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PREFACE 

The student who has completed some elementary study of symbolic 
logic and wishes to pursue the subject further finds himself in a discouraging 
situation. He has, perhaps, mastered the contents of Venn's Symbolic 

Logic or Couturat's admirable little book, The Algebra of Logic, or the 
chapters concerning this subject in Whitehead's Universal Algebra. If he 
read German with sufficient ease, he may have made some excursions into 
Schroder's Vodesungen uber die Algebra der Logile. These all concern the 
classic, 01' Boole-Schroder algebra, and his knowledge of symbolic logic is 
probably confined to that system. His further interest leads him almost 
inevitably to Peano's Ponnulaire de Mathematique8, Principia Mathematica 

of Whitehead and Russell, and the increasingly numerous shorter studies 
of the same sort. And with only elementary knowledge of a single kind of 

. development of a small branch of the subject, he must attack these most 
difficult and technical of treatises, in a new notation, developed by methods 
which are entirely novel to him, and bristling with logico-metaphysical 
difficulties. If he is bewildered and searches for some means of further 
preparation, he finds nothing to bridge the gap. Schroder's work would 
be of most assistance here, but this was written some twenty-five years 
ago; the most valuable studies are of later date, and radically new methods 
have been intrQduced. 

What such a student most needs is a comprehensive survey of the sub
ject-one which will familiarize him with more than the single system 
which he knows, and wilL indicate not only the content of other branches 
and the alternative methods of procedure, but also the relation of these to 
the Boole-Schroder algebra and to one another. The present book is an 
attempt to meet this need, by bringing within the compass of a single 
volume, and reducing to a common notation (so far as possible), the most 
important developments of symbolic logic. If, in addition to this, some 
of the requirements of a "handbook" are here fulfilled, so much the better. 

But this survey does not pretend to be encyclopedic. A gossipy recital 
of results achieved, or a superficial account of methods, is of no more use 
in symbolic logic than in any other mathematical discipline. What is 
presented must be treated in sufficient detail to afford the possibility of real 
insight and grasp. This aim has required careful selection of material.. 

v 



Vl Preface 

The historical summary in Chapter r attempts to follow the main thread 
of development, and no reference, or only passing mention, is gi\"en to 
those studies which seem not to have affected materially the methods of 
later researches. In the remainder of the book, the selection has been 
governed by the same purpose. Those topics comprehension of which 
seems most essential, have been treated at some length, while matters less 
fundamental have been set forth in outline only, 01' omitted altogether. 
My own contribution to symbolic logic, presented in Chapter V, has not 
earned the right to inclusion here; in this, I plead guilty to partiality. 
The discussion of controversial topics has been avoided whenever possible 
and, for the rest, limited to the simpler issues involved. Consequently, 
the reader must not suppose that any sufficient consideration of these 
questions is here given, though such statements as are made will be, I hope, 
accurate. Particularly in the last chapter, on "Symbolic Logic, Logistic, 
and Mathematical Method ", it is not possible to give anything like an 
adequate account of the facts. That would require a volume at least the 
size of this one. Rather, I liave tried to set forth the most important and 
critical considerations-somewhat arbitrarily and dogmatically, since thcrc 
is not space for argument-and to provide such a map of this dii-Hcult tel'ri~ 
tory as will aid the student in his further explorations. 

Proofs and solutions in' Chapters II, III, and IV have been given very 
fully. Proof is of the essence of logistic, and it is my observation that stu
dents--even those with a fair knowledge of mathematics·-seldom command 
the technique of rigorous demonstration. In any case, this explicitness can 
do no' harm, since no one need read a proof which he already understand". 

I am indebted to many friends and colleagues for valuable a~sistallce ill 
preparing this book for publica tion: to Professor W. A. Merrill for cmcll<la
tions of my translation of Leibniz, to Professor J. H. McJ)onahl and 
Dr. B. A. Bernstein for important suggestions and the correction of {'prtain 
errors in Chapter II, to Mr. J. C. Rowell, University Librarian, for nssi~tallcC 
in securing a number of rare volumes, and to the officcl'il of tlw lllliverHity 
Press for their patient helpfulness in meeting the technical difficulticil of 

. printing such a book. Mr. Shirley Quimby has read the whole book ill 
manuscript, eliminated many mistakeil, and verified most of the proofs. 

But most of all, I am indebted to my friend and teacher, JOiliHh Hoyce, 
who first aroused my interest in this subject, and who never failed to give 
me encouragement and wise counsel. Much that is best in this book is 
due to him. C I r . ' . .JEwrs. 

BERKELEY, July 10, 1917. 



CHAPTER I 

THE DEVELOPMENT OF SYMBOLIC LOGIC 

1. THE SCOPE OF SYMBOLIC LOGIc. SYMBOLIC LOGIC AND LOGISTIC. 

SUMMARY ACCOUNT OF THEIR DEVELOPMENT . 
The subject with which we are yoncerned has been variously referred 

to ai:l "symbolic logic", "logistic", "algebra of logic", "calculus of logic", 
"mathematical logic", "algorithmic logic", and probably by other names. 
And none of these is satisfactory. We have chosen "symbolic logic" 
because it is the most commonly used in England and in this country, and 
because its signification is pretty well understood. Its inaccuracy is 
obvious: logic of whatever sort uses symbols. vVe are c(mcerned only 
with that logic which uses symbols in certain specific ways .... those ways 
which are exhibited generally in mathematical procedures. In particular, 
logic to be called "symbolic" must make use of symbols for the logical 
relat'ions, and must so connect various relations that they admit of "trans
formations" and "operations", according to principles which are capable 
of exact statement. 

If we mUl;t give some definition, we shall hazard the following: Symbolic 
ltog'ic is the development of the most general principles of rational pro
cedure, in ideographic symbols, and in a form which exhibits the connection 
of these principles one with another. Principles which belong exclusively 
to some one type of rational procedure-e. g. to dealing with number and 
quantity-are hereby excluded, a,nd generality is designated as one of the 
marks of symbolic logic. 

