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Abstract. This article presents an expressively rich circular logic for computational
semantics based on Barwise and Moss [7]. The main advantage of this logic over
first-order well-founded ones is that a single formula of the language can trace the
change of values continuously and at different memory states. In order to account
for circularity, the system uses systems of equations. The formulae of this logic are
defined as the unique solutions to systems of equations. The equations that
constitute the systems are of the form ‘x = t’, where t is a term and x is a term
variable. The terms in this language are syntactically similar to formulae in
traditional first order logic except for the occurrence of clock terms, which account
for time in the performance of computational programs. This paper introduces the
systems of equations syntax and offers a semantic interpretation on streams. Then,
uses this language to produce a logic for the standard connectives defined over
binary streams. The logic here presented is both sound and complete. The paper
finishes pointing out several further developments necessary to take full advantage
of the logic here presented.

1 Introduction

In mathematical logic, the semantic interpretation of a formal language consists of a
consequence relation among well-formed formulae and a valuation function mapping well-
formed phrases into mathematical entities of an appropriate domain. These mathematical

entities play the role of intended meanings in the semantics. In the case of semantics for
programming languages, the intended meanings are computational behaviors (operations
and/or changes in their data structures). The challenge for computer semanticists has been to
find the adequate domain of mathematical entities for better modeling such behavior.

Traditional semantics for mathematical logic borrow their models from the field of set
theory. When applied to programming languages, this commonly results in denotational
semantics where the interpretations of statements in the programming language are functions

defined over states and data values. The resulting semantics model informational change
inside the computer as series of discrete changes from one single value to another at a single
memory unit. By avoiding the constraints of classical logic and its semantics, it is possible to



obtain more powerful tools for the modeling of computational behavior. In particular, it is
possible to use a non-classical variant of circular logic to model informational change in a
continuous manner, tracing the data changes in several memory units at once. The goal of

this paper is precisely to provide such a logic.

2  Syntax

Because of its relative youth, circular logic is still at a developing stage. Since it evolved out

of non-well-founded set theory, its mayor developments have been in model theory. In
contrast, its proof theory does not even have a standard syntax. There have been several
developments in the area (by myself and others), none of which has become widespread
enough to become customary. I will present here a new proposal. This proposal is based on a

mechanism devised by Barwise and Moss [7] for presenting and identifying non-well-
founded sets, also known as hypersets.

The basic intuition behind my proposal is that logical formulae can be identified as
the unique solution of systems of equations. For example, (p ^ ¬q) is the unique solution to

systems of equations such as { x = (p ^ y), y = ¬q }, { x = (y ^ z), y = p, z = ¬w, w = q }, or

simply { x = (p ^ q) }. In traditional well-founded logic, the proposal to express formulae

in terms of systems of equations would seem trifling. However, it proves very useful in
circular logic. Consider, for example, the system of equations { x = (y ^ z), y = p, z = x }.

As such, it has no solution in well-founded logic. However, the solution lemma, a
consequence of the anti-foundation axiom, tells us that there must be a unique solution to this
system of equations. The following proposal exploits this mathematical fact to provide a
language explicitly designed for semantically modeling circularity.

The only extra element added to the syntax is the use of square brackets. They serve
to avoid vicious circularity. Brackets, in this language, work as clock items. Their role is to
account for time and the direction of information flow within a circuit. Information within

the circuit flows from its non-bracketed portion to the bracketed one. The valuation of the
bracketed portion of a formula depends on the information contained in the non-bracketed
portion. In consequence, it has to be valuated an instant later than the non-bracketed one.

2.1 Language

Let O be a set of operation symbols of the form On
i where n is the n-arity of the operation.

