
APPENDIX II
THE STRUCTURE OF THE SYSTEM OF STRICT IMPLI�

CATION 1
The System of Strict Implication, as presented in Chapter V 

of A Survey of Symbolic Logic (University of California Press, 
1918), contained an error with respect to one postulate. This 
was pointed out by Dr. E. L. Post, and was corrected by me 
in the Journal of Philosophy, Psychology, and Scientific Method 
(XVII [1920], 300). The amended postulates (set A below) 
compare with those of Chapter VI of this book (set B below) as 
follows:

1 This appendix is written by Mr. Lewis, but the points demonstrated are, 
most of them, due to other persons.

Groups II and III, below, were transmitted to Mr. Lewis by Dr. M. 
Wajsberg, of the University of Warsaw, in 1927. Dr. Wajsberg’s letter also 

contained the first proof ever given that the System of Strict Implication is 
not reducible to Material Implication, as well as the outline of a system which 

is equivalent to that deducible from the postulates of Strict Implication with 

the addition of the postulate later suggested in Becker’s paper and cited below 

as Cll. It is to be hoped that this and other important work of Dr. Wajsberg 

will be published shortly.
Groups I, IV, and V are due to Dr. William T. Parry, who also discovered 

independently Groups II and III. Groups I, II, and III are contained in his 
doctoral dissertation, on file in the Harvard University Library. Most of the 

proofs in this appendix have been given or suggested by Dr. Parry.
It follows from Dr. Wajsberg’s work that there is an unlimited number 

of groups, or systems, of different cardinality, which satisfy the postulates 
of Strict Implication. Mr. Paul Henle, of Harvard University, later dis-
covered another proof of this same fact. Mr. Henle’s proof, which can be 

more easily indicated in brief space, proceeds by demonstrating that any 

group which satisfies the Boole-Schroder Algebra will also satisfy the postu-
lates of Strict Implication if $p be determined as follows:

Op = 1 when and only when p ^ 0;

Op = 0 when and only when p = 0.

This establishes the fact that there are as many distinct groups satisfying 

the postulates as there are powers of 2, since it has been shown by Huntington 

that there is a group satisfying the postulates of the Boole-Schroder Algebra 

for every power of 2 (“Sets of Independent Postulates for the Algebra of 
Logic,” T ra n s. A m er. M ath. S o c., V [1904], 309).

The proof of (14), p. 498, is due to Y. T. Shen (Shen Yuting).
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A l. p q . 4 . q p B l. p q . - i . q p
A2. q p . - i . p B2. p q . - i . p
A3. p .4 . p p B3. p , - i . p p
A4. P(qr) .-i.  q(pr) B4. CP q)r . 4 • p(q r)
A5. P ~(~p) B5.
A6. p * q . q * r  z * . p * r B6. p * q * q * r  î - î .p -J r
A7. B7. p . p l q z - i . q
A8. p q • 4 . ~Qq ~$p B8. $(p Q) * $P

B9. (a  p, q) : ~(p 4 q ) . ~{p 4 ~q)
The primitive ideas and definitions are not identical in the 

two cases; but they form equivalent sets, in connection with the 
postulates.

Comparison of these two sets of postulates, as well as many 
other points concerning the structure of Strict Implication, will 
be facilitated by consideration of the following groups. Each of 
these is based upon the same matrix for the relation p q and 
the function of negation ~p. (This is a four-valued matrix which 
satisfies the postulates of the Boole-Schroder Algebra.) The 
groups differ by their different specification of the function <>p. 
We give the fundamental matrix for p q and ~p in the first case 
only. The matrix for p •* q, resulting from this and the particular 
determination of 0p> is given for each group:

1
2

1
4

p q t
o

C
O

Group I 

~P 0  || 4 | 1 2 3 4

1 1 2  3 4 4 1 1 2 4 4 4

. 2 2 2 4 4 3 1 2 2 2 4 4

3 3 4 3 4 2 1 3 2 4t 2 4

4 4 4 4 1 3 4 2 2! 2 2

Ghoup II Group III
� * i 1 2  3 4 �  ii � * i 1 2  3 4

1 1 4  3 4 1 1 1 4  4 4
2 1 1 3  3 1 2 1 1 4  4

3 1 4  1 4 1 3 1 4  1 4
4 1 1 1 1 4 4 1 1 1 1



Group IV Group V

The ‘ designated values,’ for all five groups, are 1 and 2; that 
is, the group is to be taken as satisfying any principle whose 
values, for all combinations of the values of its variables, are 
confined to 1 and 2. (In Groups II, III, and IV, 1 alone might 
be taken as the designated value: but in that case it must be 
remembered that, since