Such general principles are likewise the subject matter of logic in any 
form. To be sure, traditional logic has never taken possession of more 
than a small portion of the field which belongs to it. The modes of Aristotle 
are unnecessarily restricted. As we shall have occasion to point out, the 
reasons for the syllogistic form are psychological, not logical: the syllogism, 
made up of the smallest number of propositions (three), each with the small
est number of terms (two), by which any generality of reasoning can be 
attained, represents the limitations of human attention, not logical necessity. 
To regard the syllogism as indispensable, or as reasoning par excellence, is 
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2 A Survey of Symbolic Logic 

the apotheosis of stupidity. And the procedures of symbolic logic, not 
being thus arbitrarily restricted, may seem to mark a difference of subject 
matter between it and the traditional logic. But any such difference is 
accidental, not essential, and the really distinguishing mark of symbolic 
logic is the approximation to a certain form, regarded as ideal. There arc 
all degrees of such approximation; hence the difficulty of drawing allY hard 
and fast line between symbolic and other logic. 

But more important than the making of any such sharp diHtinctioll is 
the comprehension .of that ideal of form upon which it is supposed to 
depend. The most convenient method which the human mind has so far 
devised for exhibiting principles of exact procedure is the one which we 
call, in general terms, mathematical. The important characteristic;.; of 
this form are: (1) the use of' ideograms instead of the phonograms of 
ordinary language; (2) the deductive method-which may here be tak.m 
to mean simply that the greater portion of the subject matter iK derived 
from a relatively few principles by operations which are "exact": awl 
(3) the use of variables having a definite range of signifieanee. 

Ideograms have two important advantages over phol\ogramH. In the 
first place, they are more eompaet, + than" plus", :3 than "three", ete. 
This is no inconsiderable gain, since it makes possible the presentation of !L 

formula in small enough compass so that the eye may apprehend it at It 

glance and the image of it (in visual or other terms) may be retaim,d fot' 
reference with a minimum of effort. None but a very thoughtle:-;:-; perKOll, 
or one without experience of the seiences, ean fail to under:-;tand the ell()~
mous advantage of such brevity. In the second place, an ideog'l'aphi<: 
notation is superior to any other in precision. Many ideas which are 
quite simply expressible in mathematical symbols can only with the g'1'('ntpst 

difficulty be rendered in ordinary language. Without idcogramH, ~V('1l 

arithmetic would be difficult, and higher branches imposHible. 
The deduetive method, by which a considerable array of facts is HtUU

marized in a few principles from which they can be derived, iH mueh more 
than the mere application of deductive logic to the subject lHlLtt{'r in 
question. It both requires and facilitates such an analysis of the whole 
body of facts as will most pre,cisely exhibit their relations to one nnotlwl'. 
In faet, any other value of the deduetive form is largely or wholly fictitious. 

The presentation of the subject matter of logic in this mathematical 
form constitutes what we mean by symbolic logic. Hence the es~entinl 
characteristies of our subject are the following: (1) Its subject mitttCl' is 
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the subject matter of logic in any form-that is, the principles of rational 
or reflective procedure in general, as contrasted with principles which 
belong exclusively to some particular branch of such procedure. (2) Its 
medium is an ideographic symbolism, in which each separate character 
represents a relatively simple and entirely explicit concept. And, ideally, 
all non-ideographic symbolism or language is excluded. (3) Amongst the 
ideograms, some will represent variables (the "terms" of the system) 
having a definite range of significance. Although it is non-essential, in 
any system so far developed the variables will represent "individuals"" 
or classes, or relations, or propositions, or "propositional functions", or' 
they will represent ambiguously some two or more of these. (4) Any 
system of symbolic logic will be developed deductively-that is, the whole 
body of its theorems will be derived from a rel\ttively few principles, stated 
in symbols, by operations which are, or at least can be, precisely formulated., 

We have been at some pains to make as clear as possible the nature of 
symbolic logic, because its distinction from "ordinary" logic, on the one 
hand, and, on the other, from any mathematical discipline in a sufficiently 
abstract form, is none too definite. It will be further valuable to comment 
briefly on some of the alternative designations for the subject which have 
been mentioned. 

"Logistic" would not have served our purpose, because "logistic" is 
commonly used to denote symbolic logic together with the application of 
its methods to other symbolic procedures. Logistic may be defined as 
the sci once 'whieh dcals with types of order as such. It is not so much a 
subject a::; a method. Although most logistic is either founded upon or 
makes large usc of the principles of symbolic logic, still a science of order 
in general does not necessarily preHuppose, or begin with, symbolic logic. 
Since the relations of symbolic logic, logistic, and mathematics are to be 
the topic of the last chapter, we may postpone any further discussion of 
that matter here. We have mentioned it only to make clear the meaning 
which "logistic" is to have in the pages which follow. It comprehends 
symbolic logic and the application of such methods as symbolic logic exempli
fies to other exact procedures. Its subject matter is not confined to logic. 

"Algebra or logic" is hardly appropriate as the general name for our 
subject, because there are several quite distinct algebras of logic, and 
hecl1w;e symbolic logic includes systems which are not true algebras at all. 
"The algebra of logic" usually means that system the foundations of. 
which were laid by Leibniz, and after him independently by Boole, and 
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which was completed by Schroder. We shall refer to this system as the 
"Boole-Schroder Algebra". 

II '· I th "lb" B "II" "Ca cu us ' IS a more genera term an a ge ra. y a ca cu us 
will be meant, not the whole subject, but any single system of assumptions 
and their consequences. 

