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Abstract: Semantic analysis in early analytic philosophy belongs to a long tradition of 

adopting geometrical methodologies to the solution of philosophical problems. In particular, 

it adapts Descartes’ development of formalization as a mechanism of analytic representation, 

for its application in natural language semantics. This article aims to trace the mathematical 

roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal 

character of modern analysis introduced by Descartes. The goal is to identify the particular 

conception of “form” developed by the analytic tradition, from Descartes to early analytic 

philosophy, and to determine its relation to similar notions, like ‘function’ and ‘syntax’. 

Finally, I focus on how Frege, Russell and Carnap’s methods of semantic analysis fit the 

general characterization of formal analysis previously developed. 

 
Introduction 

According to Max Fernández de Castro’s “Three Methods of Semantic Analysis” (2003), 

Bertrand Russell’s “On Denoting” (1905) defined the project of a philosophical semantic 

analysis on three basic puzzles that, according to the English philosopher, “any semantic 

theory must try to solve”: 

These are, to know, the identity paradox (How can an identity statement 

be informative?), the use of singular terms without denotation in 

meaningful phrases (How can we say something true about Pegasus when it 

does not exist?) and the exception to the identity laws that emerge in 
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certain contexts (How is that we can say something false of London that is 

true of the English capital?) [My translation] 

The goal of this paper is to clarify exactly in what sense a project as the one Russell defined 

requires a semantic analysis. The thesis that I want to defend in this paper is that the 

semantic analysis that Frege, Russell and Carnap developed for framing these three semantic 

puzzles and their solutions are part of a long tradition of adopting geometrical analysis’ 

methodological developments to solve philosophical problems. In particular, the analytic 

methods of these authors arise from the application of formalization as a mechanism of 

analytic representation to semantic problems. 

 To this end, I trace and reconstruct the historical development of the concept of 

analysis in modern occidental philosophy, up to the foundation of what has been known as 

analytic philosophy1. This reconstruction is strongly based on (Beaney, 2002) and (Barceló, 

2003). However, in contrast to Beaney, my central interest is how analysis bridged 

mathematics and philosophy in the late 19th century and early 20th centuries. Also, in contrast 

with (Barceló 2003), instead of the formal character of modern logic, I am interested in 

better understanding Frege’s, Russell’s and Carnap’s philosophical semantics. 

 In the first section I introduce the very useful distinction Michael Beaney has made 

(2002) among analysis’ three modes: regressive, decompositional and transformative. Despite 

the obvious importance of each mode, I will concentrate in the later, for it is inside it, that 

Descartes’ formalization of geometry (as well as Frege’s, Russell’s and Carnap’s philosophical 

semantics) acquires greater significance. To further refine Beaney’s characterization, I will 

focus in the formal character of modern transformative analysis. The aim is to distinguish the 

analytical concept of “form” from similar conceptions of the same concept, and from other 

kinds of geometrical representation. To this purpose, I present the Cartesian solution of the 
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three or four lines problem. Hopefully, this will illustrate the extreme importance of 

formalization in modern analysis. 

 In the fourth section, I take a brief look at the history of the formal-analytical 

tradition of modern mathematics, before doing the same with philosophy. I complement this 

history with a study of the close relation between function, form and syntax emerging from 

this development. Finally, once the formal character of analysis is clearer, I focus on how 

Frege’s, Russell’s and Carnap’s methods of semantic analysis fit in the characterization of 

transformative formal analysis developed in this paper. 

 
1. Michae l Beaney : How Analy tic i s  Ana lyt ic Ph ilo sophy? 

1.1. The Regressive Mode: Going Backwards 

It is neverhteless far from obvious what this renowed method of the 

ancient geometrs really was. One reason for this difficulty of 

understanding the method is the scarcity of ancient descriptions of the 

procesure of analysis. Another is the relative  failure of these descriptions 

to do justice to the practice of analysis among ancient mathematicians. 

Jaako Hintikka and Unto Remes (1976, 253) 

According to Michael Beaney (2002, 2003), throughout western modern philosophy, the 

notion of ‘analysis’ has manifested itself in three different conceptions or modes: regressive, 

decompositional and transformative. Modern analysis, on the other hand, originates in 

Cartesian geometric analysis, where Descartes synthesizes all the aforementioned modes of 

analysis: regression, decomposition and transformation. 

Modern Thought inherited the regressive mode of analysis from ancient Greek 

Geometry (particularly, from Pappus’ commentary on Euclides, still “the only extensive 

description of analytical method in the ancient mathematical literature” (Remes and Hintikka 

1976, 253) 2). In this mode – which more or less corresponds to what Hintikka and Remes 

call ‘directional analysis’ –, analyzing a problem “involves working back to the principles, 
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premises, causes, etc., by means of which something can be derived or explained.” (Beaney 

2002, 55) Beaney calls this mode ‘regressive’, because of its inverse direction regarding its 

complementary method of synthesis. In (Beaney 2003), he goes on to say that this mode 

defines analysis in its broadest sense, allowing for “great variation in specific method” 

(Ibidem). In contrast, in (1976), Hintikka and Remes had argued that, even though “the old 

geometrical procedure of analysis was accompanied by a complementary synthesis in all its 

typical uses in Antiquity” (Hintikka and Remes 1976, 265), such synthesis did not always 

involve a re-working forwards of the steps obtained in analysis. Furthermore, they claim, 

ancient analysis did not always go ‘downstream’, that is, “against the direction of logical 

consequence” (Hintikka and Remes 1976, 262). 

