perceptual constrains of an agent.

Thus, we incorporate the intuition behind Barwise’s ‘situations’ into our formal

semantics through agent specific domains. An agent’s domain includes only those

objects of the world that are in the agent’s possession. These objects are the only

ones from which the agent can obtain information. The information available to an

agent is fully determined by the attributes of the objects of her domain (section

2.4.3). It may be argued that our domains are nothing but situations under a

different name, so that by incorporating them in our semantics, we are actually using

a situation semantics. That would be fine for our purposes, because we do want to

incorporate the advantages of situation semantics into our proposal, indeed.

On the other hand, there are also multiple advantages for keeping possible worlds

in our model. For example, since it is vital for our goals to model the effects of every

agent’s behaviour (because it is through them that we judge the successful perform-

ance of the task, and also because reactive agents respond to changes in their

environment created by other agents in the system), it is preferable to be able to keep

full fledged possible worlds in our semantics. Many times, an agent’s action may

affect the world in a way irrelevant to her situation. This is possible if, for example,

the agent’s perceptual constraints do not allow her to perceive the effects of her

actions. In these cases, the world may change, while the agent’s situation remains the

same. If we only modelled changes in an agent’s situation, instead of the whole world

as well, these effects would escape from view. Hence, it is important to keep track of

changes in the world as well.

4.2.2. World. A world W is an algebraic structure W ¼ hO;�Att;Ei such that:

. O is a sets of objects;

. � is an ordered set of sets of objects hD1;D2;D3; . . .Dni (one for each agent in

the system), called domains, such that [Di � O, that is, every domain is a subset

of O;

. Att is a set of attributes; and

. E, the enviroment, is a set of functions f ni : ðOÞn ! Att.
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4.2.3. True fact and information availability. Given an interpretation I of formal
language L on world W, we say that the factual formula A determines a true fact
in W iff the interpretation of A in W is true. For example, the factual formula
Pn
i ðt1; t2; . . . tnÞ ¼ yj is true in W iff IðPn

i ðIðt1Þ; Iðt2Þ . . . IðtnÞÞ ¼ IðyjÞ, where I
assigns objects in the world o 2 O to object terms (constant and variables)
occurring on terms t1; t2 . . . tn, functions in the environment f ni : ðOÞn ! Att to
predictive constants, Pn

i and attributes in Att to informational constants yj (in co-
ordination with the interpretation of Pn

i ). The rest of the first order language is
interpreted in the traditional, compositional Tarskian way. For example, a factual
formula of the A ^ B form determines a true fact in world W if the interpretation
of A and B determine a true fact in W. In the same way, a factual formula in the
A _ B form determines a true fact in world W if the interpretation of A, B or both,
determines a true fact in W, etc. Also, given a factual formula A, we say that
sufficient information for determining the truth of A in a world W is available for
an agent �i, if A is true in W restricted to �i’s domain Di. (As usual, the restriction
is on the interpretation of the terms, including those with free variables).

4.2.4. To follow an instruction. Given an instruction A ¼ B ) C, where B is a
factual formula and C a formula of action, we say that the world W2 is accessible
from W1 in the interpretation I through the instruction A—written ‘W1 !A W2’—
for an agent �j iff B is false in W1 or the following three conditions are satisfied:

. the information necessary to determine the truth of A is avaliable to �j,

. the factual content of C is true in W2, and

. being {ti1, ti2, . . . tin}! {ti(n+1), ti(n+2), . . . ti(n+k)} the object content of C,
{I(ti1), I(ti2), . . . I(tin)} Dj in W2¼ ; and {I(ti(n+1)), I(ti(n+2)), . . . I(ti(n+k))}�
Dj inW2.

In other words, as long as to follow an instruction alters the state of things in the
world, a world is accessible from another through an instruction iff following the
instruction makes it evolve from one state to the other.

4.2.5. To follow an instruction in MA systems. One of the central characteristics of
MA systems is their capacity to simultaneously contain several active agents
following different instructions. However, this useful advantage of MA systems
presents complications when its behaviour is logically modelled. It is not enough to
model the changes in the world resulting from an agent’s action. It is necessary for
the simultaneous actions of different agents to be included in the model. Here is
where the semantics of MA systems differs from traditional dynamic logic.

