
Chapter 5

Grammar
I. Introduction

In the thirties, grammar became a central issue in Wittgenstein’s philosophy.1

Wittgenstein’s remarks about grammar from this period are some of most controversial.

For example, he wrote that the grammar of some signs completely determines their meaning,

Zur Grammatik gehört nicht, daß dieser Erfahrungssatz wahr, jener falsch
ist. Zu ihr gehören alle Bedingungen (die Methode) des Vergleichs des
Satzes mit der Wirklichkeit. Das heißt, alle Bedingungen des Verständnisses
(des Sinnes). [PG §45, p. 168]

What belongs to grammar are the conditions (the method) necessary for
comparing the proposition with reality. That is all the conditions necessary
for the understanding (of the sense).[PG §45, p. 133]

Wittgenstein also mantained that investigations into the essence of things are grammatical in-

vestigations.2 Most philosophers do not think that Wittgenstein’s notion of grammar is the

one in common use. The controversial nature of these statements begins with Wittgen-

stein’s notion of grammar. The absence of an explicit definition in his published writings

makes it difficult to justify his use of the word ‘grammar.’ Wittgensein’s brief explanation

in the Big Typescript lacks specificity. The following pages develop a formal definition of

grammar provisionally fitting the purposes of this investigation: (i) to compare

Wittgenstein’s notion of grammar with conventional grammars and determine whether

Wittgenstein’s use of ‘grammar’ is justified or not, (ii) to demonstrate that a grammatical

analysis of Wittgenstein’s kind can yield mathematical results, (iii) to allow for a more

1. Grammar will remain central to Wittgenstein’s philosophy beyond the middle period. In the Philoso-
phical Investigations, he wrote: “Essence is expressed by grammar” and “Grammar tells what kind of
object anything is.” PI §371, 373
2. BT 9, 38
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precise definition of the grammatical nature of mathematics. This chapter pursues the first

goal, while the following two chapters develop the others.

The rest of this chapter compares the analytical capacities of Wittgenstein’s

grammar and a conventional ones. The first section defines ‘language’. The second section

formally models the conventional notion of grammar, using basic mathematical and logical

tools and the syntax of propositional calculus and English grammar as examples. The third

section formalizes Wittgenstein’s explicit thoughts about grammar during this period.

Finally, the last section compares the analytic capacities of both grammatical notions. It com-

pares their grammatical categories and equivalence relations. The comparison answers two

questions, (i)? and (ii) Does Wittgenstein’s approach make finer distinctions than

conventional grammar? If it is possible to construct a conventional grammar out of Wittgen-

stein’s categories, Wittgenstein’s notion dovetails with conventional ones. If Wittgenstein’s

approach make finer distinctions than conventional grammar, Wittgenstein’s grammar

refines the conventional one. Answering these questions will establish if Wittgenstein’s

notion of grammar covers the same cases than any of the more familiar notions. Their

answers might also explain why Wittgenstein created his own approach instead of using a

conventional one.

 The introduction of these two approaches employs an abstract, rule-based notion of

grammar. It models grammar as a formal theory. Grammatical theories are special cases of

formal theories. Grammatical theories are first order theories with a concatenation operator

and several predicates: one for each grammatical category. The domain of the theory is the

set of language expressions, and every proposition is of the form ∀x1, x2,. . . xn (C1x1 &

C2x2 &. . . Cnxn) ⇒ Ck(C(x1, x2,. . . xn)) where C is a concatenation operator. Logical
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notions such as satisfaction, truth, model, consistency, completeness, etc. have immediate

application.

This formal reconstruction and analysis will ultimately shed light on Wittgenstein’s

philosophy of mathematics. Even though some of its formal results might well have

importance on their own, logic is only a tool for the following philosophical analysis. Accor-

dingly, an intuitive introduction precedes the introduction of every formal element. It assists

readers in understanding the issues raised and interpreting the results.3

II. A Formal Background for the Discussion of Wittgenstein’s Grammar

A. Language

Definition 1.1 [language]: Define a language L as the structure < ∑, E, W >, where ∑ is

the alphabet or the finite, non-empty set of words, W and E are sets of finite strings of

words, such that (∑∪W) ⊆ E and every member of E is a substring of some member of W.

3. This formal approach to Wittgenstein’s grammar is not the first. It is also not the first time that the
formalization of Wittgenstein’s notion of grammar compares it with linguist’s grammar. In 1974, the
Research Center for the Language Sciences of Indiana University published, as part of its ‘Approach to
Semiotics’ paperback series, a very interesting book by Cecil H. Brown entitled Wittgensteinian
Linguistics (The Hague: Mouton, 1974). Brown presented the contemporary linguistic controversy between
pure and descriptive semiotics as a dispute between Chomsky’s and Wittgenstein’s views of language.
Brown explicitly recognizes the evolution of Wittgenstein’s philosophy of language. When talking about
Wittgenstein’s views on language, Brown refers to what he calls Wittgenstein’s “ordinary language
philosophy” (p.13): Wittgenstein’s views after 1929 when “after having ignored the philosophy of language
for some time, he took it up again.” (p.15) “Readers who have encountered the works of both Chomsky
and Wittgenstein are no doubt aware of the pronounced difference in the manner in which each explains the
essential nature of patterned communication in the modality of natural language. This difference emerges at
the most general levels of analysis. Chomsky is concerned with pure semiotics, the development of a
language to talk about signs. Wittgenstein emphasizes descriptive semiotics, the study of actual sign use.”
(p. 13) In Brown’s interpretation, Wittgenstein claims that “any language, be it artificial or natural, is
understood not in terms of some other language, but in terms of itself, in the manner in which its signs are
ordinarily used” (p. 17). Grammatical rules do not hide themselves. They are immediately identifiable in
the surface structure of language (p. 90). By contrast, linguistic grammarians – at least of the most
common Chomskian sort – locate grammar in the not-so-accessible deep structure of language. For Brown,
“the deep structure of language is comparable to the logical systems or artificial languages of logical
positivism. The deep structure is a kind of ideal language with which sentences of natural languages can be
compared and consequently understood.” Except for its pragmatic stress, Brown’s formal treatment is very
similar to the one this chapter presents.

103



Chapter 5. Grammar

W is the set of acceptable or well-formed strings, and E is the set of expressions. Every

meaningful element of language is an expression.4 For example, in ordinary English, Σ

contains words like ‘apple’, ‘be’, ‘caring’, etc., E contains words like ‘dog’ and ‘caring’

and complex expressions like ‘my dog’ or ‘the yellow pencil on my desk.’ Finally, W

contains all the grammatically correct sentences in English: ‘Try to remember my name’,

‘This is not the end of the line’, ‘Could you come here for a second?’ etc.

B. What is Grammar?

Grammar . . . is felt to be a term with
a far wider meaning than that which a
considered definition would propose
or an elementary text illustrate. . .  It is
perhaps the vaguest term in the
schoolmaster’s, if not the scholar’s
vocabulary.