The program both for symbolic logic and for logistic, in anything like a 
dear form, ·was first sketched by Leibniz, though the ideal of logistic seems 
to have been present as far back as Plato's Republic.l Leibniz left frag
mentary developments of s;ymbolic logic, and some attempts at logistic 
which are prophetic but otherwise without value. After Leibniz, the two 
interests somewhat diverge. Contributions to symbolic logic ·were made by 
Ploucquet, Lambert, Castillon and others on the continent. This type of 
research interested Sir William Hamilton !1nd, though his own contribution 
was slight and not essentially novel, his papers were, to some extent at 
least, responsible for the renewal of investigations in this field which took 
place in England about 1845 and produced the work of De Morgan and 
Boole. Boole seems to have been ignorant of the work of his continental 
predecessors, which is probably fortunate, since his own beginning has 
proved so much more fruitful. Boole is, in fact, the second founder of the 
subject, and all later work goes back to his. The main line of this develop
ment runs through Jevons, C. S. Peirce, and MacColl to Schroder whose 
V orlesungen ilber d·ie Algebra der Logik (Vol. I, 1890) marks the perfection 
of Boole's algebra and the logical completion of that mode of procedure. 

In the meantime, interest in logistic persisted on the continent and 
was fostered by the growing tendency to abstractness and rigor in mathe
matics and by the hope for more general methods. Hamilton's quaternions 
and the Ausdehnungslehre of Grassmann, which was recognized as a con
tinuation of the work begun by Leibniz, contributed to this end, as did also 
the precise logical analyses of the nature of number by Cantor and Dedekind. 
Also, the elimination from "modern geometry" of all methods of proof 
dependent upon "intuitions of space" or "construction" brought that 
subject within the scope of logistic treatment, and in 1889 Peano provided 
such a treatment in I Principii di Geometria. Frege's works, from the 
Begri.ffsschrift of 1879 to the Grundgeseiz.e der Arithmetik (Vol. I, 1893; 
Vol. n, 1903) provide a comprehensive development of arithmetic by the 
logistic method. 

1 See the criticisms of contemporary mathematics and the program for the dialectic 
or philosophic development of mathematics in Bk. VI, Step. 510-11 and Philebus, Step. 56-57. 
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In 1894, Pea no and his collaborators began the publication of the 
Formulaire de Mathematiques, in which all branches of mathematics were to 
be presented in the universal language of logistic. In this work, symbolic 
logic and logistic are once more brought together, since the logic presented 
in the early sections provides, in a way, the method by which the other 
branches of mathematics are developed. The Formulaire is a monumental 
production. But its mathematical interests are as much encyclopedic as 
logistic, and not all the possibilities of the method are utilized or made 
clear. It remained for Whitehead and Russell, in Principia J.j,fathematica, 

to exhibit the perfect union of symbolic logic and the logistic method in 
mathcmatics. The publication of this work undoubtedly marks an epoch 
in the history of the subject. The tendencies marked in the development 
of the algebra of logic from Boole to Schroder, in the development of the 
algebra of relatives from De Morgan to Schroder, and in the foundations 
for number theory of Cantor and Dedekind and Frege, are all brought 
together here.2 Further researches will most likely be based upon the 
formulations of Principia Mathematica. 

We must now turn back and trace in more detail the development of 
symbolic logic.3 A history of the subject will not be attempted, if by 
history is meant the report of facts for their own sake. Rather, we are 
interested in the cumulative process by which those results which most 
interest us today have come to be. Many researches of intrinsic value, 
but lying outside the main line of that development, will of necessity be 
neglected. Reference to these, so far as we are acquainted with them, will 
be found in the bibliography.4 

II. LEIBNI2 

The history of symbolic logic and logistic properly begins with Leibniz.5 

In the New Essays on the Human Understanding, Philalethes is made to 
say: 6 "1 begin to form for myself a wholly different idea of logic from 
that which I formerly had. I regarded it as a scholar's diversion, but I 
now see that, in the way you understand it, it is like a universal mathe-

2 Perhaps we should add "and the modern development of abstract geometry, as by 
Hilbert, Pieri, and others", but the volume of Principia which is to treat of geometry has 
not yet appeared. 

3 The remainder of this chapter is not essential to an understanding of the rest of the 
book. But after Chapter I, historical notes and references are generally omitted. 

4 Pp. 389-406. 
5 Leibniz regards Raymond Lully, Athanasius Kircher, John Wilkins, and George 

Dalgarno (see Bibliography) as his predecessors in this.field. But their writings contain 
little which is directly to the point. 

6 Bk. IV, Chap. XVII, § 9. 
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matics." As this passage suggests, Leibniz correctly foresaw the general 
character which logistic was to have and the problems it would set itself 
to solve. But though he caught the large outlines of the subject and 
actually delimited the field of work, he failed of any clear understanding 
of the difficulties to be met, and he contributed comparatively little to 
the successful working out of details. Perhaps this is characteristic of the 
man. But another explanation, or partial explanation, is possible. Leibniz 
expected that the whole of science would shortly be reformed by the appli
cation of this method. This was a task clearly beyond the powers of any 
one man,_ who could, at most, offer only the initial stimulus .and general 
plan. And so, throughout his life, he besought the assistance of learned 
societies and titled patrons, to the end that this epoch-making reform might 
be instituted, and never addressed himself very seriously to the more 
limited tasks which he might have accomplished unaided.7 Hence his 
studies in this field are scattered through the manuscripts, many of them 
still unedited, and out of five hundred or more pages, the systematic results 
attained might be presented in one-tenth the space.8 

Leibniz's conception of the task to be accomplished altered somewhat 
during his life, but two features characterize all the projects which he 
entertained: (1) a universal medium ("universal language" or "rational 
language" or "universal characteristic") for the expression of science; 
and (2) a calculus of reasoning (or "universal calculus") designed to display 
the most universal relations of scientific concepts and to afford some sys
tematic abridgment of the labor of rational investigation in all fields, much 
as mathematical formulae abridge the labor of dealing with quantity and 
number. "The true method should furnish us with an Ariadne's thread, 
that is to say, with a certain sensible and palpable medium, which will 
guide the mind as do the lines drawn in geometry and the formulae for 
operations which are laid down for the learner in arithmetic."9 

This universal medium is to be an ideographic language, each single 
charact€r of which will represent a simple concept. It will differ from 
existing ideographic languages, such as Chinese, through using a combina-

7 The editor's introduction to "Scientia Generalis. Characteristic a " in Gerhardt's 
Philosophischen Schriften von Leibniz (Berlin, 1890), VII, gives an excellent account of 
Leibniz's correspondence upon this topic, together with other material of historic interest. 
(Work hereafter cited as G. Phil.) 