Let S, X and C be distinct sets of symbols, all of them different from O. The symbols in S
perform as input or memory symbols. The symbols in X perform as term variables, while
those in C serve as initial state constants. For convenience, use Roman lower case letters a,

b, c, . . . for initial state constants, p, q, r, . . . for input symbols, and z, y, x, . . . for term
variables. Let  = S ∪   ∪ X ∪ C ∪ {'=', '[', ']'} be the alphabet of our language.
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Definitions 2.1.1
As usual, the operation letters applied to input and variable symbols generate the terms:

1. Variables and input letters are terms.

2. If On
k is an operation letter and t1, t2, . . . tn are terms, then On

k (t1, t2, . . . tn) is a term.
3. If t is a term and a is an initial state constant, [a, t] is a term, too.
4. An expression is a term only if it can be shown to be a term on the basis of conditions

1, 2 and 3.
An equation is an expression of the form x = t, where x is a term variable and t is a

term. A (flat) system  of equations is an ordered pair of an equation and a finite, possibly
empty, set of equations in a language. The first equation is called the main equation of the

system.

Defintions 2.1.2
Given a term t2 of the form [a, t1], t1 and whatever occurs in t1 is said to occur delayed in t2.

Given a system of equations, a variable x is said to directly depend on another

variable y iff there is an equation x = t in the system such that y occurs, but not delayed, in t.
A variable x depends on y iff it directly depends on it, or it depends on another variable
which does.

An system of equations is viciously circular if at least one of its variable terms
depends on itself.

For information to flow adequately through the circuit, every one of its circles must
include at least one clock element. Otherwise, the circle becomes vicious. This means that (at

least one unit of) time must pass before information closes a loop within the circuit.

Definitions 2.1.3
An equation x = t in a system is determined if every variable in t occurs at the left side of ‘=’
in some equation of the system.

A system of equations is well-formed if it is not viciously circular and every one of
its equations is determined.

3 Semantics

This language’s semantics involves streams of values. Let A be a set of values. A stream of
values defined over A is an ordered pair s = (a, s’) where a ∈ A, and s’ is another stream

over A. As its name suggests, a stream over A is an element of A followed by another
stream. Streams have acquired special eminence in theoretical computer science because

many programs have streams as their (ideal) output.
 It is important to bring up some standard notions from stream theory that will be
used in the following sections. First, for every set A, A* is the hyperset of streams s = (a, s'),



where a ∈ A, and s' ∈ A*. For example, 2* is the hyperset of streams like (1, (0, (1, (1, (1,

(0, . . . ), (0, (1, (0, (1, (0, (1, . . . ), (1, (0, (1, (0, (1, (1, . . . ), etc. Also, remember that 1st and
2nd are two important operations on streams. Operation 1st takes the first element of a stream,

while 2nd takes it second, so that, for any stream s in A*, 1st(s) gives an element of A and
2nd(s) yields another stream.

For the purposes of this semantics, let D be the dominion of values that the abstract
computer memory states are to take at a single time. The Interpretation function I will map

every node of the language wffs into streams of those values, so that it traces the change
through time of values in such memory state. This is the main advantage of this circular
language.

Definition 3.1.1
Let V be a total function from S into D* and from C into D. It assigns streams of values of

D to input symbols, and single values of D to initial state symbols. The rational behind this is
that the computer may receive not a single value, but a stream of such as inputs. Also, since

the final interpretation of the wff will also be a stream, it would allow for the composition of
programs and wffs. Assigning single values to initial state constants is required to determine
the initial state of the machine before running the program. To avoid unnecessary
complications, a single complex function may play both roles.

Let L assign to every operational symbol On
i, a n-ary operation on D. Finally, for

every operational symbol On
i let /On

i/ be the function from ℘(D*) into D* such that /On
i/(s1,

s2, s3, . . . sn) =def ( L(On
I 1st(s1), 1st(s2), 1st(s3), . . . 1

st(sn)), /On
i/( 2nd(s1), 2nd(s2), 2nd(s3), . . .

2nd(sn))).