Ian Michael5

For most Wittgenstein’s scholars, ‘grammar’ in Wittgenstein has a “. . . meaning far wider

than the ordinary one.”6 In the words of Hans-Johann Glock, Wittgenstein’s notion of

grammar diverges from ordinary usage only in extension, not in sense.7 As evidence,

Newton Garver quotes one of Wittgenstein’s letters to Moore, where he writes to be

“. . .using the words ‘grammar’ and ‘grammatical’ in their ordinary sense but making

them apply to things they do not ordinarily apply to.”8 Calling Wittgenstein’s use of the

term ‘grammar’ “liberal”, Glock recognizes no significant difference between the ordinary

4. Wittgenstein calls expressions words.
5. Ian Michael, “Grammar, Divisions of Grammar and Parts of Discourse” in English Grammatical
Categories and the Tradition to 1800 (Oxford: Cambridge University Press, 1970) 37.
6. Finch, Henry LeRoy, Wittgenstein: The Later Philosophy (Atlantic Highlands: Humanities Press, 1997)
p.149.
7. Glock, H. G., A Wittgenstein Dictionary (Cambridge: Blackwell, 1996) 152.
8. Garver, N., “Philosophy as Grammar” in This Complicated Form of Life (Chicago: Open Court, 1994)
150.
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sense of grammar and Wittgenstein’s. The meaning of ‘grammar’ covers both Wittgen-

stein’s peculiar use and the ordinary one.9 In consequence, understanding Wittgenstein’s

peculiar assessment of grammar requires an investigation into the meaning of the word

‘grammar.’

The German word ‘Grammatik’ – just like the English word ‘grammar’ – descends

from the Greek ‘γραµµα’ meaning ‘letter.’ In classical Greek the expression η

γραµµατικη (τηχνη) had two principal meanings. It addressed the phonetic (accentuation

and pronunciation) and metaphysical values of letters. It also referred to the knowledge

required to read and write.10  At the time‘grammar’ entered the Latin language, its sense

had gradually extended to include the general study of literature and language. In medieval

usage, ‘grammar’ referred only to Latin grammar. In the seventeenth century it took on a

more general meaning addressing language proficiency in Latin, English, French, etc11 .

Nevertheless, the notion of ‘universal grammar’ – not the grammatical features of a

particular language, but those common to all linguistic usage –  did not appear until the

work of Port Royal grammarians in the 18th Century. Even though it disappeared again in

the middle of the nineteenth century, the work of Noah Chomsky launched a resurgence of

universal grammar in the twentieth century.12

9. However, few authors venture a detailed characterization of grammar. For LeRoy Finch, for example,
grammar is language and the phenomena connected with it in terms of its possibilities. Grammar lays
down the limits of sense in language. It draws the line that separates sense from non-sense, expressibility
from inexpressibility. Because it helps make sense of the evolution of Wittgenstein’s philosophy, LeRoy
Finch is not the only scholar to favor this interpretation. In Wittgenstein’s middle period, grammar plays a
similar role that logic did in his earlier work. During those years, Wittgenstein came to believe that logic
was not the philosophical panacea he had mistaken it to be. Instead, logic constitutes a significant part, but
not the whole of a larger grammatical philosophy. This dissertation’s definition does not diverge far from
LeRoy Finch’s.
10. (Michael 1970, 24)
11. Jackson, Howard: Discovering Grammar (Oxford: Pergamon Institute of English, 1985) 1.
12. Serbat, Guy, Casos y Funciones (Madrid: Editorial Gredos, 1988) 74-84.
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Today, the term ‘grammar’ has two uses. On the one hand, it refers to the structural

features of a language. For example, the ‘Grammar of English’ refers to its structural fea-

tures, instead of its semantics or pragmatics. On the other hand, ‘grammar’ also refers to

the science or art describing (or prescribing) language’s structural traits. One talks about

Chomskian or transformational grammars in this sense. Capitalizing the word ‘grammar’ in

the first sense avoids confusion. Some authors prefer to mark the difference by calling

‘grammar’ the first one and ‘a grammar’ the second.

These two meanings of grammar have competed with each other since the

seventeenth century. For descriptive grammarians, grammar is a science, a study of a set of

phenomena. For prescriptive grammarians, it is an art: the skill or technique of using the

language well. Ben Jonson, George Kittredge and L. Murray are well-known prescriptive

grammarians. In contrast, Francis Bacon was a descriptive grammarian. Today, most

consider the prescriptive and descriptive aspects of grammar inseparable. In the introductory

pages of  his Discovering Grammar, Howard Jackson writes,

In the event, although different basic attitudes prevail, the distinction is
probably not so clear cut as the terms ‘descriptive’ and ‘prescriptive’ imply.
To be sure, prescriptive grammarians included rules in their grammars, such
as “you should not end a sentence with a preposition”; but in so doing they
still had to describe what a ‘sentence’ and a ‘preposition’ are. And a descrip-
tive linguist producing a grammar of modern English, for example, has to
make a choice of which English usage he is going to describe; and he would
usually select the ‘standard’ variety, perhaps even ‘standard educated
usage’, and by so doing he would have indulged in an implicit pres-
cription.13

Nevertheless, the descriptive/prescriptive dichotomy survives in the current opposition

between school and linguistic grammar. School grammarians stress the prescriptive aspect

13. (Jackson 1985, 2)
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of grammar, while linguistic grammarians emphasize the descriptive dimensions of their

science.14

Sometimes ‘grammar’ refers to the basic structural aspects of a language. Other

times, it means only the ‘correct’ or ‘standard’ usage of the language. This makes

specifying both the aspect of the language and the kind of grammar referred to vital.

Meaning of Grammar

Linguist Grammar School Grammar

Aspect of Language General Usage Correct or Standard Usage

Study of Language Descriptive Prescriptive

For the purposes of this dissertation, ‘grammar’ describes the structural aspects of

language in its general use. For further clarification, it restricts ‘grammar’ to the syntactic

structure of sentences. Grammar consists of two sub-components: morphology and syntax.

Morphology deals with the form of words, while syntax deals with meaningful word

combinations.15  ‘Syntax’ has its roots in the Greek word for ‘arrangement’. It addresses

the possible arrangements, patterns or orders of words as well as the differences in meaning

that the various orderings bring out.16

14. In Traditional Grammar Jewell A. Friend argues against the identification of the prescriptive tradition
with schoolroom grammar. At the end of his book’s introduction, he lists seven points of divergence.
Amongst them, schoolroom grammar does not distinguish between written and oral forms of language,
also ignoring the distinction between lexical and grammatical meaning. (Carbondale: Southern Illinois
University Press, 1976) i - xi.
15. Huddleston, Rodney, English Grammar: An Outline (Cambridge: Cambridge University Press, 1988)
1.
16. (Jackson 1985, 3)
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C. The Conventional Approach

To define the ordinary sense of ‘grammar’, this section synthesizes the essential features of

sophisticated linguistic grammars like Chomsky’s and everyday school grammar. All

conventional grammars distribute the expressions of the language into several categories,

providing explicit rules for combining these expressions in a way that acknowledges the

grammatical categories to which they belong. All conventional grammars present this basic

feature.

Reduced to the simplest possible terms, the methods of structural gramma-
rians consist of breaking the flow of spoken language into the smallest
possible units, sorting them out, and studying the various ways in which
these units are joined in meaningful combinations.17  

The conventional presentation of syntax for the predicate calculus exemplifies this feature.

The basic symbols – broken into categories, and a recursive definition for terms and well-

formed formulas – determine the language of predicate calculus. School grammar has a

similar presentation. 

Most traditional “school” grammars begin by defining and classifying
. . .words into part-of-speech categories, and proceed from there to more
inclusive sentence components until they arrive at a discussion of the
sentence itself.18

The first step in the process of learning the grammar of a language is learning the vocabu-

lary and the grammatical categories. Learning that ‘duck’ is a noun and ‘she’ a pronoun is

not sufficient. To learn that ‘duck’ is a singular common noun and that ‘she’ is a singular,

feminine, third person, personal pronoun is also necessary. The categories to which an

expression belongs exhaust its grammar. The next step is to learn which sequential combi-

nations of categories are grammatically correct and which are not. Determining which

17. Jeanne H. Herndon, A Survery of Modern Grammars (New York: Molt, Rinehart & Winston,  1970)
65.
18. Joseph La Palombara, An Introduction to Grammar (Cambridge: Winthrop, 1976) 23.
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expression sequences are meaningful requires knowing to which categories words belong

and which categories combine into grammatically acceptable expressions.