( 3 p ,  q) :• =  Q) : p  ̂q . v .  p -j » 3],
B9 would be satisfied unless p -I q . v . p 4 ~q always has the 
value 1. It is simpler to take 1 and 2 both as designated values; 
in which case B9 is satisfied if and only if ~(p -* q) . ~{p •i ~q) 
has the value 1 or the value 2 for some combination of the values 
of p and q.)

All of these groups satisfy the operations of ‘ Adjunction/ 
‘ Inference,’ and the substitution of equivalents. If P  and Q 
are functions having a designated value, then P Q will have a 
designated value. If P has a designated value, and P  -* Q has 
a designated value, then Q will have a designated value. And if 
P =  Q—that is, if P * Q  .Q- lP  has a designated value—then 
P and Q will have the same value, and for any function /  in the 
system, f(P)  and f(Q) will have the same value.

The following facts may be established by reference to these 
groups:

(1) The system, as deduced from either set of postulates, is 
consistent. Group I, Group II, and Group III each satisfy 
all postulates of either set. For any one of these three groups, 
B9 is satisfied by the fact that ~(p 4 q) . ~(p -5 ~q) has a desig!
nated value when p =  1 and q =  2, and when p =  1 and 
q =  3.

(2) The system, as deduced from either set, is not reducible 
to Material Implication. For any one of the five groups,
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~(p ~q) • � * • p � * 2 has the value 3 or 4 when p =  1 and q =  2. 
None of the * paradoxes’ of Material Implication, such as 
p . d  . q o p  and will hold for any of these groups
if the sign of material implication, d  , is replaced by -J through�
out.

(3) The Consistency Postulate, B8, is independent of the set 
(B l-7  and B9) and of the set A l-7 . Group V satisfies B l-7 , 
and satisfies ~(p HI 2) .  ~(p ~q) for the values p =  1, q =  2. 
It also satisfies A l-7 . But Group V fails to satisfy B8: B8 has 
the value 4 when p =  2 and q =  3, and when p =  2 and q =  4.

(4) Similarly, A8 is independent of the set A l-7 , and of the 
set (B l-7  and B9). For Group V, A8 has the value 4 when 
p =  1 and 2 =  3, and when p =  2 and 2 = 3 .

(5) Postulate B7 is independent of the set (B l-6  and B8, 9), 
and of the set (A l-6  and A8). Group IV satisfies B l-6 , B8, 
and B9, and satisfies A l-6  and A8. But for this group, B7 has 
the value 3 when p =  1 and q =  2, and for various other com�
binations of the values of p and q.

(6) Similarly, A7 is independent of the set (A l-6  and A8) 
and of the set (B l-6  and B8, 9). For Group IV, A7 has the 
value 3 when p =  1 and when p =  3.

That the Existence Postulate, B9, is independent of the set 
B l-8 , and of the set A l-8 , is proved by the following two-element 
group, which satisfies B l-8  and A l-8 :

P i 1 0 ~ v �  II � » 1 0
1 1 0 0 1 1 1 0
0 0 0 1 0 0 1 1

(This is, of course, the usual matrix for Material Implication, 
with the function <>p specified as equivalent to p.) For this 
group, ~(p H q) • ~(p ~q) has the value 0 for all combinations 
of the values of p and q.

Dr. Parry has been able to deduce B2 from the set (B1 and 
B3-9). However, the omission of B2 from the postulate set of 
Chapter VI would have been incompatible with the order of 
exposition there adopted, since the Consistency Postulate is 
required for the derivation of B2. Whether with this exception
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the members of set B are mutually independent has not been 
fully determined.