8 See· Gerhardt, op. cit. especially IV and VII. But Couturat, La logique de Leibniz 
(1901), gives a survey which will prove more profitable to the general reader than any 
study of the sources. 

9 Letter to Galois, 1677, G. Phil., VII, 21. 
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tion of symbols, or some similar device, for a compound idea, instead of 
having a multiplicity of characters corresponding to the variety of things. 
So that while Chinese can hardly be learned in a lifetime, the universal 
characteristic may be mastered in a few weeks.10 The fundamental char
acters of the universal language will be few in number, and will represent 
the "alphabet of human thought": "The fruit of many analyses will be the 
catalogue of ideas which are simple or not far from simple." 11 With this 
catalogue of primitive ideas-this alphabet of human thought-t~e whole 
of science is to be reconstructed in such wise that its real logical organiza
tion will be reflected in its symbolism. 

In spite of fantastic expression and some hyperbole, we recognize here 
the program of logistic. If the reconstruction of all science is a project too 
ambitious, still we should maintain the ideal possibility and the desirability 
of such a reconstruction of exact science in general. And the ideographic 
language finds its realization in Peano's Fonmtlaire, in Principia Mathe
matica, and in all successful applications of the logistic method. 

Leibniz stresses the importance of such a language for the more rapid 
and orderly progress of science and of human thought in general. The 
least effect of it " ... will be the universality and communication of 
different nations. Its true use will be to paint not the word ... but the 
thought, and to speak to the understanding rather than to the eyes .... 
Lacking such guides, the mind can make no long journey without losing 
its way . . . : with such a medium, we could reason in metaphysics 
and in ethics very much as we do in geometry and in analytics, because the 
characters would fix our ideas, which are otherwise too vague and fleeting 
in such matters in which the imagination cannot help us unless it be by 
the aid of characters." 12 The lack of such a universal medium prevents 
cooperation. "The human race, considered in its relation to the sciences 
which serve our welfare, seems to me comparable to a troop which marches 
in confusion in the darkness, without a leader, without order, without any 
word or other signs for the regulation of their march and the recognition of 
one another. Instead of joining hands to guide ourselves and make sure 
of the road, we run hither and yon and interfere with one another." 13 

The "alphabet of human thought" is more visionary. The possibility 
of constructing the whole of a complex science from a few primitive con-

10 Letter to the Duke of Hanover, 1679 (?), G. Phil., VII, 24-25. 
11 G. Phil., VII, 84. 
12 G. Phil., VII, 21. 
13 G. Phil., VII, 157. 
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cepts is, indeed, real-vide the few primitives of Principia Mathematica. 

But we should today recognize a certain arbitrariness in the selection of 
these, though an arbitrariness limited by the nature of the subject. The 
secret of Leibniz's faith that these primitive concepts are fixed in the nature 
of things will be found in his conception of knowledge and of proof. He 
believes that all predicates are contained in the (intension of the) subject 
and may be discovered by analysis. Similarly, all truths which are not 
absolutely primitive and self-evident admit of reduction by analysis into 
such ab~olutely first truths. And finally, only one real definition of a 
thing-"real" as opposed to "nominal"-is possible;14 that is, the result 
of the correct analysis of any concept is unambiguously predetermined in 
the concept itself. 

The construction, from such primitives, of the complex concepts of 
the various sciences, Leibniz speaks of as "synthesis" or "invention", 
and he is concerned about the" art of invention". But while the result of 
analysis is always determined, and only one analysis is finally correct, 
synthesis, like inverse processes generally, has no such predetermined 
character. In spite of the frequent mention of the subject, the only im
portant suggestions for this art have to do with the provision of a suitable 
medium and of a calculus of reasoning. To be sure there are such obvious 
counsels as to proceed from the simple to the complex, and in the early 
essay, De Arte Combinatoria, there are studies of the possible permutations 
and combinations or "syntheses" of fundamental concepts, but the author 
later regarded this study as of little value. And in Initia et Specimina 
Scientice novce Generalis, he says that the utmost which we can hope to 
accomplish at present, toward the general art of invention, is a perfectly 
orderly and finished reconstruction of existing science in terms of the 
absolute primitives which analysis reveals.ls After two hundred years, 
we are still without any general method by which logistic may be used in 
fields as yet unexplored, and we have no confidence in any absolute primi
tives fODosuch investigation. 

The calculus of reasoning, or universal calculus, is to be the instrument 
for the development and manipulation of systems in the universal language, 
and it is to get its complete generality from the fact that all science will be 
expressed in the ideographic symbols of that universal medium. The 
calculus will consist of the general principles of operating with such ideo-

14 See G. Phil., VII; 194, footnote. 
15 G. Phil., VII, 84. 
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graphic symbols: "All our reasoning is nothing bQt the relating and sub
stituting of characters, whether these characters be words or marks or 
images." 16 Thus while the clzaracteristica universalis is the project of the 
logistic treatment of science in general, the uniyersal calculus is. the pre
cursor. of symbolic logic. 

The plan for this universal calculus changed considerably with the 
development of Leibniz's thought, but he speaks of it always as a mathe
matical procedure, and ahvays as more general th,an existing mathematical 
methods.17 The earliest form suggested for it is one in which the simple 
concepts are to be represented by numbers, and the operations are to be 
merely those of arithmetical multiplication, diyision, and factoring. When, 
later, he abandons this plan of procedure, he speaks of a general calculus 
which ,vill be concerned with what we should nOlyadays describe as "types 
of order"-with combinations which are absolute or relative, symmetrical 
or unsymmetrical, and so on.1~ His latest studies toward such a calculu~ 
form the earliest presentation of what we now call the" algebra of logic". 
But it is doubtful if Leibniz ever thought of the universal calculus as 
restricted to our algebra of logic: we can only say that it was intended to 
be the science of mathematical and deductiye form in general (it is doubtfill 
whether induction was included), and such as to make possible the appli
cation of the analytic method of mathematics to all subjects of which 
scientific knowledge is possible. 