A set C of grammatical categories, an interpretation function I and a set S of word

combination rules constitute an abstract grammar G = <C, I, S>. Besides grammatical

categories like ‘noun’ in school grammar, or ‘statement letter’ in the syntax of

propositional logic, a grammar also includes an interpretation function that determines

which words of the language belong to which categories. This function maps the category

‘noun’ to the set of nouns in the language. Finally, the set of rules S sets parameters for the

combination of expressions into other expressions. For example, consider SEN as the

category ‘sentence’ and CON as the category ‘conjunction’. The rule SEN CON SEN →

SEN says that the concatenation of a sentence, a conjunction and a sentence creates another

sentence.

Definition 1.2.1 [grammatical language]: Let C, C0, C1, C2, . . . and the arrow → be the

basic symbols of grammatical language.

Definition 1.2.1.1 [categorical symbols]: C, C0, C1, C2 are the categorical symbols of

grammatical language.

Definition 1.2.1 [basic symbols]: Let C, C0, C1, C2, . . . and the arrow → be the basic

symbols of grammatical language.

Definition 1.2.2 [grammatical formulae]: Every sequence of categorical symbols of the

form C0 C1 . . . Cn → C is a well-formed grammatical formula.

Definition 1.2.2.1 [antecedent and resulting categorical symbols]: Given a gram-

matical formula C0 C1 . . . Cn → C, the antecedent categorical symbols of the rule are C0

C1 . . . Cn, and C is the resulting categorical symbol. 
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Definition 1.2.2.2 [degree of a grammatical formula]: The degree a grammatical

formula C0 C1 . . . Cn → C is n, the number of antecedent categorical symbols. 

Definition 1.2 [grammatical theory]: Given a set of categories C, a grammatical theory

S is a set of well-formed expressions of the language — called the rules of the grammar—

such that, for all C ∈ C, C occurs in some rule s ∈ S.

Definition 1.2.3 [interpretation]: Given a language L = <Σ, E, W> and a set of

categorical symbols C, an interpretation I is a function from C into the power set of the

expressions, I: C →℘(E), such that ∪I[C]=E.

Definition 1.2.4 [application]: A rule C1 C2 . . . C n → C applies to an n-tuple of

expressions <e1, e2, . . . en> iff, for all 1≤i≤n, e
i
∈I(C

i
 ).

Definition 1.2.5 [result of an application]: A concatenation of expressions

e1{e2{. . .{en is  the result of applying a rule C1 C2 . . . Cn → C to an n-tuple of expres-

sions <e1, e2, . . . en> iff the rule applies to the n-tuple.

Definition 1.2.6 [satisfaction]: A sequence of expressions <e1, e2, . . . en> satisfies a rule

C1 C2 . . . Cn  → C iff, if the rule applies to the n-tuple <e1, e2, . . . en>, then e1{e2{. . .{en

∈ I(C) where e1{e2{. . .{en is the result of applying C1 C2 . . . Cn  → C to  <e1, e2, . . . en>.

Definition 1.2.7 [grammatical truth]: A rule s of degree n is true for a given

interpretation I, written ÷
I
s, iff every n-tuple of language expressions satisfies s.

Definition 1.2.8 [model of a theory]: An interpretation I models a grammatical theory S

if every rule in S is true for I.
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Definition 1.2.9 [consistency]: A grammatical theory S is  consistent, if some

interpretation function I models S.

Example 1.2.10: Consider the grammatical theory S with categories SENT, NOUN and

VERB and the single rule s:  NOUN VERB → SENT. Interpretation I assigns to NOUN

the set {Bill} and to VERB {runs}. If I assigns any set of expressions including ‘Bill runs’

to SENT, then s is true for I and I models S. However, if another interpretation J agrees with

I on NOUN and VERB but assigns to SENT a set of expressions not including ‘Bill runs’,

then s is not true for J and J fails to model S.

Note 1.2.11: Those familiar with the conventions of Chomskian or generative grammar will

recognize that the above notion of abstract grammar is divorced from all questions of

computability. It sets no a priori  limit on the number of rules that may enter into a gram-

matical theory, except that they cannot comprise a proper class. Indeed, as will appear later,

any language L whose well-formed expressions make up a set will have a grammar in this

sense. The above notion of abstract grammar is ‘purely logical’, yielding a form of de-

compositional description of a language failing to constrain a finite machine’s ability to

recognize or decide appropriate sequences.

Definition 1.3 [conventional equivalence]: Given a set of categories C and an inter-

pretation I, define the relation of conventional equivalence ~ on E2 by:

e1~e2 iff ∀C∈C [ (e1∈I(C)) ⇔ (e2∈I(C)) ]. 

Two expressions are conventionally equivalent if they belong to exactly the same

categories.

Definition 1.4 [decomposition]: Let S be a grammatical theory. An expression e

decomposes into a set of expressions B iff (1) a rule s in S applies to the n-tuple of

expressions <e1, e2, ... en>, (2) an expression e i occurs in the n-tuple <e1, e2, ... en> if and
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only if it belongs to B, and (2) the application of rule s to ntuple <e1, e2, ... en> results in

expression e.

An expression decomposes into a set of other expressions if a rule in the grammatical

theory explains how to combine those expressions into the original one. Given that other

expressions might exist beyond the basic symbols and acceptable strings (E might be larger

than ∑ ∪W), other grammars might decompose a string in different ways. Consider the

expression ‘My dog is dead.’ If a grammatical rule said that combining a singular nominal

expression (like ‘my dog’) with the singular third person indicative present form of the verb

to be (‘is’) and an adjective (like ‘dead’) resulted in a sentence, then ‘My dog is dead’

would decompose into the three expressions ‘my dog’, ‘is’ and ‘dead’. On the other hand,

if another rule stated that subjects combined with predicates matching in number form

sentences, then ‘My dog is dead’ would decompose into only two expressions, ‘My dog’

and ‘is dead’. In consequence, the set of expressions into which an expression decomposes

depends upon the rules in the grammatical theory.

Definition 1.5 [construction as, code]: Given a grammatical theory S, a set of categories

C and an interpretation function I, a construction of an expression e as member of category

C is a sequence P = <p1, p2, . . . pn> of expressions – said to occur in P, such that there is a

sequence of categories <C1, C2, . . . Cn> —called the code of P, where for all 1≤i≤n,

1. Ci ∈ C

2. pi ∈ I(Ci)

3. If pi ∉ ∑, then applying a rule s = D1 D2 . . . Dk → Ci in S to a k-tuple of expressions

<e1, e2, . . . ek>, such that for all 1≤j≤k, Dj = Cg<i  and ej = eg, results in pi. In that case, pi

occurs in P in virtue of s
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4. If pi ∈ ∑, then I(Ci) ⊆ ∑

5. pn = e, and

6. Cn = C.

Proposition 1.6: Every expression occurring in a construction has a construction itself. ~

Definition 1.7 [proof]: If e∈W and I(C)=W, then the construction of e as C is a proof.

Definition 1.8 [tree]: Given a construction P = <p1, p2, . . . pn> of code <C1, C2, . . . Cn>

for an acceptable string w∈W in a grammatical theory S, a set of categories C and an inter-

pretation function I, a tree of P is a labeled directed graph <T, < > such that:

1. For all p ∈ P, p = label(t) for some node t ∈ T

2. If t1 < tk, t2 < tk, . . . tk-1 < tk, then s = D1, D2 . . . Dk-1 → Dk is a rule in S such that

for all 1 ≤ i ≤ k, label(ti) = pj and Di = Cj for some 1 ≤ j ≤ n

3. For all t ∈ T, label(t) ≠ w, iff t < u for some u ∈ T

4. For all t1, t2, t3 ∈ T, if t1 < t2 and t1 < t3, then t2 = t3

5. For all t ∈ T, label(t) ∉ ∑ iff u < t for some u ∈ T

Definition 1.9 [occurrence of an expression]: Let T be the tree of a construction P, then

an expression occurs in T iff it occurs in P.