In one sense, analysis can even be said to proceed in either direction. The 

whole problem of the direction of analysis is also superficial in the sense 

that it is not connected with the heuristic usefulness of the method of 

analysis. (Hintikka and Remes 1976, 263) 

 However, it is important to identify two different senses in which Analysis is 

characterized by its ‘inverse’ direction. On the one sense, analysis goes in the inverse 

direction with respect to Synthesis. Thus, Synthesis just traces forward the steps Analysis laid 

out for it. On the second sense, Analysis works backwards regarding the direction of logical 

consequence. Under the otherwise reasonable assumption that what is sought is a deductive 

proof (such that Synthesis ought to follow the direction of logical consequence, from axioms, 

definitions and postulates to theorems), both senses become equivalent. However, such 

assumption stops being reasonable, once we leave such cases behind (cases which were not 

even paradigmatic in ancient geometry). First of all, in constructive cases (where what is 

sought is the construction of a figure) it makes little sense to talk about a logical direction 

among concomitants [akóloytha]. Second of all, in theoretical cases (where what is sought is a 

proof for a theorem), regressive analysis is, above all, a deductive hypothetical method, not 
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an abductive one.3 Thus, this is the most natural way to read Pappus remarks to the extent 

that proof is the reverse of analysis4, and, later, Alexander of Aphrodisias claim that “analysis 

is the return from the end to the principles.” (Gilbert 1960, 32 apud. Beaney 2003) Their 

directions are mutually inverse, not because only one of them follows the natural direction of 

logical consequence, but only because the starting point of one is the final point of the other. 

The conclusion of the synthetic proof is the hypothetical premise from which analysis starts. 

It is only in this sense that Analysis is said to work backwards. 

 Thus, instead of stressing the putative ‘inverse’ direction of analysis, it is better to 

characterize the regressive mode of analysis by its hypothetical and foundational dimension: 

(i) it starts with an assumption of already having what is sought and (ii) arrives to the 

principles, premises, causes, etc., by means of which something can be derived or explained. 

Even though this article’s main focus will be on the transformative mode, it is also worth 

mentioning that, just like the analytic method as a whole, the regressive mode of analysis has 

evolved in meaning since the time of Pappus. In (2002), Volker Peckhaus has started to trace 

this evolution. From a “very general view” of the regressive mode in analysis, he identifies 

three ‘levels’ on which the method works: 

1. On the pract ica l level, regressive analysis stands for the heuristics of research, i. e., 

the search for the necessary conditions to solve a given problem. On this level, which 

corresponds to Port Royal’s understanding of ‘analysis’,5 regressive analysis can also 

be identified with abduction. 

2. On the methodological level, to analyze a set of statements is to set them in a 

logical order. Analogically, to analyze a statement is to find its place in such logical 

order. A paradigmatic example of this kind of analysis, according to Peckhaus, is 

Hilbert’s axiomatic method. 
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3. Finally, on the founda tional level, finally, the goal of regressive analysis is a 

justification for the starting points of deduction. Ancient Geometrical Analysis is the 

paradigmatic example of this kind of foundational analysis. 

 On the other hand, unlike Beaney, Peckhaus does not offer a satisfactory historical 

account of how regressive analysis came to occur on such different levels, and such different 

senses. This is not the occasion to further explore Veckhaus’ hypothesis. Therefore, for the 

remaining of the current essay, I will restrict myself to the foundational understanding of 

regressive analysis. 

1.2. The Decomposition and Transformative Modes 

Bealey’s second mode of analysis has deeper philosophical roots,6 since it is a direct 

descendant of Plato’s mature method of collection and division (as it appears in the 

Phaedrus, Sophist, Politics and Philebus), where concepts are analyzed – decomposed, that is 

– into other more general concepts.7 A similar mode is observed in the Aristotelian method 

of definition through genus and specific difference.8 So, for example, the concept of human 

being is decomposed in the concepts of ‘animal’ and ‘political’. Even though the latter are 

extensionally broader than the original concept, this later contains them intensionally, its 

definition presupposes them. In this regards, Beaney writes:  

Understanding a classificatory hierarchy extensionally, that is, in terms of 

the classes of things denoted, the classes higher up [the more general ones] 

are clearly the larger, ‘containing’ the classes lower down as subclasses. . . 

Intensionally, however, the relationship of ‘containment’ has been seen as 

holding in the opposite direction. If someone understands the concept 

human being, at least in the strong sense of knowing its definition, then 

they must understand the [more general] concepts ‘rational’ and ‘animal’. 

Working back up the hierarchy in ‘analysis’ (in the regressive sense) could 

then come to be identified with ‘unpacking’ or ‘resolving’ a concept into its 
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‘constituent’ concepts (‘analysis’ in the decompositional sense). (Beaney 

2002, 69) 

However, it is the third mode of analysis that that gives our modern conception its 

idiosyncratic sense. Bealey calls this mode, ‘transformative’ because it involves a paraphrases 

or change in the problem’s representation.9 

Even though there is a transformative element easily identifiable in Ancient Greek 

Geometrical Analysis,10 it only acquires a special significance in modern analysis. It was Rene 

Descartes who, trying to reconstruct ancient analysis, developed the algebraic tools required 

to turn analysis from a figurative11 into an eminently formal method. 

 Descartes’ method of analysis aims to find the fundamental principles to build upon 

all knowledge –either geometrical or philosophical – in a synthetic fashion.12 Descartes takes 

classical geometric analysis as methodological paradigm.13 Given that, he could find just very 

little explicit information about this method in the available classic texts14, its reconstruction 

is, indeed, the creation of a new analytic method.15 The analitization of geometry that 

Descartes develops is the institution of a method of resolution that includes as much a 

change of representation as a method of regression16 and decomposition17. In his Geometry, 

Descartes creates a new formal framework for the representation of geometrical problems. 

An essential element of this framework is the use of an algebraic language. As we will see in 

further detail, this change of notation is in itself a radical revolution in mathematics. Still, it is 

not all of the Cartesian method. It also involves an analysis by decomposition. However, such 

decomposition is completely dependant on the change of notation. Thus, Cartesian analysis 

synthesizes the three modes of analysis in a single method. From that moment on, the history 

of the concept of ‘analysis’ becomes a continuous dialog among these three modes. In fact, 

we can see its posterior history as a battle between the decompositional and formal-

representational modes to capture the regressive-fundationist function of analysis. 
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In contrast, in (2003), Beaney attributes the origin of the hegemony of the 

decompositional mode in modern philosophical thought to Descartes. In particular, he traces 

it back to rule thirteen of the Rules for the Direction of the Mind, which states: “in order to 

perfectly understand a problem we must abstract from every superfluous conceptions, reduce 

it to its simplest terms and, by means of enumeration, divide it up into the smallest possible 

parts” (I, 51), and, later, to the second rule for his philosophical method presented in the 

Discourse on Method, where he instructs “to divide each of the difficulties I examined into 

as many parts as possible and as may be required in order to resolve them better.” (I, 120) 

Beaney stresses as an interesting fact that “Descartes’ Geometry was first published 

together with the Discourse and advertised as an essay in the method laid out in the 

Discourse, for each part was responsible for the rise of a different mode of analysis on 

separate sides of the mathematics/philosophy divide that Descartes was trying to bridge. 