The question naturally arises whether the two sets A l-8  and 
B l-8  are equivalent. I have discovered no proof but believe 
that they are not. B l-8  are all deducible from A l-8 : and A l-7  
are all deducible from B l-8 . The question is whether A8 is 
deducible from B l-8 . If it is not, then the system as deduced 
from the postulate set of Chapter VI, B l-9 , is somewhat ‘ stricter1 
than as deduced in the Survey from set A.

The logically important issue here concerns certain conse�
quences which enter the system when A8 is introduced. Both 
Dr. Wajsberg and Dr. Parry have proved that the principle

p ■* q . ■* s q 4 r  . ■*. p 4 r

is deducible from A l-8 . I doubt whether this proposition should 
be regarded as a valid principle of deduction: it would never 
lead to any inference p-ir  which would be questionable when 
p l q  and q-ir are given premises; but it gives the inference 
q-ir . - i . p l r  whenever p � * q is a premise. Except as an 
elliptical statement for “ p - i q . q * r : - i . p 4 r  and p * q  is 
true,”  this inference seems dubious.

Now as has been proved under (3) above, the Consistency 
Postulate, B8, is not deducible from the set (B l-7  and B9). 
Likewise the principle mentioned in the preceding paragraph is 
independent of the set (B l-7  and B9): Group V satisfies this 
set, but for that group the principle in question has the value 4 
when p =  1, q =  3, and r =  1, as well as for various other 
values of p, q, and r. But Group V also fails to satisfy B8, as 
was pointed out in (3) above. If it should hereafter be discovered 
that the dubious principle of the preceding paragraph is deducible 
from the set B l-9 , then at least it is not contained in the system 
deducible from the set (B l-7  and B9); and I should then regard 
that system—to be referred to hereafter as SI—as the one which 
coincides in its properties with the strict principles of deductive 
inference. As the reader will have noted, Chapter VI was so 
developed that the theorems belonging to this system, SI, are 
readily distinguishable from those which require the Consistency 
Postulate, B8.
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The system as deduced either from set A or from set B leaves 

undetermined certain properties of the modal functions, Op, 
~0p, 0~p, and ~0~p. In view of this fact, Professor Oskar 
Becker2 has proposed the following for consideration as further 
postulates, any one or more of which might be added to either set:

CIO. “ Ô p **0** “ Ô p ***ô  “ Ô p =  m*0m*p
Cll .  Op  ̂~0 ~0p Op =  ~0 ~0p
C12. p -i ~0 ~0p

(Becker calls C12 the “ Brouwersche Axiom.” )
When A l-8 , or B l-9 , are assumed, the second form in which 

CIO is given can be derived from the first, since the converse 
implication, ~0~ ~0~p * ~0~p, is an immediate consequence of the 
general principle, ~0~p � * p (18-42 in Chapter VI). The second 
form of C ll  is similarly deducible from the first.

An alternative and notationally simpler form of CIO would be
C10-1 OOp-iOp 0 0p = 0p

(As before, the second form of the principle can be derived 
from the first; since the converse implication, Op •* 0 Op, is an in�
stance of the general principle p -J Op, which is 18-4 in Chapter 
VI, deducible from A l-8 , or B l-9 .)

Substituting ~p for p, in CIO-1, we have
0 0~p 0~p (a)
(a) • =  • ~0~p ~0 0~p . =  • ~0~p *4 ~0~p*

And substituting ~p for p in CIO, we have
~0~(~p) -i ~0~ ~0~(~p) (b)
(b) . =  . ~0p H ~0~ ~0p . =  . ~0p ~0 Op * =  • 0 Op 4 Op.

(The principles used in these proofs are 12-3 and 12-44 in 
Chapter VI.)

For reasons which will appear, we add, to this list of further 
postulates to be considered, the following:
C13. 0 Op
That is, “ For every proposition p, the statement cp is self-
consistent’ is a self-consistent statement.”

1 See his paper “ Zur Logik der Modalitäten,”  Jahrluch für Philosophie und 
Phänomenologische Forschung, X I (1930), 497-548.
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Concerning these proposed additional postulates, the following 

facts may be established by reference to Groups I, II, and III, 
above, all of which satisfy the set A l-8  and the set B l-9 :

(7) CIO, C l l ,  and C12 are all consistent with A l-8  and with 
B l-9  and with each other. Group III satisfies CIO, C l l ,  and 
C12.