Given an agent �i whose set of instructions is Pi, we say that the world W2 is
accessible for áI from W1 in the interpretation I—written ‘W1 ! �i W2’—if
I(�I)=inactive is true in M1, that is to say, if the agent is inactive in M1, or
W1 !p W2 for every instruction p in Pi, that is to say, the world W2 is accessible
from W2 according to every instruction in the agent’s program.

Given a program PS ¼ hhP1;P2;P3; . . . ni;Ai, we say that the world W2 is
accessible from W1 for the system S under the program PS in the interpretation
I—written ‘W1 !S W2’—iff W1 ! �i W2 for every agent �i in S. Notice that the
algebraic frame used in our semantics has no correspondence with any of the
traditional systems of modal logic (Chellas 1980, Boolos 1993). This is because each
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program defines an accessibility relation between the possible worlds within the
frame.

4.2.6. To finish a program and model. Given an interpretation I, a program PS

and a collection of worlds M, we say that the program PS finishes in a world
W 2 M iff no other world in M is accessible from W for system S under program
PS. Also, an algebraic structure of worlds hM;!Mi is a model of the system’s
behaviour iff:

(1) accessibility relation !M is defined on M so that !M ¼!S,
(2) there is one and only one original world W0 not accessible from any other

world in M, and
(3) the program finishes in one and only one world in M.

Notice that here we are using the word ‘model’ in its semantic form, that is, as true
interpretation. Given an interpretation I of a program PS, our model includes all the
possible steps that an agent can take when executing the program, from an original
state of the world (represented by W0) until the moment that it stops (represented by
the world in which the program ends). The intuition behind this kind of semantic
modelling is that the accessibility relation !M represents the different courses of
action that the multi-agent system can take (remember that!S is generated from the
combination of the different partial relations of accessibility !�i correspondent to
each one of the agents in the system).

4.2.7. Success. We say that the program PS is successful if its goal is true in every
model of its behaviour, that is, in every true semantic interpretation of its program.
Notice that, given that the goal formula is modal, it should not be evaluated in a
particular world, but in the model as a whole. This is because the goal of a
program may not always be described merely by how things are after successfully
running the program (or at any other particular moment), but rather it may
require evaluating the result of certain actions carried out during the development
of the task.

This success can be absolute, if the program is successful for any collection of
worlds, or relative to a given class of these worlds; commonly those that satisfy
certain restrictions coded in a theory of the environment in which the agent is
deployed. This last restriction accommodates those occasions in which the result of
the analysis is not expected to be applied to any logically imaginable circumstance,
but only to those in which it is reasonable to carry out the task. For example, in the
case of the postman, it would be strange to wonder if the program works when there
are some letters whose addresses do not correspond to any house, or some whose
destination is materially inaccessible. In these cases, it is impossible for the program
to be successful in an absolute sense, since not every letter can be successfully
delivered. However, if it works perfectly in the normal cases, we may not want to say
that the program just does not work. Hence, we say that it works, but constrained to
normal circumstances. It is in these cases that the distinction between the absolute
and the relative success of a program becomes important.

Once established this semantics, we have a clear, formal and computable approach
to the success of cognitive task analysis. Furthermore, this semantics lays very close
to the intuitive understanding of the cognitive work of agents, since it clearly
illustrates the cognitive interaction between agent and world, starting from the
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information obtained from its situation and the attributes of objects in the
environment.

Next, we will illustrate the operation of the language with three behaviours:
battery, delivery and planning, based on the analysis in section 3.

5. Formalization and verification of behaviours: delivery, walk, battery and

emergency
This section illustrates one possible application of the logic developed in the previous
section. It is applied in the verification of some of the results of the CTA analysis to
the post delivery task presented in section 3. This section’s goal is to show, by an
example, how the syntax of our logic (section 4.1) allows for a detailed formalization
of cognitive task analysis’ results, while the semantic framework (section 4.2) allows
us to verify the success of a behaviour, by modelling the universe (section 2.2) in
which such behaviour takes place.