Thus, in early modern times, the decompositional account would become standard among 

philosophers, while the transformative mode revolutionized mathematics. 

The idea of Cartesian method as a revolutionary change in scientific representation 

is already found in authors as diverse as Martin Heidegger (1977), Ernst Cassirer (1957), 

Michel Foucault (1970) and Jonathan Crary (1990), all of whom place it at the very origin of 

modern thought. Beaney’s study, on the other hand, goes one step further by analyzing this 

modern notion into its decompositional, regressive, and transformative components. In other 

words, while the previous authors succeeded in identifying a transformative element in 

Cartesian analysis, they had not separated it from its regressive and decompositional 

elements.18 Thus, they had failed to isolate the actual innovation that defined modern 

analytical method. As Beaney correctly points out, the distinction is essential to understand 

the truly innovate aspect of this kind of analysis. Both regression end decomposition had 

always been essential elements of analysis. It was the transformative element that was deeply 

transformed – no pun intended – by Descartes: from figurative into formal.19 
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 The following section dives deeper into those waters. In order to make better sense 

of this revolution, I will differentiate between mere symbolic representation and full-fledged 

formalization, stressing the intimate relation between ‘form’ and ‘function’ in modern 

mathematical analysis. Later, this will allow me to contrast the figurative and formal 

transformations involved in classical and modern analysis respectively. 

 

2 . Formal Ana lysis 20 

It is easy to notice that the representational regime that operates in formal analysis is 

symbolic. Nevertheless, it is important to emphasize that the symbolic systems operating in 

(geometric, semantic or logical) formal analysis are not merely symbolic. At this point, it will 

be fruitful to appeal to the well-known distinction21 between the ‘syncopate’ use of 

mathematical symbols in pre-Cartesian algebra and the ‘formal’ or ‘analytic’ use of modern 

mathematics. In ancient Arab Algebra and Western Cosistic, there were no proper variables 

as we know them. True, letters were used. However, they were no more than 

mnemothechnic devices or abbreviations of more complex expressions. Therefore, these 

primitive forms of algebra did not feature any means of expressing general calculations. Since 

its symbolic system22 included only constants, it allowed only for particular calculations. 

Generality was expressed through particular cases that were used as examples or paradigms. 

It was not until Viète’s work and his posterior refinement by Descartes’23 that proper 

algebraic variables appeared in modern mathematics. Their introduction allowed two 

important advances in mathematics: the possibility to express general forms24 – ‘species’, in 

Viète’s terminology – and, even more importantly, the possibility to calculate with them. In 

this respect, Kline (1972) has written: 

Viète was completely conscious about that when he studied the quadratic 

general equation ax2 + bx + c = 0 (in our notation), he was studied a  

whole cla ss of express ions . To distinguish between numerous logistic 
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and specious logistic in his Isagoge, Viète also distinguished between 

algebra and arithmetic. Algebra, the specious logistic, said, was a method 

of the ca lculus wi th species or forms of things. Arithmetic -the 

numerous- deals with numbers. So, in just one step, the algebra was 

converted in a study of general types of forms and equations, given that 

what it is done for the general case covers an infinite of special cases. 

(1972, 261-2)25 

 Thus, the central difference between modern and ancient algebra was that, through 

the use of variables, the former could abstract the common form of particular calculations 

and express it in a general formula. This new symbolic language allowed mathematicians to 

manipulate general forms in ways that were nearly impossible until then. It was then that 

mathematics’ proper formal language was born. A formal language is not simply one that uses 

letters as symbols, but one that uses them to calculate. In this sense, modern algebra 

inaugurates the possibility of calculating with forms, instead of arithmetic quantities or 

geometrical magnitudes. Doors were opened to a new type of calculus, more abstract and 

general than arithmetic or geometry. It brought about a significant revolution in the 

development of mathematics, in particular, and scientific knowledge in general.  

 

3 . An Early  Geometr ica l Example of Formal Ana lys is 

Unlike philosophers, most mathematicians eventually recognized the value of Descartes’ new 

method. His resolution of the famous ‘three or four lines problem’26 demonstrated its 

effectiveness in the mind of many modern mathematicians. It would be good, then, to take a 

closer look at this solution to illustrate the very important role the transformative way of 

analysis plays in this kind of analysis, so to understand the radical change that formalization 

represented in the development of mathematical analysis. 
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 The problem is posed the following way.27 Being AB, AD, EF and GH straight lines 

given as in the following figure: 

 

Search all points C such that line segments CB, CD, CF and CH, drawn from C to the given 

four lines, satisfy the following condition: that the product of CB times CD is in a given 

proportion to the product of CF times CH. It is also asked whether such points are located 

inside a conic section – a circle, parabola, hyperbola, ellipse or similar –, or not. 

 In his analysis of the problem above, Descartes starts by assuming that the condition 

is satisfied, that is, that such a C point exists. Up until here, the method follows closely 

Pappus definition of regressive analysis, according to which the first step is to assume that 

which is sought. However, the way Descartes represents this supposition is what differentiates 

his method from classical analysis. While, in classic analysis, point C is represent by a point 

in a geometric figure (similar to the one with which I have illustrated this problem), Descartes 

represents C by a pair of algebraic ‘coordinates’. Given that C is determined by the length of 

segments AB and BC, given angle ABC, it can be modeled by an ordered pair (x,y), where x 

and y correspond to the aforementioned lengths. 