Definition 1.10 [correspondance]: A proof P = <p1, p2, . . . pn>corresponds to a tree T

iff for all nodes t1 < t2 in T, there are 1 ≤ i ≤ j ≤ n such that ei = label(t1) and ej = label(t2).

Definition 1.11 [theorem]: An expression w is a theorem of a grammatical theory S,

written |w, iff w has a proof in S.
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Definition 1.12 [completeness]: A grammatical theory S, together with a set of categories

C and an interpretation I, is complete for a language L if all acceptable strings of L are

theorems of S and conversely. In other words, S is complete whenever w∈W iff |w.

Definition 1.13 [conventional grammar]: Given a language L, a conventional grammar

for L is a triple <S, I, C> where I models S, and S, together with C and I,  is complete for L.

D. Example: The Language of Propositional Calculus

Any conventional presentation of propositional calculus syntax fits the previous definition

of a conventional grammar. Take, for example, Elliot Mendelson’s presentation of proposi-

tional calculus in the third edition of his Introduction to Mathematical Logic.19  Displaying

the syntax of propositional calculus as a language in the aforementioned form <∑, E, W>

and reconstructing Mendelson’s recursive definition of well-formed formula as a conven-

tional grammar <S, I, C> is easy. Nevertheless, besides showing that the grammar

corresponds to the syntax, it also illustrates the concepts defining the notion of conventional

grammar.

1. The Language of Propositional Calculus

The Language of Propositional Calculus L is the structure <∑, E, W> where ∑ is the set of

basic symbols { ¬, ⇒, (, ), A1, A2, A3, . . . }, W is the set of well-formed formulas of

propositional calculus and E contains both the basic symbols and well-formed formulas, so

that E = ∑∪W.

2. The Grammar of Propositional Calculus

The following is Mendelson’s definition of a well-formed formula [wff]:

19. Elliot Mendelson, Introduction to Mathematical Logic (Monterrey: Wadsworth & Brooks/Cole
Advanced Books & Software, 1987)
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1. The vocabulary ∑ of language L contains ¬, ⇒, (, ), and the letters Ai with positive

integers i as subscripts: A1, A2, A3, ... . The symbols ¬ and ⇒ are  primitive connectives,

and the letters A
i
 are  statement letters.

2. (a) All statement letters are well-formed formulas (wfs).

(b) If A and B are wfs, so are (¬A) and (A ⇒ B ).

An expression is a wf only if it can be shown to be a wf on the basis of clauses (a) and (b).

It is possible to reconstruct this definition as a conventional grammar the following way. 

P = <S, I, C>

C = {neg, arr, lpar, rpar, sl, wff}

I(neg) = { ¬ }

I(arr) = { ⇒ }

I(lpar) = { ( }

I(rpar) = { ) }

I(sl) = { A1, A2, A3, . . . }

I(wff) = well-formed formulas

The syntax of propositional calculus contains six grammatical categories: corner (neg), right

arrow (arr), open parenthesis (lpar), closed parenthesis (rpar), statement letters (sl) and

well-formed formulas (wff). Also, it contains three formation rules.

S = {s1, s2, s3}

s1 = sl → wff

First, all statement letters are well-formed formulas. If a is an expression of category sl (a

statement letter), then it is an expression of category wff, i.e. a well-formed formula.

s2 = lpar wff arr wff’ rpar → wff
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Second, if A and B are arbitrary wfs, so is (A ⇒ B ). If (i) c and d are well-formed formulas

– expressions of category wff – (iii) a is an expression of category lpar (an open

parenthesis), (iii) e is an expression of category rpar (a closed parenthesis), and (iv) c is an

expression of category  arr (a right arrow), then the concatenation a{b{c{d{e is a well-

formed formula itself.

s3 = lpar neg wff rpar → wff

Third, if A is a wf, so is (¬A). If (i) d is an expressions of category wff (a well-formed for-

mula), (ii) a is an expression of category lpar (left parenthesis), (iii) d is an expression of

category rpar (right parenthesis), and (iv) b is an expression of category  neg (corner), then

the concatenation a{b{c{d,is an expression of category wff, that is, a well-formed formula

itself.

Proposition 1.14: I models S.

Proof: Assume not. Then, a rule s∈S is not true for I. Hence, a sequence of expressions

<e1, e2, . . . en, . . . > does not satisfy s. Since S = {s1, s2, s3}, three cases must be

considered.

Case 1. s = s1. <e1, e2, . . . en, . . . > does not satisfy sl → wff. Hence, sl → wff applies to

<e1>, but the result of applying sl → wff to <e1> does not belong to I(wff). Since sl →  wff

applies to <e1>, e1∈I(sl). I(sl) = { A1, A2, A3, . . . An }. Therefore, e1 is a statement letter. In

other words, e1=Ai for some 1≤i≤n. Also, it is the result of applying sl → wff to <e1>. In

consequence, Ai does not belong to I(wff). But I(wff) is the set of well-formed formulas.

This would mean that the statement letter Ai is not a well-formed formula, which is false. 
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Case 2. s = s2. <e1, e2, . . . e n, . . . > does not satisfy lpar wff arr wff’ rpar → wff. Hence,

lpar wff arr wff’ rpar → wff applies to <e1, e2, e3, e4, e5>, but the result of applying lpar wff

arr wff’ rpar → wff to <e1, e2, e3, e4, e5> does not belong to I(wff). Since lpar wff arr wff’

rpar → wff applies to <e1, e2, e3, e4, e5>, e1∈I(lpar), e2∈I(wff), e3∈I(arr), e4∈I(wff) and

e5∈I(rpar). Therefore, e1 is an open parenthesis, e2 is a well-formed formula, e3 is the right

arrow, e4 is also a well-formed formula and e5 is the closed parenthesis. The result of

applying lpar wff arr wff’ rpar → wff to < e1, e2, e3, e4, e5> is a sequence of the form

(A⇒B) where A and B are wfs. Hence, it does not belong to I(wff). But I(wff) is the set of

well-formed formulas. This would mean that (A⇒B)  is not a well-formed formula, which is

false.

Case 3. s = s3. <e1, e2, . . . en, . . . > does not satisfy lpar neg wff rpar → wff. In

consequence, lpar neg wff rpar → wff applies to <e1, e2, e3, e4>, but the result of lpar neg

wff rpar → wff to <e1, e2, e3, e4> does not belong to I(wff). Since lpar neg wff rpar → wff

applies to <e1, e2, e3, e4>, e1∈I(lpar), e2∈I(neg), e3∈I(wff) and e4∈I(rpar). Hence, e1 is an

open parenthesis, e2 is the corner, e3 a well-formed formula and e4 is the closed parenthesis.

The result of applying lpar neg wff rpar → wff to < e1, e2, e3, e4> is a sequence of the form

(¬A) where A is a wf. Thus, it does not belong to I(wff). But I(wff) is the set of well-formed

formulas. This would mean that (¬A)  is not a well-formed formula, which is false.

Therefore, I models S for the language of propositional calculus L. ~

Proposition 1.15: All acceptable strings w∈W have a proof.

Proof: Let w∈W. 
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Induction on the complexity of w.