5.1. World
As it was established in sections 2.4.3 and 2.4.4, it is necessary to specify the kind of
worlds where the multi-agent system postman will carry out its task. These worlds
are structures of the form W ¼ hO;�;Att;Ei such that:

. The set of objects O in the world is formed by:
(1) The battery sensor {sensor},
(2) The letters C ¼ fc1; c2; . . . ckg,
(3) The agents S={planner, optimizer, emergency, delivery, return, walk,

battery}.
(4) and the addresses stated by the delivery plan Plan ¼ hd0; d1; d2; . . . dji, where

d0 is the post office.
. The set of domains � contains for each agent �i, a set of objects Di called its

domain
. The set of attributes Att includes:
(1) The agent’s possible locations D. In normal cases, D will include the

destinations stated by the plan as well as the addresses written on the
envelopes of the letters to deliver.

(2) The attributes of being active or inactive, characteristic of the agents.
(3) The possible values of reading of the battery sensor. To simplify the

example we will only consider two of them: charged battery and battery in
need of recharge, although this second is formally dispensable.

. The environment E contains the following functions:
(1) Function address: C ! D that assigns to each letter, its destination’s

address.
(2) Function next address nd: Plan ! Plan that assigns to each destination in

the plan, the following destination.
(3) Function location loc: S ! D that assigns to agents their spatial location. In

this case, we have the special restriction that all the agents that form the
system move together, in such a way that the location of one will be the
same for all.

(4) Function reading read: {sensor}! {charged battery,. battery in in need of
recharge} that assigns to the sensor its possible values, and
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(5) Function activity status: S! {active, inactive} that assigns to each agent its
condition of active or inactive at a given time.

5.2. Syntax
To obviate the formal language, we will use the objects’ names as constants for the
formalization of instructions. For example, since the agent walk is an object of the
world, the symbol ‘walk’ will be used as object constant in the syntax of the language.
This is with the purpose of making more explicit and simple the connection between
syntax and semantics.

5.3. Agent’s programs
To illustrate our method we will only use four agents as examples:

Example 1: delivery. Pdelivery has the following two instructions:

p1 ¼ 9x ðaddressðxÞ ¼ locðdeliveryÞÞ ) ðstatusðwalkÞ ¼ inactive; fxgÞ ! 1Þ

p2 ¼ 8xð:ðaddressðxÞ ¼ locðdeliveryÞÞ ) statusðwalkÞ ¼ active

Let us analyse in detail what each one of these instructions says exactly. We begin
with p1. The factual formula (9x address(x)= loc(delivery)) expresses the fact that
there is a letter x, in the agent’s possession, whose address address is the current
location loc of the agent delivery. As long as this factual formula appears to the left
of the deontical arrow ), the fact there described corresponds to what should
happen for the action in this first instruction to be followed. The action formula
(status(walk)= inactive, fxg ! 1Þ appearing to its right expresses the action
to be carried out if such condition is satisfied. This last one has two sub-formulae:
a factual and an objects-exchange. Its factual component is the formula
status(walk)= inactive. This formula simply says that the agent walk must become
inactive. Its component of changes of objects is the formula fxg ! 1. Remember
that in a formula of objects-exchange, the set to the left contains the objects that will
stop to fall under the agent’s power, while the one to the left represents the new
objects over which the agent will obtain power. In this case, the set to the left only
contains the object x, that is to say, the letter in whose address the agent delivery is at
the moment. The set to the right is empty. This means that the agent drops the letter
x and does not pick up any other object at this time. Notice that this action formula
contains a factual component as well as an exchange of objects one. This means that
the action implied in this instruction involves the change of attributes of an object of
the world (passing the agent walk of active to inactive), as well as leaving or picking
up objects (the letter or letters to be dropped at that location). The first part is
expressed in the factual component, while the second one is expressed in the objects-
exchange component.

Once we have interpreted each component of the instruction it is easy to see what
it means: if a letter x on the agent’s domain—that is, if it is still in her possession—is
addressed address to the place where agent delivery is located loc, it should deactivate
agent walk and drop letter x.