 Risking to sound repetitive, let me stress again the revolutionary change of 

representation that Descartes performs here. To represent geometric hypotheses, classical 
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figurative analysis could work with, at most, particular instances what was sought to be 

constructed or demonstrated in a general way (just like pre-formal algebra). This risked 

basing some posterior inference in the particularities of such instance, instead of the general 

specifications of the problem. The introduction of algebraic variables solved such problem. 

The use of variables permitted Descartes to represent his hypothesis in a formal, algebraic 

and universal way. In strict sense, the pair of Cartesian coordinates does not represent any 

particular point, but the general form of a point. In the current example, the introduction of 

algebraic variables allowed Descartes to represent, in a single view, all C points that 

constituted the general solution to the problem. This way, his analysis acquired the necessary 

formal and general character.  

 The next step is to show that all segments CB, CD, CF and CH are lineal functions 

of x and y.28 If so, the original condition of proportionality between CB·CD and CF·CH can 

be expressed by a quadratic expression with two variables. Each pair of coordinates (x,y) 

satisfying the equation would represent each of the C points that are sought. 

 By representing the set of C points in a quadratic equation, one does not only 

algebraically represent the original geometric concept, but also ‘formalizes’ it. That way, it 

becomes possible to know the kind of conic section that such points stand on, attending 

merely to the equation’s syntactic form. Geometrical information has thus been transformed 

into syntactic information. 

I hope that this example clearly illustrates how the formal algebraic apparatus, as a 

mechanism of representation, let Descartes renovate geometrical analysis. Now, after fully 

understanding the role formalization plays in Cartesian analysis, can we finally see if 

formalization plays an analogous role in the semantic analysis of early analytic philosophy.  
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4. The Analy tic Trad it ion in Mathematica l Logic 

Unfortunately, the importance of this new and powerful tool was not immediately recognized 

by all mathematicians of the time. On the contrary, for the next two hundred years, western 

mathematics lived in an intense inner fight between two different paradigms: the formal 

paradigm of algebraic analysis, and the constructive paradigm of geometry. The effects of this 

conflict are so broad and obvious that it is impossible to trace the historical developments of 

the following centuries without placing such controversy at the center. Therefore, it is easy to 

follow the development of formal analysis from France to England, and from there, under 

the guide of the Analytic Society, to early mathematical logic.29 

The symbolic language of formal logic was developed in the algebraic-analytic 

tradition.30 As such, it is not syncopated (it is not the abbreviated version of another non-

formal language), but entirely formal. It does not only use algebraic formulae to express 

logical forms, but also features a calculus for their formal manipulation.31 Both elements are 

essential for it to fulfill its analytic function.32 Formalism and calculus are the two pillars upon 

which formal logic and semantic analysis are constructed. Both features distinguish analysis 

among the many representational regimes of modern science. 

 Furthermore, it is important not to mistake this mathematical notion of ‘form’ with 

the philosophical one. For philosophers, ‘form’ was characterized in opposition to ‘matter’. It 

is temping to think that the formal character that the first mathematical logicians introduced 

is somehow related to the old philosophic notion. However, this is not so.33 Early algebraic 

logicians were not in the business of isolating a certain logical form, by removing all non-

logical matter. Instead, their method was establishing patterns of invariance between logical 

formulae. This is clear from the polemic between De Morgan and Mansel.34 In his reply to 

(De Morgan, 1847), Mansel (1851) accused De Morgan of mismanaging the form/matter 

distinction. Nevertheless, it is clear that both thinkers were using the word ‘form’ in different 
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senses: Mansel in the logic-Aristotelian sense and De Morgan in the algebraic-analytic one. In 

a first reaction to Mansel’s criticisms, De Morgan tried to reconcile both notions. However, 

he soon realized that they were radically different notions. So he returned to his original 

opinion that the Aristotelian “metaphysical” notion was irrelevant to his own business of 

logical analysis (1847, 27).35 

 
5 . Form, Funct ion and Syn tax 

Finally, it is also important to explain how this new kind of formal representation allows for a 

new sort of whole-part explanation in modern science. This, in turn, requires tracing in broad 

strokes the evolution of the notion of ‘function’ in mathematical analysis and its effect on the 

notion of ‘form’. 

 The Shorter Oxford English Dictionary, defines the English term ‘function’ as “the 

special kind of activity proper to anything; the mode of action by which it fulfils its purpose.” 

Even though this does not seem to be the way in which the term ‘function’ is currently used 

in mathematics (semantic or logic), this was the sense in which the word was introduced into 

the discipline, when Leibniz used it for the first time in his Methodus Tangentium inverse, 

seu de Functionibus (1673). There, Leibniz talks of function as a duty to be fulfilled, so that a 

line’s function is identified with its role inside a figure. Similarly, in (1692) Leibniz talks about 

‘tangent’, ‘normal’, etc. as a line’s possible functions regarding a given curve.36 It is Johann 

Bernoulli who transforms the Leibnizian notion into the more familiar conception of 

function as a correlation among quantities (even though he restricted it to analytically 

expressible correlations). Soon, Bernoulli’s conception became standard. 

Thus, the analytic notion of ‘function’ originally emerges as an attempt to 

mathematically capture the role a geometric object plays in the larger figure that contains it.37 

The analytic notion of ‘function’, therefore, aims at being a mathematical analogue of our 

ordinary notion of ‘function’. Both are based on the whole/part relation. It makes sense to 
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talk about the function of an object only in so far as it is part of another. In order for analysis 

to go beyond mere decomposition, it must be guided by the different functions that each part 

plays inside the analyzed whole. Thus, to functionally analyze a complex whole would involve 

decomposing it according to each part’s function. 

 In this respect, formal analysis aims to offer a new representation of the analyzed 

object, such that the location of (the representation of) the parts in (the representation of) the 

whole correspond to their role – i.e., their function – in it. Thereby, the form of an analytic 

representation captures all its element’s functions. The disposition of the parts inside the 

representation – its syntax – must reflect their different functions in such a way that parts with 

similar functions occupy similar places. The goal is that the function of every element can be 

seen directly in the syntax of its representation. The function must be obtainable directly 

from the representation by simple decomposition. 