Definition 3.1.2
Let IV be the interpretation function from terms into D* satisfying the following

conditions:

1. If t ∈ S, then IV(t) =def V(t).

2. If t = On
i(t1, t2, t3, . . . tn), then IV(t) =def /O

n
i/(IV(t1), IV(t2), IV(t3), . . . IV(tn)).

3. If t = [a, ti], then IV(t) =def ( V(a), IV(ti)).
4. For every equation x = t in the system, IV(x) = IV(t)

When no ambiguity arises, drop the subscript V.
To evaluate the terms in a system of equations, it is recommendable to start from

the input and initial state terms.

Lemma 3.1.3
I is defined for every term in a wff.
Proof: This is proved by a simple co-induction on the number of terms in the system of

equations. The only cases of equations with one single term are of the form (1) x = p or (2)

x = [a, x]. It is straightforward to notice that, since V is a total function, I is defined for both
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cases. The co-induction holds because, more complex terms are either of the form On
i(t1, t2,

t3, . . . tn) or [a, t i]. Since no wff contains vicious circles, all bracketed terms are defined on
their first element, which represents the information state of the computer at the beginning of

the program. Hence, I(a) is defined for any term and variable in any equation of the well-
formed system.

Definition 3.1.4
Let IV(x), where x = t is the main equation of a wff, be the interpretation of that formula.

Proposition 3.2
Every wff has a unique stream over D as its interpretation. Every wff uniquely defines a

stream over D.

Proof: Directly from lemma 3.1.3.

4 Logic

The expressive power of this logic is clear to see. As an example, in this section I offer a
simple, circular proposicional logic over 2*, which is both sound and complete.

4.1 Syntax

Let O = { →, ¬, ∧, ∨ } be the operator symbols of our language, where →, ∧ and ∨ are

binary symbols and ¬ is unary. Let S, X and C be distinct sets of symbols, all of them

different from O. For convenience, use Roman lower case letters a, b, c, . . . for initial state

constants, p, q, r, . . . for input symbols, and z, y, x, . . . for term variables. Let
 = S ∪   ∪ X ∪ C ∪ {'=', '[', ']'} be the alphabet of our language.

Definitions 4.1.1
As usual, the operation letters applied to input and variable symbols generate the terms:

1. Variables and input letters are terms.
2. If t1, t2 are terms, then t1→t2, t1∧t2 and t1∨t2 are terms as well.

3. If t is a term, then ¬t is a term too.

4. If t is a term and a is an initial state constant, [a, t] is also a term.
5. An expression is a term only if it can be shown to be a term on the basis of

conditions 1, 2, 3 and 4.
Equation, system of equations, main equation, vicious circle and well-formed formula are all

defined according to definitions 2.1.1, 2.1.2 and 2.1.3 above.



Definition 4.1.2
Let X1 = <x1 = t1, E1> and X2 = <x2 = t2, E2> be two wffs of our language. The disjoint union
of X1 and X2, written X1 + X2, is obtained by uniformly replacing every variable and clock in

X2 that occurs in  X1, by a new variable or clock, and then forming the set of its equations,
including the main ones. The disjoint union of two wffs is not a wff itself. It is not even a
system of equations, it is a mere set of equations. However, it will allow us to define

operations on wffs parallel to those on terms.

Definition 4.1.3
Let X1 = <x1 = t1, E1> and X2 = <x2 = t2, E2> be two wffs of our language.

1. Let X1→X2 =def <x = x1→x2, E1+E2}>,

2. Let X1∧X2 =def <x = x1∧x2, E1+E2>,

3. Let X1∨X2 =def <x = x1∨x2, E1+E2>,

4. Let ¬X1 =def <x = ¬x1, E1∪{x1 = t1}>.

Where x is always a new variable that does not occur in X1, X2 or its disjoint union.