 Base: w is a statement letter.

w∈∑ and w∈I(sl). Hence, <w> is the construction of w with code <sl>. Let w be a wf of

complexity n.

Inductive hypothesis: all wfs in L of complexity m<n have a construction in P.

Case 1. w is of the form ¬A.

Since A’s complexity is less than n, the inductive induction applies to it. There is a proof 

PA = < e1, e2, e3, . . . en > of A with code CA = < C1, C2, C3, . . . Cn, > .

Claim: Pw = < e1, e2, e3, . . . en, ¬, w > is a proof of w with code Cw = < C1, C2, C3, . . . Cn,

neg, wff >.

Proof: Let e
i
  be an expression in Pw.

Case 1: i ≤ n. e
i
  ∈ PA. Hence, either e

i
∈∑ or e

i
 decomposes into some of the previous

expressions in the sequence.

Case 2. e
i
  = ¬. Hence, e

i
  ∈ ∑ and e

i
  ∈ neg.

Case 3. e
i
  = w. Since PA is a proof of A, en=A. From s3, w decomposes into ¬ and A, both

occurring before w in Pw. Therefore, PW is a proof of w.

Case 2. w is of the form A ⇒ B.

Since A and B are of complexity less than n, the inductive induction applies to them. There

is a proof  PA = < e1, e2, e3, . . . en > of A with code CA = < C1, C2, C3, . . . Cn, > and a proof

PB = < en+1 , en+2 , en+3 , . . . en+m > of B with code CB = < Cn+1 , Cn+2 , Cn+3 , . . . Cn+m, > .

Claim: Pw = < e1, e2, e3, . . . en, en+1 , . . . en+m, ⇒, w > is a proof of w with code Cw = < C1,

C2, C3, . . . Cn, Cn+1 , . . . Cn+m, arr, wff >.
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Proof: Let e
i
  be an expression in Pw.

Case 1: i ≤ n. e
i
  ∈ PA. Hence, either e

i
∈∑ or e

i
 decomposes into some of the previous ex-

pressions in the sequence.

Case 2: n < i ≤ n+m. e
i
  ∈ P B. Hence, either e

i
∈∑ or e

i
 decomposes into some of the pre-

vious expressions in the sequence.

Case 3. e
i
  = ⇒. Hence, e

i
  ∈ ∑ and e

i
  ∈ arr.

Case 4. e
i
  = w. Since PA is a proof of A, en= A. Since PB is a proof of B, en+m= B. From

s2, w decomposes into ¬, A and B, occurring before w in Pw. Therefore, PW is a proof of w.

~

Proposition 1.16: The structure P = <S, I, C> is a conventional grammar.

Proof: Directly from the previous two propositions 1.14 and 1.15. ~

E. Strong, Redundant and Trivial Grammars

Section C presented the minimal requirements for an abstract grammar. This section

explores two special kinds of abstract grammars: strong and trivial. A strong grammar con-

tains constructions for every expression as every category it belongs to. The syntax of first

order logic is a clear example of a strong grammar, because its only categories are ‘well-

formed formula’ and ‘basic symbols’.

The grammatical categories of a trivial grammar are all singletons of expressions. As

their names suggest, trivial and strong grammars represent the two extremes of grammatical

expressibility. A strong grammar’s categorical distinctions are the finest possible, while

those of a trivial grammar are the weakest. Any grammatical distinction not in a strong

grammar is superfluous. Any grammar containing superfluous distinctions is redundant.
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1. Strong Grammars

Definition 1.17 [strong grammar]: A conventional grammar <S, I, C> is  strong if, for

every expression e ∈ E and every category C ∈ C, if e ∈ I(C), then e has a construction as

C.

Example 1.17.1: The above grammar P of the syntax of propositional calculus is strong. 

Proof: Let e∈E. Since E=W∪∑, either e∈W or e∈∑. In the first case, where e∈∑, if e∈C

<e> constructs e as C with code <C>. In the second case, where e∈W, from proposition

1.13, e has a proof Pe. Also, Pe constructs e as wff. Except for statement letters, which

belong to ∑, no wff belongs to any other category except wff. This proves that every expres-

sion in L has a construction in P. In other words, P is strong.

Proposition 1.18: For every language such that E = W ∪ ∑, every conventional grammar

is strong. ~

Recognizing which grammatical distinctions give rise to a language’s significant

syntactic features is critical. Imagine a grammar for the syntax of propositional calculus

containing, instead of a category for statement letters SLET = { Ai | i∈N }, two categories

ODSL = {Ai | i∈N and i is odd } and EVSL = {Ai | i∈N and i is even }. It is easy to

imagine how, instead of a rule saying all propositional symbols are well-formed formulas,

the grammar had two such rules: one for each of the categories ODSL and EVSL. To an

extent, this distinction is superfluous, if compared with the distinction between the negation

and open parenthesis symbols. Consider an English grammar which not only distinguishes

between adjectives and adverbs but also between nouns which contain more than three

occurrences of the letter ‘e’ and nouns which do not. Clearly, this latter distinction does not

have the grammatical significance of the former. The grammar resulting from the collapse of
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two categories with superfluous distinctions neither stops being a grammar nor loses its

strength.

2. Redundant Grammars

Definition 1.19 [redundant grammar]: Let <S, I, C> be a conventional grammar for

language L such that A, B ∈ C. Let AB be a categorial symbol not in C. Let C* be (C - {A,

B}) ∪ {AB}. Let S* be the grammatical theory resulting from substituting every

occurrence of A or B by AB, and let I* be the function such that for all C ∈ C, I*(C) = I(A)

∪ I(B) if C = AB, and I*(C) = I(C), otherwise. Grammar <S, I, C> is  redundant. if the

following to conditions hold: (i) <S*, I*, C*> is also a conventional grammar for language

L, and (ii) if <S, I, C> is strong, so is <S*, I*, C*>.

Example 1.19.1: The above grammar P for the syntax of propositional calculus is not

redundant.

Proof: Proving the non-redundancy of P requires demonstrating that the collapse of any two

categories in C affects the conventionality or strength of P. This seems false, because it is

possible to take a well-formed-formula and substitute one of its component expressions for

an expression not of the same category, to obtain a new-well-formed formula. This is

possible by substituting molecular subformulas for atomic ones, like substituting ‘A3’ for 

‘(A1⇒Α2)’ in ‘¬ (A1⇒Α2)’ to obtain ‘¬ A3’ (claim 1). This is the only collapse of

categories that respects truth (claim 3). However, this substitution does not respect the

completeness of P (claim 2). P* is not complete for L, because it lacks proofs for every

well-fromed formula. In particular, it offers no proof for single letters being well-formed.

Therefore, P* is not a conventional grammar for L.

Slorwff is a categorical symbol not in C. Let C* be (C - {sl, wff}) ∪ {slorwff}. Let S*

be the grammatical theory resulting from substituting every occurrence of sl or wff by
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slorwff, and let I* be the function such that for all C ∈ C, I*(C) = I(sl) ∪ I(wff) if C =

slorwff, and I*(C) = I(C), otherwise.

Claim 1. P* = <S*, I*, C*> models the language of propositional calculus L. In other

words, every rule in S* is true for L.

Proof: Every statement letter by itself is also a well-formed formula: I(sl) ⊆ I(wff). Hence,

I(slorwff) = I(wff) ∪ I(sl) = I(wff). Hence, the substitution of wff for slorwff does not affect

the interpretation of the rule. Similarly, every occurrence of sl or wff in S could stand for

slorwff without affecting the truth of the theory. First, s1 = sl→wff is the only rule in which

sl occurs. Hence, it is the only rule in S that is significantly transformed in S*. Substituting

slorwff  from s1 for every occurrence of sl results in the rule slorwff → slorwff, but

obviously, ÷
I 
wff→wff . Therefore, ÷

I* 
slorwff→slorwff . End of proof for claim 1.