Of the various studies to this end our chief interest will be in the early 
essay, De Arte Combinatoria,l9 and in the fragments which attempt to 
develop an algebra of logic.20 

Leibniz wrote De Arte Combinatoria when he was, in his own words, 
vix egressus ex Ephebis, and before he had any considerable knowledge of 
mathematics. It was published, he tells us, without his knowledge or 
consent. The intention of the work, as indicated by its title, is to serve the 
general art of rational invention, as the author conceived it. As has been 
mentioned, it seems that this end is to be accomplished by a eomplete 
analysis of concepts of the topic under investigation and a general survey 
of the possibilities of their combination. A large portion of the essay is 
concerned with the calculation of the possible forms of this and that type 

16 G. Phil., VII, 31. 
17 See New Essays on the Human Understanding, Bk. IV, Chap. XVII, §§ 9-13. 
18 See G. Phil., VII, 31, 198ff., and 204. 
19 G. Phil., IV, 35-104·, Also Gerhardt, Leibnizens mathematische Schriften (1859), V, 

1-79. '" 
20 Seientia Generalis. Characteristica, xv-xx, G. Phil., VII. 
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of logical construct: the various dyadic, triadic, etc., complexes which 
can be formed with a given number of elements; . of the moods and figures 
of the syllogism; of the possible predicates of a ,given subject (the com
plexity of the subject as a concept being itself the key to the predicates 
which can be analyzed out of it); of the number of propositions from a 
given number of subjects, given number of predicate relations, and given 
number of quaestiones; 21 of the variations of order with a given number of 
terms, and so on. In fact so much space is occupied with the computation 
of permutations and co~binations that some of his contemporaries failed 
to discover any more important meaning of the essay, and it is most fre
quently referred to simply as a contribution to combinatorial analysis.2~ 

Beyond this the significance of the essay lies in the attempt to devise a 
symbolism which will preserve the relation of analyzable concepts to their 
primitive constituents. The particular device selected for this purpose
representation of concepts by numbers-is unfortunate, but the attempt 
itself is of interest. Leibniz makes application of this method to geometry 
and suggests it for other sciences.23 In the geometrical illustration, the 
concepts are divided into classes. Class 1 consists of concepts or terms 
regarded as elementary and not further analyzable, each of which is given a 
number. Thereafter, the number is the symbol of that cOilcept. Class 2 
consists of concepts analyzable into (definable in terms of) those of Class 1. 
By the use of a fractional notation, both the class to which a concept 
belongs and its place in that class can be indicated at once. The denomi
nator indicates the number 'of the class and the numerator is the number of 
the concept in that class. Thus the concept numbered 7 in Class 2 is 
represented by 7/2. Class 3 consists of concepts definable in terms of 
those in Class 1 and Class 2, and so on. By this method, the complete 
analysis of any concept is supposed to be indicated by its numerical symbo1.24 

21 Leibniz tells us that he takes this problem from the Ars Magna of Raymond Lully. 
See G. Phil., v, 62. 

22 See letter to Tschirnhaus, 1678, Gerhardt, Math., IV, 451-63. Cf. Cantor, Geschichte 
d. Math., III, 39ff. 

23 See the Synopsis, G. Phil., IV, 30-31. 
24 See Couturat, op. cit., appended Note VI, p. 554ff. 
The concepts are arranged as follows (G. Phil., IV, 70-72): 
"Classis I; 1. Punctum, 2. Spatium, 3. intervallum, 4. adsitum seu contiguum, 5. dis

situm seu distans, 6. Terminus seu quae distant, 7. Insitum, 8. inclusum (v.g. centrum est 
insitum circulo, inclusum peripheriae), 9. Pars, 10. Totum, 11. idem, 12. diversum, 13. unum, 
14. Numerus, etc. etc. [There are twenty-seven numbered concepts in this class.] • 

"Classis II; 1. Quantitas est 14 TWV 9 (15). [Numbers en,closed in p!1renthescs have 
their usual arithmetical significance, except that (15) signifies 'an indefinite number'.] 
2. Includens est 6.10. III. 1. Intervallum est 2.3.10. 2. Aequale A T-ijS 11.~. 3. Continuum 
est A ad B, si TOU A ~ 9 est 4 et 7 nii B.; etc. etc." 
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In point of fact, the analysis (apart from any merely geometrical defects) 
falls far short of being complete. Leibniz uses not only the inflected Greek 
article to indicate various relations of concepts but also modal inflections 
indicated by et, si, quod, quam faciunt, etc. 

In later years Leibniz never mentions this work without apologizing for 
it, yet he always insists that its main intention is sound. This method 
of assuming primitive ideas which are arbitrarily symbolized, of introducing 
other concepts by definition in terms of these primitives and, at the same 
time, substituting a single symbol for the complex of defining symbols
this is, in fact, the method of logistic in general. Modern logistic differs 
from this attempt of Leibniz most notably in two respects: (1) modern 
logistic would insist that the relations whereby two or more concepts are 
united in a definition should be analyzed precisely as the substantives are 
analyzed; (2) while Leibniz regards his set of primitiye concepts as the 
necessary result of any proper analysis, modern logistic would look upon 
them as arbitrarily ch~sen. Leibniz's later work looks toward the elimina
tion of this first difference, but the second represents a conviction from 
which he nev¥r departed. 