Let us pass now to analyse the second instruction. The factual formula
8x:ðaddressðxÞ ¼ locðdeliveryÞ expresses the fact that some letter x is not
addressed address to the current location loc of the agent delivery, that is to say,
that the system no longer needs to deliver any letter there. If this is so, what the
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agent should do is expressed in the action formula status(walk)=active. This
formula simply says that the agent walk should be activated. In consequence, this
second instruction says that if the system does not need to deliver any letter in the
place where the agent delivery is, it should continue walking. Notice that this
instruction does not say that if there are still letters to deliver, the system should
continue with delivery. For that it would be necessary to add a new condition
9x ð:ðaddressðxÞ ¼ addressðdeliveryÞÞ to this second instruction. However, this is
the work of another agent, return, which is activated, and deactivates the agent
delivery, when delivery is finished.

It is easy to see how this program fits the actions assigned to the agent in its
behaviour scheme, such as this was presented in section 3:

AnAgent’sActions: to walk delivering mail:

The agent delivery achieves the action of walking by activating agent walk. When
walking, the agent walk acts in a passive way regarding the goals imposed by the
agent delivery. On the other hand, the delivery agent performs the action of
delivering directly. To drop a letter is nothing more than to leave it in the place
where the agent is. This kind of action is merely physical. Therefore, its formaliza-
tion requires an instruction whose formula of action includes a change of objects. In
this sense, to drop a letter is not more than to change the ontologic status of an
object: the letter passes of being under the agent’s possession to becoming a mere
part of the environment.

Furthermore, this way of formalizing an agent’s behaviour lets one clearly see
what information is relevant for the task’s performance. Here we have seen that the
only source of information upon which agent delivery decides how to act is the
address of the letters. In general, we can formulate the following formal definition of
the concept of relevant source of information:

Given a multiagent system S, an object o from the worldWS is a source of relevant
information to an agent � in S if o appears as constant of object in the factual
formula antecedent of some instruction p in P�.

Consider now, other, simpler, agents.

Example 2: battery

Pbattery ¼ freadðsensorÞ ¼ battery in in need of rechargeg
) statusðemergencyÞ ¼ activeg

Agent battery’s program is extremely simple, since its only action is activating the
emergency agent when it reads in the sensor that the battery is in in need of recharge.

Example 3: walk

Pwalk ¼ fðlocðdeliveryÞ ¼ locðdeliveryÞÞ ) ðlocðdeliveryÞ ¼ ndðlocðdeliveryÞÞÞ g
The case of agent walk is especially interesting for the apparent simplicity of its
program. From the point of view of the cognitive modelling of the system, what
the agent walk does is very simple, not because the agent’s internal operation is
simple, but because it involves very little exchange of information with its
environment and with the rest of the agents that conform the system. To move
in space can be a very complicated task from the computational point of view,
but cognitively, it is very easy to model: the only thing this agent does is to move
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the system from one destination to another following the plan assigned to it by
agent planner.

Example 4: Emergency

Pemergency contains the following instructions:

p3 ¼ ð:ðlocðdeliveryÞ ¼ d0ÞÞ ) ðstatusðdeliveryÞ ¼ inactiveÞ ^ ðstatusðreturnÞ

¼ activeÞ

p4 ¼ ðlocðdeliveryÞ ¼ d0Þ ) ðreadðsensorÞ ¼ charged batteryÞ ^ ðstatusðdeliveryÞ

¼ activeÞ ^ ðstatusðreturnÞ ¼ inactiveÞ ^ ðstatusðemergencyÞ ¼ inactiveÞÞ

The first instruction says that if the location loc of agent delivery is not the post office
d0, it is necessary to deactivate agent delivery and activate agent return. In other
words, if there is an emergency, it is necessary to suspend the delivery of the mail and
to return to the postal office.

The second instruction says that if agent delivery’s location loc is the post office d0,
it is necessary to do three things: (1) (read(sensor)= charged battery) make charged
battery the reading read of the sensor, (2) (status(delivery)= active) reactivate agent
delivery and (3) (status(return)= inactive) ^ (status(emergency)= inactive)) to de-
activate agents return and emergency. This means that, when arriving at the postal
office, agent emergency should charge the battery, renew delivery of the mail and
cancel the emergency state.