Claim 2. The grammar P* = <S*, I*, C*> resulting from collapsing the categories wff and

sl into slorwff, is not complete.

Proof: No proof for statement letters as well-formed formulas would exist. Remember that

this definition of proof includes the condition that every basic symbol in a proof must

belongc to a category whose interpretation includes only basic symbols. The syntax of

propositional calculus satisfies this condition, precisely because a separate category exists

for well-formed formulas which are also basic symbols – statement letters. In other words,

I(sl) ⊆ ∑. However, without sl, this is no longer true. End of proof of claim 2.
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Claim 3. Let C
1
orC

2
  be the category resulting from collapsing different categories C1 and

C2 in C such that C1 is neither sll nor wff , and let P* = <S*, I*, C*> be the grammar

constructed according to definition 1.19. At least one rule s* in S is false for L.

Proof: Case 1. C2 is sl. Since s1 = sl → wff ∈ S, s1* = C
1
orsl → wff ∈ S*. Since C1 is not

wff, s* is false for L. In the vocabulary of propositional calculus, only single letters are well-

formed formulas. Case 2. C2 is wff. Since s1 = sl → wff ∈ S, s1* = sl → C
1
orwff ∈ S*.

Since C1 is not sl, s* is false for L. Substituting a single letter for another symbol in the

vocabulary of propositional calculus in a well-formed formula results in a non-well-formed

expression. Case 3. C1 and C2 are neg and arrow. Since s2 = lpar wff arr wff’ rpar → wff

∈ S, s2* = lpar wff anegorrr wff’ rpar → wff ∈ S*, but s2* is false for L. Since negation

and arrow have a different n-arity, they cannot substitute for each other in a well-formed

formula. Notice that if the language included, besides negation and implication, symbols for

other propositional operators, it would not be necessary to include a new grammatical

category for each one. They would be grouped by their n-arity. For example, in the syntax

of such an extended language for propositional grammar, ‘⇒’ ~G ‘∨’ if G is not

redundant. Symbols of the same n-arity can substitute for each other, without affecting their

truth or construction. Finally, case 4, C1 is lpar or rpar. Since s2 = lpar wff arr wff’ rpar

→ wff ∈ S, s2* = C
1
orlpar wff anegorrr wff’ rpar → wff ∈ S*, but s2* is false for L.

Also, since s2 = lpar wff arr wff’ rpar → wff ∈ S, s2* = lpar wff anegorrr wff’  C
1
orlrar

→ wff ∈ S*, but s2* is false for L. End of claim 3. ~
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3. Trivial Grammars

Definition 1.21 [trivial grammar]: Let S = <S, I, C> be a conventional grammar. If ∀e,

f ∈ E (e~sf) ⇒ (e = f), then S is trivial.

Theorem 1.23: Every language L has a trivial grammar.

Proof: To easily create a trivial grammar for a language, construct for every expression in

the language a unique category whose interpretation is its singleton. This specifies that for

every expression e ∈ E, [e] = {e}. For the grammatical rules, constructing a rule for the

decomposition of every expression into its basic words is sufficient. For example, for the

expression ‘second world war’, construct the rule SECOND WORLD WAR →

SECOND-WORLD-WAR, where the only expression in the category SECOND is

‘second’, the only expression in WORLD is ‘world’, the only expression in the category

WAR is ‘war’ and the only expression in the category SECOND-WORLD-WAR is

‘second world war’. The only category which may include more than one expression is the

category of acceptable string. Hence, the acceptable string ‘The Ocean is Deep’ only needs

the inclusion in the grammatical theory of the rule THE OCEAN IS DEEP → WFF. It is

straightforward to see that this method has application in any language. ~

III. Wittgenstein’s Approach

In Wittgenstein’s grammatical method, categories do not depend directly on the rules for

building acceptable strings, but proceed from given acceptable strings through allowable sub-

stitutions. Two expressions belong to the same grammatical category if they can substitute

for each other without affecting the grammar of the expression. Nevertheless, Wittgen-

stein’s writing is ambiguous as to whether the substitution of expressions belonging to the

same category must respect acceptability or all the grammatical categories. The following
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pages explore the first interpretation, where the grammar of a word determines the words

which can substitute for it preserving acceptability. For the rest of this chapter, two

expressions are Wittgenstein-equivalent if the substitution for each other preserves

grammatical correctness in any context.20  Substituting some or all of the occurrences of an

expression in an acceptable string by another one with the same grammar results in an

acceptable expression.

Definition 2.1 [context]: Given a language <Σ, E, W>, let expression e occur in acceptable

string w. Omitting an occurrence of e from w and leaving blanks in its place produces an

incomplete string called a context. A context is not a complete expression, because it

includes blank spaces. 

Definition 2.2 [Wittgenstein category]: Let C be a context, and let function A assigns to

each expression e∈E the string resulting from placing e in the blanks of C. Define the

associated Wittgenstein category of the context as B = { e∈E | A(e)∈W }, also expressed

as B = λx A(x).

Definition 2.3 [Wittgenstein-grammatical equivalence]: Let A be the set of Wittgen-

stein categories of the language, containing every category associated with any context in the

language (resulting from W and E). Given A, for all e, f ∈ E, (e ~w f) iff {C∈A | e∈C} =

{C∈A | f∈C}. This defines the relation of Wittgenstein-grammatical equivalence among

expressions. Thus, the above relation’s equivalence classes are the Wittgenstein-

grammatical categories.

[e]A = { A ∈ A | e ∈ A }

Proposition 2.4: For all e, f ∈ E, {(e~A f) iff ∀A ∈ A [ A(e) ∈ W iff A(f) ∈ W ]}. ~

20. BT §9, p.34.
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Proposition 2.5: ~A is an equivalence relation on E. ~

IV. A Comparison between the two Approaches

After defining both approaches, it is crucial to determine whether they yield different gram-

matical categories. This section shows that it is possible to construct a conventional

grammar out of Wittgenstein’s categories. The rest of this section compares this sort of

grammar with other more traditional ones. Most of all, it shows how the distinctions resul-

ting from Wittgenstein’s approach to grammar are less fine than the conventional ones.

A. Wittgenstein Grammar

Definition 3.1 [Wittgenstein Grammar and Pure Wittgenstein Grammar]: Let G =

<C, I, S> be a conventional grammar for a language L = <Σ, I, C>such that for every pair of

expressions e, f ∈ E, e~Gf iff e~Af, where A is the set of Wittgenstein categories for L. Call

G a Wittgenstein grammar for L. Let S be a conventional grammar for language L such that

I[C]=A, where A is the set of Wittgenstein categories for L, then G is a pure Wittgenstein

grammar for L.

A conventional grammar bears  Wittgenstein’s name if it respects the notion of Wittgen-

stein equivalence. It is a pure Wittgenstein grammar  if the categories interpretations are the

language’s Wittgenstein categories.

Proposition 3.2:  Every pure Wittgenstein grammar is a Wittgenstein grammar. ~

Proposition 3.3: A conventional grammar G is a Wittgenstein grammar iff ∀e, f ∈ E, e~Gf

iff e~wf, where W is the set of Wittgenstein categories. ~

Theorem 3.4: Not every language has a pure Wittgenstein grammar.

Proof: Consider the following language L:
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Σ = {a, b, c}

W = {ab, ac, ba, bc, ca, cb}

E = Σ ∪ W

The contexts of the language, with its corresponding Wittgenstein categories, are

A = {b, c} corresponding to contexts λx (xa) and λx (ax),

B = {a, c} corresponding to contexts λx (xb) and λx (bx),

C = {a, b} corresponding to contexts λx (xc) and λx (cx),

and W.