Definition 4.1.4
Let X1 = <x1 = t1, E1> be a wff of our language, and let p be an input symbol occurring in it.
Define the looping of X1 through p as the system <x1 = t1, E2 ∪ {x2 = [a, t2]}> where x and a

are new symbols not occurring in X 1, E2 results from E1 and t2 results from t1 by replacing all

occurrences of p in E1 and t1 for x2.

Proposition 4.1.5
1. For every term t without variables <x = t, ∅> is a wff.

2. If X1 is a wff and a is a clock symbol not occurring in X1, <x = [a, x1],

E1∪{x1 = t1}> is a wff as well.

3. If X1 and X2 are wffs, X1∨X2, X1∧X2, X1→X2 and ¬X1 are also wffs.

4. The looping of any wff is a wff, too.
Proof: Follows directly from our definition of wff.

Definition 4.1.6
Every wff resulting by repeated applications 1, 2, 3 and looping is called a canonical wff.

Theorem 4.1.7
For every wff X1, there is a canonical wff X2 (probably identical to X1) such that, for all I and

all V, IV(X1) = IV(X2). In other words, every wff is semantically equivalent to a canonical
wff.
Proof: It is easy to construct a canonical wff for every wff. First, eliminate all unnecessary

equations form the system, that is, every equation xi = ti such that the system’s main variable
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does not depend on x i. The second step is to eliminate all circular equations by splitting them
into two equations. Substitute every equation xi = ti such that xi occurs in ti for the equation
xi = tj, where tj results from substituting every occurrence of xi in ti for xj, and add xj = xi to

the system of equations. The resulting system of equations will be canonical and equivalent
to the original.

4.2 Semantics

For the purposes of this semantics, let 2 = {0, 1} be the dominion of values that the abstract
computer memory states are to take at a single time. The Interpretation function I will map
every node of the language wffs into streams of ones and zeroes, so that it traces the change
through time of values in such memory state.

Definition 4.2.1
Let V be a total function from S into 2* and from C into 2. It assigns streams of ones and
zeroes to input symbols, and single values of one or zero to initial state symbols.
Let L assign to every logical connective the adequate n-ary logical operation on 2. In other

words:
1. Let L(→, d1, d2) =def 0 if d1 = 1 and d2 = 0, and let L(→, d1, d2) = 1 otherwise.

2. Let L(∧, d1, d2) =def 1 if d1 = 1 and d2 = 1, and let L(∧, d1, d2) = 0 otherwise.

3. Let L(∨, d1, d2) =def 0 if d1 = 0 and d2 = 0, and let L(∨, d1, d2) = 1 otherwise.

4. Let L(¬, d) =def 0 if d = 1 and Let L(¬, d) = 1 otherwise.

Finally, for every operational symbol On
i let /On

i/ be the function from ℘(D*) into D* such

that:
1. /→/(d1*, d2*) =def (L(→, 1st(d1*), 1st(d2*), /→/(2nd(d1*), 2nd(d2*))

2.  /∧/(d1*, d2*) =def (L(∧, 1st(d1*), 1st(d2*), /∧/(2nd(d1*), 2nd(d2*))

3.  /∨/(d1*, d2*) =def (L(∨, 1st(d1*), 1st(d2*), /∨/(2nd(d1*), 2nd(d2*))

4.  /¬/(d*) =def (L(¬, 1st(d*)), /¬/(2nd(d*))

Definition 4.2.2
Let IV be the interpretation function from terms into D* satisfying the following

conditions:
5. If t ∈ S, then IV(t) =def V(t).

6. If t =  (t1 → t2), then IV(t) =def / /( IV(t1), IV(t2)).

7. If t =  (t1 ∧ t2), then IV(t) =def / /( IV(t1), IV(t2)).

8. If t =  (t1 ∨ t2), then IV(t) =def / /( IV(t1), IV(t2)).

9. If t =  (¬t1), then IV(t) =def / /( IV(t1)).

10. If t = [a, ti], then IV(t) =def ( V(a), IV(ti)).

11. For every equation x = t in the system, IV(x) =def IV(t)



Finally, let IV(x), where x = t is the main equation of a wff, be the interpretation of that
formula. When no ambiguity arises, drop the subscript V.