(8) CIO, C l l ,  and C12 are each independent of the set 
A l-8  and of the set B l-9 . For Group I, CIO, C l l ,  and C12 
all fail to hold when p =  3.

(9) Neither C l l  nor C12 is deducible from the set (A l-8  
and CIO) or from the set (B l-9  and CIO). Group II satisfies 
CIO; but C l l  fails, for this group, when p =  2 or p =  4; and 
C12 fails when p =  2.

(10) C13 is consistent with the set A l-8  and with the set 
B l-9 . Group I satisfies C13.

(11) C13 is independent of the set A l-8  and of the set 
B l-9 , and of (A l-8  and CIO, C l l ,  and C12) or (^Bl-9 and CIO, 
Cl l ,  and C12). Group III satisfies all these sets; but for this 
group, C13 fails when p =  4.

When A l-8 , or B l-9 , are assumed, the relations of CIO, C l l ,  
and C12 to each other are as follows:

(12) CIO is deducible from Cl l .  By C l l  and the principle
~(~P) =  Vi

~<>~p =  ~[0(~p)] =  ~0(~p)] =  0[~0(~p)]

=  ~v) =
— ~o[o (~p)] —

(13) C12 also is deducible from Cl l .  By 18*4 in Chapter 
VI, p 4Qp; and this, together with C l l ,  implies C12, by A6 or 
by B6.

(14) From CIO and C12 together, C ll  is deducible. Sub!
stituting <>p for p in C12, we have

<>p $p. (a)
And by C10*l, Op =  ~<>p. Hence (a) is equivalent
to C l l .

From (12), (13), and (14), it follows that as additional 
postulates to the set A l-8 , or the set B l-9 , C l l  is exactly equiva!
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lent to CIO and C12 together. But as was proved in (9), the 
addition of CIO alone, gives a system in which neither C ll  nor 
C12 is deducible.

Special interest attaches to CIO. The set A l-8 , or the set 
B l-9 , without CIO, gives the theorem

H : ~0~p — p.
This is deducible from 19-84 in Chapter VI. It follows from this 
that if there should be some proposition p such that ~$~p 
is true, then the equivalences

p =  ^O^p and ~0~p =  ^0^ ̂ O^p
would hold for that particular proposition. And since, by 
19-84 itself, all necessary propositions are equivalent, it follows 
that if there is any proposition p which is necessarily-necessary— 
such that ~Q~ ~<>~p is true—then every proposition which is 
necessary is also necessarily-necessary; and the principle stated 
by CIO holds universally. But as was proved in (8), this prin�
ciple, ~<>~p =  ~0~ ~$~p, is not deducible from A l-8  or from 
B l-9 . Hence the two possibilities, with respect to necessary 
propositions, which the system, as deduced from A l-8  or from 
B l-9 , leaves open are: (a) that there exist propositions which 
are necessarily-necessary, and that for every proposition p, 
~0~p =  and (b) that there exist propositions which
are necessary—as 20-21 in Chapter VI requires—but no proposi�
tions which are necessarily-necessary. This last is exactly what 
is required by C13, 0 <>p. Substituting here ~p for p, we have, 
as an immediate consequence of C13, 0 <>~p. This is equivalent 
to the theorem “ For every proposition p, ‘ p is necessarily- 
necessary 9 is false” : 0 0~p =  0~ ~<>~p =  ~(~0~ ~$~p) [by the prin�
ciple ~(~p) =  p]. Thus CIO expresses alternative (a) above; and 
C13 expresses alternative (b). Hence as additional postulates, 
CIO and C13 are contrary assumptions.

(As deduced from A l-8 , the system leaves open the further 
alternative that there should be no necessary propositions, or 
that the class of necessary propositions should merely coincide 
with the class of true propositions; but in that case the system 
becomes a redundant form of Material Implication.)
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From the preceding discussion it becomes evident that there 

is a group of systems of the general type of Strict Implication 
and each distinguishable from Material Implication. We shall 
arrange these in the order of increasing comprehensiveness and 
decreasing * strictness9 of the implication relation:

51, deduced from the set B l-7 , contains all the theorems of 
Sections 1-4 in Chapter VI. It contains also all theorems of 
Section 5, in the form of T-principles, but not with omission of 
the T. This system does not contain A8 or the principle

p + q .  + i q  + r .  + . p  + r.