Assume towards a contradiction, that L has a pure Wittgenstein grammar <S, I, C>.  A1 A2

→ W is a rule s ∈ S, where A1, A2 and W ∈ A. Unfortunately, every combination of two

categories in A yields a string of symbols not in W. A and B produce ‘cc’, A and C yield

‘bb’ and B and C make ‘aa’. Hence, it is impossible that s be true in L. ~

The method for producing trivial grammars from Theorem 1.23 generates Witt-

genstein grammars for any language. Considering Wittgenstein equivalence classes as

grammatical categories guarantees that for every expression e ∈ E, e~Gf iff e~wf. Construc-

ting a rule for every decomposition of every acceptable string produces a true grammatical

theory. For example, if the grammar contains the acceptable string ‘rabbits run wild’,

introduce RABBITS, RUN and WILD as categories and RABBITS RUN WILD → WFF

as a rule. Assign the interpretation [rabbit]w to category RABBITS, the interpretation [run]w

to RUN, [wild]w to WILD, and the set of acceptable strings in the language to WFF.

When using this method to construct a trivial Wittgenstein grammar, including

decomposition into basic words, as well as into other complex expressions, is essential. For
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example, if the language includes ‘run wild’ as a complex expression, add to the

grammatical theory the rule RABBITS RUN-WILD → WFF, where the equivalence class

[run wild]w interprets the category RUN-WILD. Otherwise, the rules might not use all the

Wittgenstein categories.

Clearly, this method applies to any language. However, proving that every language

has a Wittgenstein grammar requires the following lemma:

Lemma 3.5: Given a language L, let e and f be a pair of expressions of the language such

that f occurs in e. Let g be the string resulting from substituting every occurrence of f in e

by h. For any strong grammar S for the language L, if f ~s h, then e ~s g.

Proof: Assume, towards a contradiction, that f ~s h, but not e ~s g. Then, e ∈ I(C) and

g ∉ I(C) for some conventional grammatical category C ∈ C. Since S is strong, there is a

construction P of e as C. Let P = <p1, p2, . . . pn> and let <C1, C2, . . . Cn> be a code for it.

For every expression pi occurring in P, construct qi substituting all occurrences (if any) of f

in pi by h.

Claim: For all i≤n, qi∈I(Ci).

Proof of claim by induction on i. 

Base: i=1. Hence, p1 ∈ ∑. Since no word in the vocabulary occurs in another simple word,

either p1 = f or not. In the first case, if p1 ≠ f, then p1 = q1. Since p1 ∈ I(C1), then q1 ∈

I(C1). In the second case, if p1 = f, then q1 = g. Also, Ci = C. Therefore, since f ~s h, q1 ∈

I(Ci).  In either case, q1 ∈ I(Ci).

Inductive hypothesis: Assume that, for all j<i, qj ∈ I(Cj), to prove that qi ∈ I(Ci).
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Either pi ∈ ∑ or not. In the first case, pi = f ~s h = qi, so it reduces to the base case. In the

second case, some rule s = D1 D2 . . . Dm→C1  in S decomposes p1 into some previous

expressions in P. In other words, p1 is the result of applying s to a sequence of expressions

<e1, e2, . . . em> such that for all 1 ≤ g ≤ m, eg = pk and Dg = Ck for some k<i . This also

means that every expression eg in <e1, e2, . . . em> occurs in P somewhere before pi.

Because of this, the inductive hypothesis applies to them. In consequence, for all 1 ≤ g ≤ m,

qk ∈ I(Ck) for some k<j . In this case, let eg’ = qk. Since Ck is the category of term Dg in s,

rule s applies to <e1’, e 2’, . . . em’>. Since the only difference between eg and eg’ is the

substitution of f for h, qi is the result of applying s to <e1’, e2’, . . . em’>. Finally, since Ci is

the resulting category of s, qi also belongs to the interpretation of Ci. End of proof of claim.

From the claim, for all i≤n, qi ∈ I(Ci). In particular, pn ∈ I(Cn). However, pn = g and

Cn = C, so g ∈ I(C), which contradicts the hypothesis. ~

Corollary 3.6: Let e =  e1{e2{. . .{en, and e’= e1’{e2’{. . .{en’. Given any strong

grammar S, if, for all 1≤i≤n ei ~s ei’ then e ~s e’. ~

Corollary 3.7: Let e be an acceptable string of a language L such that another expression f

occurs in e. Let g be the string resulting from substituting every occurrence of f in e by h.

For any conventional grammar S for the language L, if f ~s h, then g is acceptable too. ~
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Corollary 3.8: Given a language < ∑, E, W >, let e =  e1{e2{. . .{en ∈ W, and e’=

e1’{e2’{. . .{en’ ∈ E. Given any conventional grammar S, if, for all 1≤i≤n ei ~s ei’ then e’

∈ W. ~

Theorem 3.9: Every language L has a Wittgenstein grammar.

Proof: Let L = <Σ, E, W> be a language. Let C be the set of Wittgenstein-equivalence

classes. C = { [e]w | e ∈ E }. Let I be the identity function. Let D be the set of tuples of

(more than one) expressions whose concatenation is also an expression of the language. In

other words, for all e1, e2, e3, . . . en ∈ E; <e1, e2, e3, . . . en> ∈ D iff e1{e2{e3{ . . . {en ∈ E,

where n>1. Let S = { [e1]w [e2]w [e3]w . . . [en]w→[e1{e2{e3{ . . . {en]w | <e1, e2, e3, . . .

en> ∈ D}.

Claim 1: ∀e ∈ E, e~sf iff e~wf.

Proof: Assume e~sf to prove e~wf. Since e~Se, f must also belong to [e]w. This means that

e~wf. For the converse, assume e is not grammatically equivalent in S to f to show that they

are not Wittgenstein equivalent either. Without loosing generality, f ∉ [e]w. But, in any case,

f ∈ [f]w. Hence, [e]w ≠ [f]w. In other words, it is false that e~wf.

Claim 2: <S, I, C> is a grammar for L.

Proof: Assume not. <S, I, C> may not be a grammar only if I does not model S. Then, some

rule s = [e1]w [e2]w [e3]w . . . [en]w→[e1{e2{e3{ . . . {en]w ∈ S is not true for the language

L. An n-tuple of language expressions <e1’, e2’, e3’, . . . en’> does not satisfy s. Even

though, for all i≤n, ei’ ∈ [ei]w, e1’{e2’{e3’{ . . . {en’ ∉ [e1{e2{e3{ . . . {en]w.
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Nevertheless, from Corollary 3.8, since e1’{e2’{e3’{ . . . {en’ ∈ W and for all i≤n,

ei’~wei, it must also be the case that e1{e2{e3{ . . . {en ∈ W. This contradiction proves that

<S, I, C> is a grammar for L. Since  ∀e ∈ E, e~sf iff e~wf, <S, I, C> is also a Wittgenstein

grammar. ~

B. Formal Requirements for a Wittgenstein Grammar

The previous section demonstrated the existence of Wittgenstein grammars. This section dis-

plays the formal constrains on Wittgenstein grammars. It compares traditional grammatical

categories with Wittgenstein’s. It reveals the sort of grammars for which Wittgenstein’s

approach produces finer (or at least as fine) categorical distinctions. The traditional relation

of grammatical equivalence does not always match that of Wittgenstein equivalence. It is

false that, for every language and every grammar e~sf iff e~wf. This sections shows the

structural features of the grammar falsifying the double implication. It describes the sort of

grammars where Wittgenstein equivalence implies grammatical equivalence, and vice versa.