During the XIX century and beginnings of last century38, thinkers as De Morgan, 

Boole and Frege started introducing into philosophy analytic notions like ‘function’ and 

‘form’. As is well known, Frege’s method for identifiyng functions is based on the 

identification of variables and invariable elements in formal representations. Thus, functions 

(and arguments) were seen as parts of a structured whole (the value of the argument to such 

function). During this long historical period, the notion of ‘function’ was introduced in one of 

two ways: (1) as the invariant element in a system of transformations, or (2) as an incomplete 

element in need of completion. In the former, the distinction between function and 

argument became the distinction between a variable element (the argument), and an element 

that remains constant during such variation (the function).39 

 This way, the notion of function is fully determined by patterns of substitutability 

(inside of an analytic formal representation). Different elements have the same function (as 

part of a whole), if their representations are interchangeable inside the formal representation 

of that whole. If substituting one for the other, the represented object changes, their function 
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is different. Thereby, one may evaluate the success of an analysis through the substitution 

patterns codified in its formal representation. We know that an object has not been correctly 

analyzed if, by substituting (the representation of) one of its parts with (the representation of) 

another of the same function, we obtain (the representation of) a different object, or if 

substituting (the representation of) parts with different function does not affect (the 

representation of) the analyzed object.40 

 Finally, in this kind of analysis, the different representations resulting from the 

assignment of different values to the same function are said o be of the same ‘form’. In other 

words, distinct values of the same function (under different assignments of arguments) share 

the same form. So, for example, one can indistinctly talk of a formula as the disjunction of 

other two, or as being of the form A∨B. Thus, in analysis, the notions of ‘form’ and 

‘function’ are so intimately joined that one can be easily obtained from the other.41 In this 

sense, the representation’s form tell us not just what are the constitutive parts of an object 

(formal analysis is not mere decomposition) but also their function. ‘Syntax’ becomes ‘form’ 

at the moment it captures the function of each part inside the represented object. 

 In conclusion, to analyze – in this transformative-formal sense – is to find the true 

form of an object: to represent it in such a way that the syntax of its representation directly 

reflects the different functions each part plays in its whole. 

 
6. The Analy tic Trad it ion in Ph i losophy 

To analyze is to reformulate,  

-to translate in better words. 

J.O. Urmson (1967, 295) 

 

Even though Cartesian Analysis almost immediately ignited a radical revolution in the field of 

mathematics, the eventual success of his methodological proposal in philosophy was a long 

time coming. In contrast with what happened in mathematics,42 the decompositional mode of 
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conceptual analysis continued to be the philosophical paradigm for many years after 

Descartes. This conception of analysis is clearly present in Hobbes (De Corpore VI §§1-2), 

Locke (Essay, II, xxii, 9) and Leibniz (De Arte Cobinatoria 23 a-b). Nevertheless, it did not 

reach its pinnacle until Kant’s work, whose distinction between synthetic and analytic 

judgments is clearly based on a decompositional vision of analysis.43 By the XIXth century, 

the philosophical discussion around the synthetic and analytical methods was completely 

displaced by the study of the analytic/synthetic distinction. According to Beaney, most post-

Kantian philosophers could be easily divided in two camps: those who accepted the weak 

Kantian notion of analyticity and those who, like G. Frege and B. Russell, tried to recuperate 

the complex Cartesian conception of analysis.44 In the process, these later thinkers laid the 

foundations of analytic philosophy as it is still known today. 

 Beaney does not exaggerate when he says that “what Descartes and Fermat did for 

analytic geometry, Frege and Russell did for analytic philosophy.” (Beaney 2002, 67) The 

method of logico-conceptual analysis they founded, resulted in a philosophical revolution 

comparable with the analytic revolution in mathematics. Their analytic method for 

philosophy reintegrated regression and decomposition (which was already present in 

philosophical analysis) with formal representation. Just like Descartes and his geometry, the 

true major contribution of early analytics philosophy was the introduction of formal 

representation back into the analytic method. Behind Frege’s logic and Russell’s philosophy, 

lays the idea that once properly – that is, formally – represented, the problems of both 

disciplines would become evident in their solutions and foundations. The transformation 

element involved in both of these methodological revolutions, in mathematics and 

philosophy, is formalization. Through the introduction of fomalization, analytic philosophy 

aimed at bringing logical and philosophical analysis up to date with mathematical analysis. 

 Furthermore, the logico-philosophical method of analytic philosophy remains 

regressive, in so far as it is also complemented by a synthetic method, where the solution is 
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founded and reconstructed from the ultimate elements that constitute its formal 

decomposition. Consequently, the three steps of Cartesian analysis (corresponding to the 

three modes of analysis) are reproduced in the analytic method of analytic philosophy: 

1. Formalization of the problem (analysis as transformation) 

2. Decomposition or resolution of the formalized problem (analysis as 

decomposition) 

3. Foundation of the problem’s solution in the basic components obtained 

from the previous formalization and decomposition (analysis in the regressive 

sense).45 

Thus, the early-analytic philosophical method synthesized the three modes of analysis in a 

similar way than Cartesian analysis had done for mathematical analysis three centuries 

before. 

 
7. Frege, Carnap and Russel l 

Once clarified the sense of ‘analysis’ contained in our notion of ‘semantic analysis’, we can 

finally answer our original question: ¿In what sense did a semantic project as the one 

embarked by the early analytic philosophers require some form of analysis? If we follow 

Fernández de Castro’s diagnosis (2002), the puzzles that defined Frege, Russell and Carnap’s 

semantic agenda are all essentially problems of (syntactic) substitution and (semantic) 

function. They all arise from a mismatch between syntactic form and semantic function. And, 

as seen before, these are problems of the sort that have defined modern analysis, even before 

arising as philosophical method early in the XXth Century. It was appropriate, therefore, for 

Frege, Carnap and Russell to look at formalization for the key to solving these puzzles. It had 

already proved to be a very fruitful analytic tool in geometry, and it was reasonable to expect 

similar success from its application in semantics. 
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As already seen, the substitution and assignment of functions to parts of a whole are 

the defining elements of formal analysis. In the case of semantic analysis, propositions are the 

objects of analysis, and their parts are analyzed by their function (role) in determining such 

semantic unit. Problems arise when the surface grammatical syntax of the statement that 

expresses the proposition does not capture the different semantic elements and their 

functions that constitute such proposition. In other words, problems arise when the object of 

semantic analysis – the proposition – is represented by a structured element – the sentence – 

, whose structure – its surface grammatical syntax – does not reflect its semantic form, that is, 

does not tell us much about the different components of the proposition and they way they 

are composed together. 