5.4. Verification of behaviour
Once syntax and semantics are in place, the verification of an agent’s behaviour
consists simply in evaluating the program’s success in all intended models. Verifying
the program’s success, in turn, does not require more than evaluating the program’s
goal formula as true in all acceptable models.

5.4.1. Preliminary requirements. To verify the behaviour of a system, it is
necessary to have formalized the instructions of all agents first. However, this
would make this illustrative section of the article too cumbersome. We can easily
do with just the later examples and some intuitions on the operation of the rest of
the agents to give a vision more or less schematic of how to semantically verify the
behaviour of the system.

Before verification properly, it is necessary to do two things:

(1) As we had said in section 5, to evaluate the behaviour of a multi-agent system,
we need to formalize, not only the instructions that conform each agent’s
behaviour, but also how we will evaluate the system’s success. In other words,
it is necessary to have a formula of the formal language that expresses the
system’s goal. In this case, the goal is very simple: to deliver the letters. The
program is successful if, when finishing, the robot returns to the station and
each letter is in the location to which is addressed. These two conditions define
the behaviour’s success.

Formalizing the first condition is very simple, although its modal expression is not
directly obvious:

}& ðlocðdeliveryÞ ¼ d0Þ
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Semantically, this formula tells us that there must be a time in the development of the
program when agent delivery arrives to d0, that is to say, to the postal office; and it
does not go anywhere from there.

The second condition is formulated in a similar way:

8cðð}&locðcÞ ¼ addressðcÞÞÞ

What this formula tells us it is that, for every letter c there must be a time when its
location loc is the same as its address address and, from that moment on, it does not
change location.

The goal formula for the program is, then:

A ¼ }&ðlocðdeliveryÞ ¼ d0Þ ^ 8cð}&ðlocðcÞ ¼ addressðcÞÞÞ

(2) It is clear that the success that interests us is not absolute, but relative, in such
a way that, besides specifying the goal of the behaviour, it is also required to
provide certain limitations on how the world must be for the task to be
performed. These limitations can be expressed in the meta-language as formal
constraints on the logical model.

Before anything else, we need the letters to be addresses to accessible locations. This
condition is formalized the following way:

8c addressðcÞ 2 D

We also need that, once the postman has picked them up at the station, letters do not
move on their own, but only be moved by the delivery agent. This is formalized the
following way:

8c locðcÞ ¼ locðdeliveryÞ

After satisfying these two conditions, we can finally pass to the behaviour’s
verification, properly speaking.

5.4.2. Formal verification. We say that program PS is successful if its goal is true
in every model. In this case, this means that A should be true for every model that
satisfies C1 and C2. From a logical point of view, we could also say that A should
be a logical consequence of C1 and C2 under PS.

The formal test takes the form of a reduction. Suppose that A is false in some
model of PS. Then, at least one of it sub-formulae must be false as well. We begin
considering the first one:

}&ðlocðdeliveryÞ ¼ d0Þ

For this formula to be false, there should be a world W such that, in every world W 0

accessible from W, locðdeliveryÞ 6¼ d0.
It is necessary now to revise the programs defining the system’s accessibility

relation in search of instructions capable of affecting the agent delivery’s location.
Clearly, the only agent with this capacity is walk whose program is:

Pwalk ¼ f ðlocðdeliveryÞ ¼ locðdeliveryÞÞ ) ðlocðdeliveryÞ ¼ ndðlocðdeliveryÞÞÞ g

This is the time to pay closer attention to the activation and deactivation relations
among agents of the system shown in figure 1, and whose semantics is defined by the
direction of the arrows.
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Given that agent walk is passive regarding other agents: planner, delivery and
return, we should find in what situations any of these agents can activate or
deactivate walk. What interests us at this time is when walk finishes, to see if indeed
it finishes at the postal office. Therefore, we need to know if there is a world in which
some agent deactivates walk in such a way that no other agent can reactivate it.

Only agent delivery has the ability to reactivate walk. This power comes into effect
only when there are still letters to deliver, as it is stated in instruction p2:

p2 ¼ ð8xð:ðaddressðxÞ ¼ locðdeliveryÞÞ ) statusðwalkÞ ¼ active

As long as the set of letters is finite, it is clear that a time will arrive when delivery
stops activating walk. The only thing we have to verify is that, in such case, return is
activated.