At a much later date come various studies (not in Gerhardt), which 
attempt a more systematic use of number and of mathematical operations 
in Iogic.25 Simple and primitive concepts, Leibniz now proposes, should be 
symbolized by prime numbers, and the combination of two concepts (the 
qualification of one term by another) is to be represented by their product. 
Thus if 3 represent "rational" and 7 "animal", "man" will be 21. No 
prime number will enter more than once into a given combination-a 
rational rational animal, or a rational animal animal, is simply a rational 
animal. Thus logical synthesis is represented by arithmetical multipli
cation: logical analysis by resolution into prime factors. The analysis of 
"man", 21, would be accomplished by finding its prime factors, "rational", 
3, and "animal", 7. In accordance with Leibniz's conviction that all 
knowledge is analytic and all valid predicates are contained in the subject, 
the proposition" All S is P" will be true if the number which represents 
the concept S is divisible by that which represents P. Accordingly the 

25 Dated April, 1679. Couturat (op. cit., p. 326, footnote) gives the titles of these 
as follows: "Elementa Characteristicae Universalis (Collected manuscripts of Leibniz in 
the Hanover Library, PHIL., v, 8 b); Calculi universalis Elementa (PHIL., v, 8 c); Calculi 
universalis investigationes (PHIL., v, 8 d) ; Modus examinandi consequentias per numeros 
(PHIL., v, 8 e); Regulae ex quibus de bonitate consequentiarum Jormisque et modis syllogis
morum categoricum judicari potest per numeros (PHIL., v, 8 f)." These fragments, with 
many others, are contained in Couturat's Opuscules et fragments inM,its de Leibniz. 
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universal affirmative proposition may be symbolized by SIP = y or S = Py 
(where y is a whole number). By the plan of this notation, Py will represent 
some species whose "difference ", within the genus P, is y. Similarly Sx 
will represent a species of S. Hence the particular affirmative, "Some 
S is P," may be symbolized by Sx = Py, or SIP = y/x. Thus th'e uni
versal is a special case of the particular, and the particular will always be 
true when the universal is true. 

There are several objections to this scheme. In the first place, it 
presumes that any part of a class is a species within the class as genus. 
This is far-fetched, but perhaps theoretically defensible on the ground 
that any part which can be specified by the use of language may be treated 
as a logical species. A worse defect lies in the fact that Sx = Py will 
always be true. For a given Sand P, we can always find x and y which 
will satisfy the equation Sx = Py. If no other choice avails, let x = P, 
or some multiple of P, and y = S, or some multiple of S. "Angel-man" 
= "man-angel" although no men are angels. "Spineless man" = "ra
tional invertebrate", but it is false that some men are invertebrates. A 
third difficulty arises because of the existential import of the particular
a difficulty which later drew Leibniz's attention. If the particular affirma
tive is true, then for some x and y, Sx = Py. The universal negative should, 
then, be Sx =1= Py. And since the universal affirmative is S = Py, the 
particular negative should be S =1= Py. But this symbolism would be 
practically unworkable because the inequations would have to be verified 
for all values of x and y. Also, as we have noted, the equality Sx = Py 
will always hold and Sx =1= Py, where x and yare arbitrary, will never be 
true. 

Such difficulties led Leibniz to complicate his symbolism still further, 
introducing negative numbers and finally using a pair of numbers, one 
positive and one negative, for each concept. But this scheme also breaks 
down, and the attempt to represent concepts by numbers is thereafter 
abandoned. 

Of more importance to symbolic logic are the-later fragments included 
in the plans for an encyclopedia which should collect and arrange all known 
science as the proper foundation for future work.26 Leibniz cherished the 

26 G. Phil., VII, XVI-XX. Of these, XVI, without title, states rules for inference in 
terms of inclusion and exclusion; Dijficultates quaedam logicae treats of suba.lternation 
and conversion and of the symbolic expression for various types of propositions; XVIII, 

Specimen CalcuZi universaZis with its addenda and marginal notes, gives the general prin
ciples of procedqre for the universal calculus; XIX, with the title Non inelegam specimen 
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notion that this should be developed in terms of the universal characteristic. 
In these fragments, the relations of equivalence, inclusion, and qualification 
of one concept by another, or combination, are defined and used. These 
relations are always considered in intension when it is a question of apply
ing the calculus to formal logic. "Equivalence" is the equivale~ce of 
concepts, not simply of two classes which have the same members; "for A 

to include B or B to be included in A is to affirm the predicate B universally 
of the subject A ".27 However, Leibniz evidently considers the calculus 
to have many applications, and he thinks out the relations and illustrates 
them frequently in terms of extensional diagrams, in which A, B, etc., are 
represented 'by segments of a right .line. Although he preferred to treat 
logical relations in intension, he frequently states that relations of intension 
are easily transformed into relations of extension. If A is included in B 
in intension, B is included in A in extension; and a calculus may be inter
preted indifferently as representing relations of concepts in intension or 
relations of individuals and classes in extension. Also, the inclusion rela
tion may be interpreted as the relation of an antecedent proposition to a 
consequent proposition. The hypothesis A includes its consequence B, 
just as the subject A includes the predicate B .28 This accords with his 
frequently expressed conviction that all demonstration is analysis. Thus 
these studies are by no means to be confined to the logic of intension. As 
one title suggests, they are studies dellwnstrandi in absiractis. 

demonstrandi in abstractif struck out, and xx, without title, are deductive developments 
of theorems of symbolic logic, entirely comparable with later treatises. 

The place of symbolic logic in Leibniz's plans for the Encyclopedia is sufficiently 
indicated by the various outlines which he has left. In one of these (G. Phil., VII, 49), 
divisions 1-6 are of an introductory nature, after which come: 

"7. De scientiarum instauratione, ubi de Systematibus et Repertori).s, et de Encyclo
paedia demonstrativa codenda. 

"8. Elementa veritatis aeternae, et de arte demonstrandi in omnibus disciplinis ut in 
Mathesi. 

"9. De novo quodam Calculo generali, cujus ope tollantur orones disputationes inter 
eos qui in ipsum consenseritj est Cabala sapientum. 