From the analytic standpoint, there is a mismatch between syntactic and semantic 

form, if semantic elements of the same semantic function – reference, in this case – cannot 

be mutually replaced inside the statement, without significantly affecting its semantic content. 

Thus, it is required to reveal the true semantic form lying underneath the superficial 

grammatical form in order to leave the truly semantic functions of its parts evident. The aim 

is to rescue the substitution of parts with the same semantic function. The means lay in 

formal semantic analysis.  

 In this way, it is clear to see how the different semantic analysis proposed by Frege, 

Russell and Carnap correspond to different changes in formal semantic representation. Frege 

proposes to change the representational regime of natural language for a first formal 

representation (to substitute the grammatical syntax of the natural language for the formal 

syntax of an artificial symbolic language). By running into the aforementioned puzzles of 

substitution, Russell recognizes fissures in Frege’s formalization and analysis and, through his 

theory of definite descriptions, proposes a new formal representation. Analogously, by 

differentiating the intensional from the extensional functions of a term, Carnap once again 

appeals to patterns of substitution. Fernández de Castro (2003) writes: 
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We denote “α≡β”to 

α=β  if α and β are individual constants, names, or 

definite descriptions 

(∀x)(αx=βx) if α and β are predicates 

(α↔β) if α and β are statements 

So, we will say that α and β are equivalents if “α=β” is true, and that α and 

β are equivalents-L if “α=β” is true-L. As always, from an equivalent 

relation is possible to define an object for each of the elements of the 

correspondent partition. By this we can say that two designators (in other 

words, individual constants, predicates or statements) have same extension 

if they are equivalents and intension if are equivalent-L. 

 For Carnap, a referential term’s intension is determined by the patterns of 

substitution in L-contexts, while its extension is determined by patterns of substitution in 

other contexts. This way, extension and intension are just different possible semantic 

functions.46 

 It has been mentioned that an object has not been correctly formalized if 

substituting (the representation of) one of its parts with (the representation of) another one of 

the same function, we obtain (the representation of) a new and different object, or if the 

substitution of (the representation of) functionally different objects does not change the 

(represented) analyzed object.47 Now, when facing puzzles of this kind, our reaction could be 

either to look for a new form of representation or conclude that objects that we originally 

believed to have the same function, actually have different. In this case, Russell’s response to 

the puzzles of semantic substitution was of the first kind, he looked for a new way of 

formalizing the puzzling cases. Frege and Carnap, in contrast, combined both strategies: they 

introduced both new formalisms and new semantic distinctions: between sense and reference 
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(Frege), and between extension and intension (Carnap). In every case the goal was to save the 

patterns of substitution determined in the semantic form, either by changing the formal 

representation or by incorporating the results of analysis to the semantic theory. In every 

case, it is clear that, despite being different methods, they share a common idea of what is the 

purpose and what the available means for semantic analysis. 

 
8 . Formal iza tion and Idea l Language 

 Before finishing I would like to clarify a couple of issues regarding the role formalization 

plays inside these authors’ philosophical analysis. First of all, the importance given to the 

transformative mode in their brand of analysis must not be confused with the linguistic turn 

in philosophy, at least not in the sense popularized by Michael Dummett (1978, 1993). As 

Ray Monk (1996) has made clear, Bertrand Russell never gives language the fundamental 

role that presumably defines this ‘linguistic turn’. It is equally doubtful that, as Dummett 

holds (1978, 1993), Frege’s philosophy emerges mostly from his philosophy of language. 

Besides, as I emphasize in this paper, their interest in formalization stems from their search 

for a proper way of representing philosophical problems in order to perform analysis on 

them. In other words, they are interested in formalization only in so far as they find it to be a 

useful method of representation for philosophical analysis. Thus, formalization is neither the 

goal nor the object of analysis. Their putative ‘pursuit of a perfect language’ must be so 

understood. Just as Descartes’ formalization did not aim at substituting synthetic geometric 

language, so Frege, Russell and Carnap’s formal systems did not pretended to substitute 

natural language. They simply wanted to make a tool that would facilitate philosophic 

analysis.48 

 I do not want to suggest that these philosophers advocated formalization as the only 

proper way to do philosophy. It is clear that the complex philosophic thought of these three 

figures cannot be reduced to its formal contributions, not even if restricted to their semantic 
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theories. After all, their methods of philosophical analysis contain both regressive and 

decompositional elements. Besides, their philosophical work went far beyond that of 

analysis, either formal or otherwise. In this respect, I want to appropriate G.E. Moore’s 

words, whose response to Josh Wisdom stated: 

It is not true that I have said, thought or implicated that analysis was the 

only appropriate duty to philosophy! ... I could not even imply that. (1942 

675-676, quote by Ayer 1971 179-80) 

 By concentrating on the three semantic riddles identified by Russell, and the 

different responses given by Frege, Russell and Carnap, it has become evident that there is a 

certain ‘analytic’ way of identifying and representing semantic problems. The basic problem 

at the root of these three riddles –how is it possible for linguistic elements of the same 

grammatical type to differ in their semantic function – is an especially adequate problem to 

be solved through formalization. On the other hand, I also believe to have demonstrated how 

such problems and the three solutions proposed by Frege, Russell and Carnap belong to the 

analytic methodological tradition restored by Descartes. Of course that I think that my 

conclusions could extend beyond these three problems and authors, and that formalization 

plays a more important role in the thought of Frege, Russell and Carnap that the one 

presented here. Besides these semantic examples, other important philosophical distinctions 

also emerged from problems of substitution similar to those considered here and, clearly, 

other philosophers have shown methodological features related to the analytic tradition. 