In spite of the fact that we have not formalized it, it is clear that return should
contain an instruction that not only deactivates walk, but also takes agent delivery
back to the post office, when there are no more letters to deliver:

p5 ¼ 8c:ðaddressðcÞ ¼ addressðcÞÞ ) ðlocðdeliveryÞ ¼ d0Þ ^ statusðwalkÞ
¼ inactive 2 Pdeliver

It is clear that the only situation in which 8c:ðaddressðcÞ ¼ addressðcÞÞ is a true
fact is when C ¼ 1, that is to say, when there are no letters to deliver. In that case,
walk is deactivated and returned to the postal office d0. Neither should return have
the capacity to reactivate walk. The agent return, on the other hand, can be activated
by agent delivery, as shown in p3:

p3 ¼ ð:ðlocðdeliveryÞ ¼ d0ÞÞ
) ððstatusðdeliveryÞ ¼ inactiveÞ ^ ðstatusðreturnÞ ¼ activeÞÞ

What this instruction states is that, in the event of an emergency, all delivery of
letters should be stopped, and agent delivery must activate return.

Finally, in spite of the fact that walk is passive regarding agent planner, the power
of this last one over the first one is exercised through the delivery plan, not through
the agent’s activation/deactivation.

Once we have considered all possible cases where delivery finishes its task, we have
found that in all of them, the agent has returned to the post office, which satisfies the
first condition of the program’s goal. Now we can pass to the second one:

8cð}& ðlocðcÞ ¼ addressðcÞÞ

For this formula to be true, it is necessary that for every letter c, a world W exists,
such that at any other world W 0 accessible from W, letter c is located loc at its
destination address. To guarantee this, the program must satisfy two further
conditions: (1) that the plan elaborated by agent planner includes the destinations
of all the letters to deliver and (2) that agent delivery leaves them at their correct
address. Since we have not formalized the instructions that constitute the planner’s
program, we can assume that this first condition is satisfied. Regarding the second
one, the test is relatively simple, given that the only agent with active access to the
letters is agent delivery. Other agents receive information from the letters, but this
agent is the only one capable to deliver them (hence, her name).

The relevant instruction is p1:

p1 ¼ ð9xðaddressðxÞ ¼ locðdeliveryÞÞ ) ðstatusðwalkÞ ¼ inactive; fxg ! 1Þ
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Semantically, this instruction says that, given a world W such that address(x) =
loc(delivery), letter x should not exist in any worldW’ accessible from W via delivery
(and that walk should be deactivated in W’, which guarantees that the agent won’t
move while delivering the letters). Assuming the good operation of planner and walk,
we can guarantee that for any letter c there is a world Wc in the model such that
address(x) = loc(delivery) is a true fact in Wc. In other words, if walk and planner
function properly, delivery should pass by all the addresses of all the letters.

Therefore, for all W 0 such that Wc delivery W 0, c is not in delivery’s domain
of objects Ddelivery in W 0. From this, it vacuously follows that (address(c)=
loc(delivery)) is true in W 0, which guarantees that 8c(}&(loc(c)¼ address(c))).

Since we have proven the satisfaction of the two component sub-formulae of A, we
can affirm that the goal is true in every model of Ps, that is to say that the system is
successful relative to conditions C1 and C2.

6. Conclusion

The previous logical system is a powerful tool for the formalization and verification
of the behaviour of multi-agent systems based on CTA. Its syntax allows for a
detailed formalization of cognitive task analysis’ results, while its semantic frame-
work allows for a simple mathematical way of verifying the success of a behaviour,
by modelling the universe in which such behaviour takes place. While staying close
to CTA’s basic tenants, it exploits the strengths of modal (epistemic, deontic and
dynamis) logics with a combination of possible world semantics and situation
theory.

Note
1. Another way to understand the main difference between traditional possible world semantics and

situation theory is that the former was originally developed to account for the truth conditions of
declarative sentences. Only later were they extended to cover also epistemic and informational
phenomena. However, since there seems to always be some possible true knowledge beyond the reach
of any particular agent in a given situation, it is clear for Barwise and his followers that different
frameworks are required for each sort of phenomenae.
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