Definition 3.10 [normal grammar]: A conventional grammar <S, I, C> is  normal for a

language <∑, E, W> iff, for every expression e ∈ E and every acceptable string w ∈ W, if e

occurs in w, e occurs in a tree for w in <S, I, C> as many times as e occurs in w.

Lemma 3.11: Let A be a context in a normal language L = <∑, E, W>. Given a strong

conventional grammar <S, I, C>, for every pair of acceptable strings A(e) and A(f), there is a

pair of trees Te and Tf isomorphic down to a node te such that for all t ≥ e ∈ Te there is a t’

∈ Tf such that (i) label(t) results from label(t’) when substituting f for e once at most such
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that (ii) the category of label(t) in the proof corresponding to Te is the same as the category

of label(t’) in the proof corresponding to Tf.

Proof: Since L is a normal language, there is a tree Te of A(e) such that e occurs as many

times in Te as e occurs in A(e). Let Pe be the proof corresponding to tree Te. First, define

the function Rule : Te→S mapping every node t in Te to the rule in the grammatical theory

S such that label(t) occurs in Pe in virtue of s and the function Cat : Te→S maps every node

t in Te to the corresponding category in the code of Pe.

Let te be a node in Te such that label(te) = e. Let Pf be the construction of f as

Cat(te),  and T’f be its tree, with <’f as its ordering relation and label’ as its labeling

function. Since <S, I, C> is strong, this construction exists. Let Tf = T’ f ∪ Te. Define

function f:Tf→ E the following way: (i) f(t) = label’(t) if t ∈ T’ f,  (ii) f(t) = label(t) if t does

not belong to T’f and e does not occur in label(t), (iii) otherwise, recursively define f(te) = f

and for all t > te let t be such node in Te that e occurs in label(t) and let u be the least unique

node in Te   such that t < u. Label(u) is the result of applying Rule(u) to an n-tuple of

expressions <e1,  e2,  e3, . . . en>, such that, for every expression e’ ∈ E, e’ = label(t’) for

some t’ in Te and u is the least node such that t’ < u iff e’ = ei for some i ≤ n. Since u is the

least node such that t < u, label(t) occurs in the n-tuple <e1,  e2, . . . label(t), . . . en>.

However, label(t) may well occur more than once in the n-tuple. Since Rule(u) is of the form

C1 C2 . . . Cn → C, there is an i ≤ n such that Ci = Cat(t) and ei = label(t). Actually, more

than one may satisfy these two conditions. Which one the proof uses makes no difference.
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Now,  since  f ∈ I(Cat(t)) = I(Ci), Rule(u) applies to the n-tuple <e1,  e2, . . . ei-1, f(label(t)),

ei+1 , . . . en> resulting from substituting label(t) by f(label(t)) in the ith place. Hence e1{e2{.

. . ei-1{ f(label(t)){ei+1 , . . .{ en ∈ I(Cat(u)). Then, let f(e1{e2{. . . ei-1{ label(t){ ei+1 , . . .{

en) = e1{ e2{. . . ei-1{f(label(t)) { e i+1 , . . . {en. Since label(t) and f(label(t))differ only in

one substitution of e by f, so do (e1{e2{. . . ei-1{ label(t) { ei+1 , . . .{en) and f(e1{e2{. . . ei-

1 { label(t) {ei+1 , . . .{en).

Finally, consider the tree < Tf, <f > where <f = <’ f ∪ < |~(t < te) ∪ {(top(T’ f), te)} is

the ordering relation, and f(label(t)) labels every node t in Te. Since f(label(t)) ∈ I(Cat(t)) for

all t in Te, the result of re-labeling Te is also a tree. It is a tree proving that f(A(e)) is

acceptable. Since f(A(e)) differs from A(e) in one substitution of f for e, A(e) = A’(e) and

f(A(e)) = A’(f) for some context A’. The posibilities of repeating this process is the same as

the number of times e occurs in A(e). Each one provides a different context A’. Also, since

erasing one time e occurs in A(e) produces every context, this is the same number of

contexts A’ for which A’(e) = A(e). In particular, A’ must equal A. ~

Theorem 3.12: If a strong conventional grammar G is normal for a language L = <∑, E,

W>, then for all e, f ∈ E, (e ~G f) ⇒ (e ~w f).

Proof: Let G = <S, I, C> be a strong conventional grammar normal for language <∑, E, W>.

Assume, towards a contradiction, that e ~G f but not e ~w f. This implies that e and f belong

to all the same categories in C, but not in A. Without loss of generality, e ∈ A, and f ∉ A

for some Wittgenstein category A ∈ A. In consequence, A(e) ∈ W but A(f) ∉ W. Now,

since A(e) ∈ W and G is normal, e occurs in the tree T of a proof P of A(e) as many times
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as e occurs in A(e) itself. Furthermore, by lemma 3.11, it is possible to substitute e for f

only the e in A(e) yielding context A. This strategy creates a tree and proof of A(f).

Nevertheless, this would mean that A(f) is an acceptable string, contradicting the hypothesis

that A(f) ∉ W. ~

However, an ambiguity remains in Wittgenstein’s thesis saying two expressions

belong to the same grammatical category, if they can stand in place of each other in some

context without affecting the grammar of the original expression. The preceding section

dealt only with one possible interpretation of this thesis. In such an interpretation, contexts

result from well-formed sentences. Accordingly, the substitution of grammatically

equivalent expressions preserves the acceptability of statements. Still, another interpretation

is possible. A stronger relationship of grammatical equivalence results from allowing the

production of contexts from any grammatical phrase, instead of only full sentences. The

resulting relation of equivalence is stronger, because it respects all the grammatical

categories. In contrast, this chapter’s approach respected only the category of well-formed

sentence. Under this alternative interpretation, two expressions would be grammatically

equivalent if they could substitute for each other within any expression without affecting the

expression’s grammatical categories. Substituting some or all the times an expression

occurs in any well-formed expression – not necessarily a complete sentence – with a

synonymous expression must result in an expression belonging to exactly the same

categories as the original. The results from this sections are bound by considering only the

first interpretation. Generalizing these results would require performing a more thorough

investigation into the relation between these grammars and natural language.
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V. Conclusion

Two final conclusions summarize the results of this chapter. First, it is not possible to cons-

truct conventional grammars for every language out of the categories resulting from

Wittgenstein’s analysis. Nevertheless, it is always possible to construct a ‘Wittgenstein

grammar’ where grammatical equivalence corresponds to Wittgenstein equivalence. This

justifies calling ‘grammar’ whatever results from the kind of analysis of substitutions

Wittgenstein proposes. On the other hand, this sort of grammar does more than satisfy the

minimal expectations for a grammar. Wittgenstein grammars are not always strong. They

do not provide enough information to construct all acceptable expressions out of the basic

words in the language. In this sense, they are weaker than other conventional grammars.

Nevertheless, they are not the weakest. In general, Wittgenstein’s grammatical distinctions

are neither the most specific nor the most general.

Wittgenstein’s philosophy provides no straightforward interpretation of these for-

mal results. It is tempting to dismiss Wittgenstein’s notion of grammar as too weak to play

the central role he expects it to.

This chapter formalized some of Wittgenstein’s intuitions about grammar and drew

several philosophical conclusions from them. Now, it is time to place them in the bigger

picture of Wittgenstein’s philosophy of mathematics. The following chapter builds on the

results of this analysis. It applies the previous formal reconstruction to a portion of langua-

ge containing numerical expressions. It proves that the grammatical theory resulting from

Wittgenstein’s approach contains expressions whose natural interpretation is mathematical.

It shows that arithmetical rules regulate the use of numerical expressions in natural

language.
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