However, for now, I must leave these issues unexplored, and leave such exploration for 

further occasions. 
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1 For considerations of space, I concentrate in two historical processes that I consider essential for the 

development of philosophical analysis: the emergence of modern algebra in early 17th century, and the 

birth of analytic philosophy at the end of the 19th century. Specially, I am interested in the intersection 

between these two disciplines. Thus, I hope that my work sheds some new light on the complex 

dialogue between modern mathematics and philosophy. 
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2 Einerson Benedict (1936, 36) points out that the mathematical source of the term ‘analysis’ has been 

already recognized at least, since (Blancanus 1615), the comments of Waitz to the Aristotelic Organon 

translation (1844-46, I 366) and (Solmsen 1929). 

3. For more on the relation between Analysis and Abduction see Aliseda (2005) 

4. On Pappus’ Mathematical Collection, composed around 300 AD. 

5. Peckhaus quotes the following passage from the section ‘On Method’ of Arnauld and Nicole’s La 

Logique ou l’art de Penser: “Hence there are two kinds of method, one for discovering the truth, which 

is known as analysis, or the method of resolution, and which can also be called the method of 

discovery. The other is for making the truth understood by others once it is found. This is known as 

synthesis, or the method of composition, and can also be called the method of instruction” (1996, 233) 

6 Nevertheless, it is reasonable to assume that ancient Greek geometry had a strong influence on both 

Plato and Aristotle. Cf. Beaney (2003) Therefore, all three modes of analysis have strong mathematical 

roots. Cf. Benedict (1936, 36-39). 

7. Furthermore, Beaney (2003) finds in the decomposotional mode another bridge between the formal 

and the analytical. In his interpretation, Plato’s method of dihairesis lays the basic groundwork not only 

of the decompositional mode of conceptual analysis, but also of its formal dimension. Although Plato 

did not use the term ‘analysis’– his word for ‘division’ was ‘dihairesis’ – its goal was finding of the 

appropriate ‘forms’ and, subsequently, laying down synthetic definitions. 

8 Aristotle follows a decompositional kind of analysis in his analysis of figures. (An. Pr.I32, 42-10) See 

Benedict (1936,39) 

9 It is very important not to confuse the use of the term ‘representation’ in contemporary philosophy of 

science, and in the philosophy of mind and language. In this paper I restrict my use of the term to the 

first sense. 

10 Beaney quotes Hankel 1874, 137-50 and Heath (1921) I, 140-2) It is especially clear in Aristotle, 

whose Analytics show very sophisticated syntactic methods of transforming a syllogism’s structure. 

11. I will say about figurative analysis just enough to contrast it with formal analysis. For a more detailed 

view of this kind of transformative analysis, see Panza (forthcoming) 
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12 It is important to remember that Descartes’ Geometry was originally published alongside the 

Discourse of Method as a sample application of such method. 

13 Descartes points out the similarities between his method and classic geometrical analysis in (1965) 

VII 424, 444-5, (1985, 1984, 1992) I 18-19, II 5, 111. Cf. (Flage 1999, 3) François Viète, who was first 

to introduce variables to geometrical analysis, was of the same opinion. 

14 Descartes accuses the classics geometers of hiding their method of analysis in (1965) X 336, (1985, 

1984, 1992) I 19 and (1965) VII 157, (1985, 1984, 1992) II 111. 

15 Even though it maintains a strong continuity with Pappus’ method. Compare Pappus’ definition with 

Descartes’ in his Geometry (1965 VI 372) 

16 In the preface to the French edition of the Principles (1965 IXB 5, 1985, 1984, 1992 I181), 

Descartes describes his method of analysis as the search for ‘first causes’. See (Flage 1999, 1, 14) 

17 See (Flage 1999 32-43) 

18 Another important difference between these authors’ interpretations, and Beaney’s (and mine) is the 

strong emphasis they place on ‘order’ in Cartesian analysis. True, Descartes stresses the importance of 

order in passages like (1965) X 379, 451, VI 21, VII 155, (1985, 1984, 1992) I 64, 121, II 110. See 

(Flage 1999, 38-43). However, a closer reading of these passages shows that order is not important for 

analysis, but for (mathematical) induction. Descartes himself recognizes this in (1965) X 388-9, (1985, 

1984, 1992) I 25-6. 

19. That is why this paper focuses so much on formal representational. Despite having correctly pointed 

out the importance of formal symbolism in modern analysis, Beaney does nothing to characterize it or 

contrast it with similar representational regimes in the history of analysis. Helena Pycior, on the other 

hand, besides signaling that “the analytic art of the moderns was not the same as that of the ancients. 

For Oughtred as for Viète, the analytic art was inextricably linked to the symbolic style” (1997, 45) gives 

a more detailed account of such style and its importance for the development of (British) algebra. I 

must admit that her analysis goes farther than mine at least in one direction. She traces the importance 

of formal symbolism as visual representation within the British empiricist tradition. For the British, it 

was essential that there be an intuitive component to analysis, in order to compete with geometry as a 
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foundation for mathematics. Viète’s formal symbolism allowed this by “involving the human eye as well 

as reason in the mathematical process.” (Pycior 1997, 45) 

20 The following section is an abbreviate version of the history of formal analysis in (Barceló 2003) 

21. In the history of mathematics literature. 

22. My use of “symbolic system” here is clearly anachronistic. It simply refers to the set of symbols 

involved in arithmetic calculation. 

23. With important contributions from Harriot, Girard, Oughtred and Hudde. See Kline (1972) 259-63. 

24 In modern mathematics, talk of ‘generality’ must not be understood in the same inductive sense it 

has outside of mathematics. Instead, every formal statement is mathematically ‘general’, in so far as it is 

a general schema for expressions or calculations of the same form. Thus, it would be justified to say 

that, in mathematics, one does not generalize, but formalizes. 

25. For Kline, Viète’s introduction of variables was “the most significant change in the character of 

algebra” during the XVI and XVII centuries (Kline 1972, 261) Mahoney (1971, 372) goes as far as 

stating Viète’s work as giving birth to ‘algebra’, as distinct from the previous mere ‘algebraic approach’. 

How ironic, then, that Viète himself preferred the term ‘analysis’ over the Arab term ‘algebra’. Cf. 