"10. De Arte Inveniendi. 
"11. De Synthesi seu Arte combinatoria. 
"12. De Analysi. 
"13. De Combinatoria speciali, seu scientia formarum, sive qualitatum in genere (de 

Characterismis) sive de simili et dissimili. 
"14. De Analysi speciali seu scientia quanti tatum in genere seu de ma",ono et parvo. 
"15. De Mathesi generali ex duabus praecedentibus composita." 
Then various branches of mathematics, astronomy, physics, biological science, medi

cine, psychology, political science, economics, military science, jurisprudence, and natural 
theology, in the order named. 

27 G. Phil., VII, 208. 
28 "Generales Inquisitiones" (1686): see Couturat, Opuscu1es etc., pp. 356-99. 
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It is a frequent remark upon Leibniz's contributions to logic that he 
failed to accomplish this or that, or erred in some respect, because he 
chose the point of view of intension instead of that of extension. The 
facts are these: Leibniz too hastily presumed a complete, or very close, 
analogy between the various logical relations. It is a part of his sig
nificance for us that he sought such high generalizations and believed in 
their validity. He preferred the point of view of intension, or connotation, 
partly from habit and partly from rationalistic inclination. As a conse
quence, wherever there is a discrepancy between the intensional and ex
tensional points of view, he is likely to overlook it, and to follow the former. 
This led him into some difficulties which he might have avoided by an 
opposite inclination and choice of example, but it also led him to make 
some distinctions the importance of which has since been overlooked and 
to avoid certain difficulties into which his commentators have fallen. 29 

In Difficultates quaedam logicae, Leibniz shows that at last he recognizes 
the difficulty in connecting the universal and the corresponding particular. 
He sees also that this difficulty is connected with the disparity between the 
intensional point of view and the existential import of particular proposi
tions. In the course of this essay he formulates the symbolism for the four 
propositions in two different ways. The first formulation is: 30 

Univ. aff.; All A is B: AB = A, or A non-B does not exist. 
Part. neg.; Some A is not B; AB =1= A, or A non-B exists. 
Univ. neg.; No A is B; AB does not exist. 
Part. afr.; Some A is B; AB exists. 

AB = A and AB =1= A may be interpreted as relations of intension or of 
extension indifferently. If all men are mortal, the intension of "mortal 
man" is the same as the intension of "man", and likewise the class of 
mortal men is identical in extent with the class of men. The statements 
concerning existence are obviously to be understood in extension only. 
The interpretation here put upon the propositions is identically that of 
contemporary symbolic logic. With these expressions, Leibniz infers the 
subaltern and the converse of the subaltern, from a given universal, by 

29 For example, it led him to distinguish the merely non-existent from the absurd, or 
impossible, and the necessarily true from the contingent. See G. Phil., VII, 231, foot
note; and "Specimen certitudinis seu de conditionibus," Dutens, Leibnitii Opera, IV, 

Part III, pp. 92 if., also Couturat, La Logique de Leibniz, p. 348, footnote, and p. 353, 
footnote. 

30 G. Phil., VII, 212. 
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means of the hypothesis that the subject, A, exists. Later in the essay, he 
gives another set of expressions for the four propositions: 31 

All A is B: AB = A. 
Some A is not B: AB =l= A. 
No A is B: AB does not exist, or AB =l= AB Ens. 
Some A is B: AB exists, or AB = AB Ens. 

In the last two of these, AB before the sign of equality represents the 
possible AB's or the AB "in the region of ideas"; "AB Ens" represents 
existing AB's, or actual members of the class AB. (Read .efB Ens, "AB 
which exists".) AB = AB Ens thus represents the fact that the class AB 
has members; AB =l= AB Ens, that the class AB has no members. A 
logical species of the genus A, "some A", may be represented by Y A; 
YA Ens will represent existing members of that species, or "some exist
ing A". Leibniz correctly reasons that if AB = A (All A is B), YAB 
= YA (Some A is B); but if AB t A, it does not follow that YAB =l= YA, 
for if Y = B, Y AB = YA. Again, if AB =l= AB Ens (No A is B), Y AB 
=l= YAB Ens (It is false that some A is B); but if AB = AB Ens (Some 
A is B), Y AB = Y AB Ens does not follow, because Y could assume values 
incompatible with A and B. For example, some men are wise, but it does 
not follow that foolish men are foolish wise persons, because "foolish" is 
incompatible with "wise" .32 The distinction here between AB, a logical 
division or A or of B, and AB Ens, existing AB's, is ingenious. This is 
our author's most successful treatment of the relations of extension and 
intension, and of the particular to the universal. 

In Specimen calculi universalis, the "principles of the calculus" are 
announced as follows: 33 

1) "Whatever is concluded in terms or certain variable letters may be 
concluded in terms of any other letters which satisfy the same conditions; 
for example, since it is true that [all] ab is a, it will also be true that [all] 
bc is b and that [all] bed is be . ... 

2) "Transposing letters in terms changes nothing; for example ab 
coincides with ba, 'animal rational' with 'rational animal'. 

. 3) "Repetition of a letter in the same term is useless .... 
4) "One proposition can be made from any number by joining all the 

subjects in one subject and all the predicates in one predicate: Thus, a is b 
and e is d and e is j, become aee is bdj. . 

31 G. Phi!., VII, 213-14. 
32 G. Phil., VII, 215: the illustration is mine. 
33 G. Phil., VII, 224-25. 
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5) "From any proposition whose predicate is composed of more than 
one term, more than one proposition can be made; each derived proposition 
having the subject the same as the given proposition but in place of the 
giyen predicate some part of the given predicate. If [all] a is bcd, then [all] 
a is b and [all] a is c and [all] a is d." 34 

If we add to the number of these, two principles which are announced 
under the head of "self-evident propositions "-(1) a is included in a; 
and (2) ab is included in a-we have here the most important of the funda
mental principles of symbolic logic. Principle 1 is usually qualified by 
s.ome doctrine of the "universe of discourse" or of "range of significance", 
but some form of it is indispensable to algorithms in general. The law 
numbered 2 above is what we now call the "principle of permutation"; 
3, the" principle of tautology"; 4, the" principle of composition"; 5, the 
"principle of division". And the two" self-evident propositions" are often 
included in sets of postulates for the algebra of logic. 