However, it does contain, in the form of a T-principle, any 
theorem which could be derived by using A8 as a principle of 
inference: because it contains

p 4 q . ~Qq : -*. ~Qp;
and hence if (by substitutions) p H q becomes an asserted prin�
ciple, we shall have

T . ~0q : . ~$p.
When the Existence Postulate, B9, is added, this system SI 
contains those existence theorems which are indicated in Section 
6 of Chapter VI as not requiring the Consistency Postulate, B8.

52, deduced from the set B l-8 , contains all the theorems of 
Sections 1-5 in Chapter VI, any T-principle being replaceable 
by the corresponding theorem without the T. When the Exist�
ence Postulate, B9, is added, it contains all the existence theorems 
of Section 6. Whether S2 contains A8 and the principle

p* q . -M q- i r  .p  -Jr
remains undetermined. If that should be the case, then it will 
be equivalent to S3.

53, deduced from the set A l-8 , as in the Survey, contains all 
the theorems of S2 and contains such consequences of A8 as

p * q . * \ q * r . * . p * r .
If B9 is added, the consequences include all existence theorems 
of S2.

For each of the preceding systems, SI, S2, and S3, any one of 
the additional postulates, CIO, C l l ,  C12, and C13, is consistent



SYSTEM OF STRICT IM PLICATION 501
with but independent of the system (but CIO and C13 are mutu�
ally incompatible).

54, deduced from the set (B l-7  and CIO), contains all theorems 
of S3, and in addition the consequences of CIO. A8 and B8 are 
deducible theorems. S4 is incompatible with C13. C l l  and 
C12 are consistent with but independent of S4. If B9 be added, 
the consequences include all existence theorems of S2.

55, deduced from the set (B l-7  and C l l ) ,  or from the set 
(B l-7 , CIO, and C12), contains all theorems of S4 and in addition 
the consequences of C12. If B9 be added, all existence theorems 
of S2 are included. A8 and B8 are deducible theorems. S5 is 
incompatible with C13.

Dr. Wajsberg has developed a system mathematically equiva�
lent to S5, and has discovered many important properties of it, 
notably that it is the limiting member of a certain family of 
systems. Mr. Henle has proved that S5 is mathematically 
equivalent to the Boole-Schroder Algebra (not the Two-valued 
Algebra), if that algebra be interpreted for propositions, and the 
function Op be determined by:

Op =  1 when and only when p ^  0;
Op =  0 when and only when p =  0.

In my opinion, the principal logical significance of the system S5 
consists in the fact that it divides all propositions into two 
mutually exclusive classes: the intensional or modal, and the 
extensional or contingent. According to the principles of this 
system, all intensional or modal propositions are either neces�
sarily true or necessarily false. As a consequence, for any modal 
proposition— call it pm—

4(Pm) =  (Pm) =  ~0~(pm), 
and 0~(pm) =  ~(pm) =  ~0(Pm).

For extensional or contingent propositions, however, possibility, 
truth, and necessity remain distinct.

Prevailing good use in logical inference—the practice in 
mathematical deductions, for example—is not sufficiently precise 
and self-conscious to determine clearly which of these five systems
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expresses the acceptable principles of deduction. (The meaning 
of 1 acceptable’ here has been discussed in Chapter VIII.) 
The issues concern principally the nature of the relation of 
‘ implies9 which is to be relied upon for inference, and certain 
subtle questions about the meaning of logical ‘ necessity/ ‘ possi�
bility’ or ‘ self-consistency/ etc.—for example, whether CIO is 
true or false. (Professor Becker has discussed at length a number 
of such questions, in his paper above referred to.) Those inter�
ested in the merely mathematical properties of such systems of 
symbolic logic tend to prefer the more comprehensive and less 
‘ strict’ systems, such as S5 and Material Implication. The 
interests of logical study would probably be best served by an 
exactly opposite tendency.