(Pycior 1997, 31). 

26 According to Pappus, this problem had been discussed, but not solved, by Euclides and Apolonius. 

27 I take the reconstruction of the problem from (van der Waerden 1985, 74-5). 

28 Descartes achieves this through the algebraic calculation of the arithmetic relations between AB, BC 

and the aforementioned lines. Notice that, since the segments are represented in function of 

coordinates x and y, these calculations are neither geometrical, nor arithmetical, but algebraic. 

29 See (Grattan-Guiness 2000, 14-74) 

30 It is not by chance that the first systems of mathematical logic were algebraic. More on the algebraic 

sources of modern logic can be found in (Kramer 1982) 

31 This double nature of logic –as language and calculus – is at least as old as Leibniz’s ‘characteristica 

universalis’ from (1666), which contained both a universal language (which he variously called ‘lingua 

generalis’, ‘lingua universalis’, ‘lingua rationalis’ or ‘lingua philosophica’), and a ‘calculus ratiocinator’, as 

a general technique for the reduction of all reasoning into mere calculation 
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32 See (Barceló 2003) 

33 For a competing view about this, see MacFarlane (2000) 

34 See (Grattan-Guiness 2000, 28-29) 

35 Unfortunately, more than half a century later of the discussion between Mansel and De Morgan the 

form/matter distinction returned to the logic vocabulary with the distinction between ‘material’ and 

‘formal implication’ introduced by Russell. Grattan-Guiness (2000, 318) conjectures that Russell must 

have been influenced by De Morgan’s effort to reconcile both (the philosophical and the mathematical) 

notions of ‘form’. 

36 It is interesting to note that in this same work, Leibniz uses the term ‘relatio’ to refer to what we now 

call a ‘function’, that is, a regular correlation among magnitudes. See Cabillón (2002). 

37 This way of conceiving mathematical functions was strongly criticized since the middle of the XIXth 

century and, by the middle of the XXth century, it had already been abandoned, thanks to the work of 

Dirichlet, Riemann, Hausdorff and others. Our modern vision of mathematical function still holds a 

weak relation with this old notion, even if it does not fully correspond to it. In the rest of the paper I 

will use the notion of ‘function’ in this primary primitive sense. See Kramer (1982) and Kleiner (1989) 

for a broader historical analysis. 

38 See Luizin (193?) 33 

39 The distinction is explained more or less like this: Take a complex formal representation – for 

example, an equation. Vary one of its elements (not necessarily simple), this is, substitute one of its 

parts for another of the same type such that the new representation is well formed. The part that 

remains constant in such variation represents the function of the element represented by the part that 

varies (its argument) in the analyzed whole (its value). In the later, start by eliminating one of the 

elements. The remaining part represents the function of the object represented by the part that is 

eliminated. This way, the function is not invariant, but incomplete. 

Both treatments are very similar and it is enough to take substitution to be the process of 

eliminating an element and putting another in its place for them to become equivalent. I disagree with 

Sandra Lapinte (2002), who believes that the substitutional and compositional modes of analysis are 
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completely independent. Unfortunately, in her paper from (2002), Lapinte does not give us an 

argument on behalf of this thesis (except to say that it “does not seem likely”, p. 109) 

40 When faced with substitution-problems of this kind, two reactions are possible: either look for a new 

representation that avoids the problem or conclude that the objects believed to have the same function, 

actually had different ones. As we will see later, Russell’s response to the problems of semantic 

substitutability is of the first kind, while Frege and Carnap combined both strategies. 

41 Cf. (Hart 1990, 203) It is also important to remember one of the major achievements of analytic 

geometry was the discovery that geometrical objects of similar geometric form, i.e. of similar shape, 

could be characterized by equations of similar syntactic form. In the aforementioned problem of the 

three lines, for example, the geometric shape of the conics can be easily identified directly from the 

syntactic form of the corresponding second-degree equation. 

42 With the caveats explained later in the paper. 

43 See Beaney (2002) and (2003) 

44 In the first camp, Beaney places Hegel, the Idealists and German Romantics, Bradley and the British 

Idealists and Bergson. On the other side, we can find thinkers like Bolzano, Frege and Russell, Moore, 

the first Wittgenstein and the Logical Positivists. He also recognizes that phenomenology and the 

hermeneutic tradition are not easily classifiable in this dichotomy. 

45 Just after commenting on Russell’s philosophical method, Philip P. Weiner (1944 274-5) draws a 

continuous historical line from Plato to Carnap and Wittgenstein, including Plotinus, Aristotle, Neo-

Platonism, Descartes, Spinoza, Leibniz, Locke, Berkeley, Hume and Russell, identifying regressive and 

decompositional elements in the analytic methods of all of these thinkers. As a matter of fact, in the 

section on “Analysis and Synthesis” of his post-humously published manuscript Theory of Knowledge, 

Russell explicitly defines analysis in decompositional terms: “Analysis may be defined as the discovery 

of the constituents and the manner of combination of a given complex” (ca.1913, 119) It is also clear 

that Russell’s (and Wittgenstein’s) logical atomism is intimately related to the decompositional and 

regressive methods of analysis (Cf. Tomassini 1994). The fact that, before Russell and Wittgenstein, 

Moore had also defined analysis in decompositional and regressive terms, motivated authors like A.J. 

Ayer (1971) to interpret this philosophic tradition’s method of analysis as predominantly regressive and 
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decompositional, more than transformative. I am not interested in the primacy between different 

modes of analysis involved in analytic philosophy. What I hope to leave clear in this paper is that Frege, 

Russell and Carnap’s methods of semantic analysis were not just regressive and decompositional, but 

also transformational. 

46 In this sense, Carnap clearly illustrates the formal character of his semantic analysis. However, he 

emphasizes the role of calculation rules in the determination of the semantic form of a proposition. 

That way, Carnap can distinguish between L-truths and other kinds of truths. 

47 It is important to notice that these patterns of substitution are a necessary – but not sufficient – 

condition for good analysis. Productivity and explaining power are other criteria to judge a successful 

analysis by. 

48 See Frege (1879), Russell (1959, 1985) and Carnap (1934, 1951). 