4.3 Logical Implication

In order for this to be an actual logic, one must define a relation of logical implication.
Following orthodoxy, we define logical implication as pointwise ≤.

Definition 4.3.1
For any two given streams d1* and d2* in 2*, d1* logically implies d2*, written d 1* ≤ d2*, iff
1st(d1*) ≤ 1st(d2*) and 2nd(d1*) ≤ 2nd(d2*).

4.4 Proof Theory

Given the traditional nature of our semantics, any standard axiomatization of propositional
logic may easily be adapted as an axiom system for this circular logic. Here, we borrow
Elliot Mendelson’s [7] system.

Definition 4.4.1
If X 1, X 2 and X3 are wffs in our language, then the following are axioms of our axiomatic
system:

1. (X1→(X2→ X1))

2. ((X1→(X2→X3))→((X1→X2)→(X1→X3)

3. (((¬X1)→(¬X2))→(((¬X2)→X1)→X2))

4. (X1∧X2)→(¬(X1→(¬X2)))

5. (¬(X1→(¬X2)))→(X1∧X2)

6. (X1∨X2)→((¬X1)→X2)

7. ((¬X1)→X2)→(X1∨X2)

There are two rules of inference in our system. The first one is modus ponens: X 2 is direct
consequence of X1 and X1→X2. The second one, the rule circular entailment, is necessary to

account for circular wffs: every looping of X1 is a direct consequence of X1.

Proposition 4.4.2
If Γ is a set of wffs, X1 and X2 are wffs, and X2 is a logical consequence of the union of

Γ and X 1, then X1→X2 is a logical consequence of Γ. The deduction theorem holds of this

axiomatic system.

Proof: Since the system includes axioms schema 1 and 2, the deduction theorem may be
proved following Herbrand proof from 1930.
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Definition 4.4.3
Every wff of the language whose interpretation is the constant stream of ones s* = <1, s*> is
called a tautology.

Proposition 4.4.4
Every theorem of our system is a tautology.
Proof: Following the usual proof, it is easy to verify that every axiom has the constant

stream of ones as its interpretation and that modus ponens preserves this semantic property.
A little harder is to prove that the rule of circular entailment preserves it as well. The proof
consists of noticing that, whatever the interpretation of the main variable in a wff, it is still
one of the possible value assignments of an input symbol. The addition of the clock only

avoids the vicious circularity, but it does not affect the formula’s interpretation. Hence, if a
wff is a tautology, any of its loopings is also a tautology. Therefore, every theorem of the
system is a tautology.

Theorem 4.4.5
Every canonical tautology is a theorem of our system.
Proof: In the case of non-circular wffs, the result directly follows from the completeness of
the aforementioned system for propositional calculus. I will waste no space here to go

through such proof. The rest of the circular tautologies are obtained from the looping of non-
circular tautologies. The inclusion of the rule of circular entailment allows for these
tautologies to be obtained.

Proposition 4.4.6
A wff logically implies another if and only if the later is a logical consequence of the former.
Proof: From soundness (Proposition 4.4.3), completeness (Theorem 4.4.5), the inclusion of
modus ponens and the theorem of deduction (Proposition 4.4.2).

5 Further Directions

I have shown that, using the traditional logical operators, it is possible to construct a sound
and complete logic for streams on 2. I am currently working to produce a similar, more
general soundness/completeness proof for any domain D.

Furthermore, it is also necessary to provide a well-defined mechanism for the
implementation of this logic as a computational semantics, as it was originally designed to. It
would be fruitful to find a programming language to serve as example to the advantages of
using this logic for denotational semantics.

An even more relevant result would be to give a computational definition of the
family of functions (over streams) expressible in this logic.
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