There remain for consideration the two fragments which are given in 
translation in our Appendix, XIX and XX of Scientia Generalis: Char

acieristica. The first of these, with the title Non inelegans specimen dem,on

strandi in abstradis, stricken out in the manuscript, is rather the more inter
esting. Here the relation previously symbolized by AB 01' ab is represented 
by A + B. And A + B = L signifies that A is contained 01' included in 
(est in) B. A scholium attached to the definition of this inclusion relation 
distinguishes it from the part-whole relation. Comparison of this and 
oth;r passages shows that Leibniz uses the inclusion relation to eover 
(1) the relation of a member of the class to the class itself; (2) the relation 
of a species, or subclass, to its genus-a relation in extension; (3) the rela
tion of a genus to one of its species-a relation of intension. The first of 
these is our E-relation; (2) is the inclusion relation of the algebra of logic; 
and (3) is the analogous relation of intension. Throughout both these 
fragments, it is clear that Leibniz thinks out his theorems in terms of 
extensional diagrams, in which classes or concepts are represented by 
segments of a line, and only incidently in terms of the intension of concepts. 

The different interpretations of the symbols must be carefully dis
tinguished. If A is "rational" and B is "animal", and A and B are taken 
in intension, then A + B will represent" rational animal". B~t if A and B 
are classes taken in eX!tension, then A + B is the class made up of those 
things which are either A or B (or both). Thus the inclusion relation, 

34 4. and 5. are stated without qualification because this study is confined to the proper
ties of universal affirmative propositions. 4. is true also for universal negatives. 
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A + B = L, may be interpreted either in intension or in extension as "A is 
in L". This is a little confusing to us, because we should nowadays invert 
the inclusion relation when we pass from intension to extension; instead 
of this, Leibniz changes the meaning of A + B from "both A and B" (in 
intension) to "either A or B" (in extension). If A is "rational ", B "ani
mal", and L "man", then A + B = L is true in intension, "rational animal" 
= "man" or "rational" is contained in "man". If A, B, and L are classes 
of points, or segments of a line, then A + B = L will mean that L is the 
class of points comprising the points in A and the points in B (any points 
common to A and B counted only once), or the segment made up of 
segments A and B. 

The relation A + B does not require that A and B should be mutually 
exclusive. If L is a line, A and B may be overlapping segments; and, in 
intension, A and B may be overlapping concepts, such as "triangle" and 
"equilateral", each of which contains the component "figure". 

Leibniz also introduces the relation L - A, which he calls detractio. 

L - A = N signifies that L contains A and that if A be taken from L the 
remainder is N. The relations [+] and [-] are not true inverses: if 
A + B = L, it does not follow that L - A = B, because A and B may be 
overlapping (in Leibniz's terms, communicantia). If L - A = N, A and Iv~ 
must be mutually exclusive (inc01nmunicantia). Hence if A + B = Land 
A and B have a common part, M, L - A = B - M. (If the reader will 
take a line, L, in which A and B are overlapping segments, this will be 
clear.) This makes the relation of detraciio somewhat confusing. In 
extension, L - A may be interpreted" L which is not A ". In intension, 
it is more difficult. Leibniz offers the example: "man" - "rational" 
= "brute", and calls our a ttention to the fact that "man" - "rational" 
is not "non-rational man" or "man" + "non-rational".35 In intension, the 
relation seems to indicate an abstraction, not a negative qualification. 
But there are difficulties, due to the overlapping of concepts. Say that 
"man" + "woodworking" = "carpenter" and "man" + "white-skinned" 

35 G. Phil., VII, 231, footnote. Couturat in commenting on this (op. cit., pp. 377-78) 
says: 

"Aillenrs Leibniz essaie de preciser cette opposition en disant: 
'A - A est Nihilum. Sed A non-A est Absurdum.' "Mais il oublie que Ie neant 

(non-Ens) n'est pas autre chose que ce qu'il appelle l'absurde ou l'impossible, c'est-it-dire 
Ie contradictoire." 

It may be that Couturat, not Leibniz, is confused on this point. Non-existence may 
be contingent, as opposed to the necessary non-existence of the absurd. And the result of 
abstracting A from the concept A seems to leave merely non-Ens, not absurdity. 

3 
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= "Caucasian". Then "Caucasian" + "carpenter" = "man" + "white-
. 'd k' "H (" C .,," t")" skinned" + 'woo wor 'mg. encea ucaSlan + carpen er - car-

penter" = "white-skinned", because the common constituent "man" has 
been abstracted in abstracting "carpenter". That is, the abstraction of 
"carpenter" from "Caucasian carpenter" leaves, not "Caucasian" but 
only that part or the concept "Caucasian" which is wholly absent in 
"carpenter". VVe cannot here say "white-skinned man" because "man" 
is abstracted, nor "white-skinned animal" because "animal" is contained 
in "man": we can only say "white-skinned" as a pure abstraction. Such 
abstraction is difficult to carry out and of very little use as an instrument 
of logical analysis. Leibniz's illustration is scribbled in the margin of the 
manuscript, and it seems clear that at this point he was not thinking out 
his theorems in terms or intensions. 

Fragment XX differs from XIX in that it lacks the relation symbolized 
by [-]. This is a gain rather than a loss, both because or the difficulty of 
interpretation and because [+] and [-] are not true inverses. Also XX 
is more carerully developed: more of the simple theorems are proved, and 
more illustrations are given. Otherwise the definitions, relations, and 
methods or proor are the same. In both fragments the fundFtmental 
operation by which theorems are proved is the substitution of equivalent 
expreSSIOns. 

If the successors of Leibniz had retained the breadth of view which 
characterizes his studies and aimed to symbolize relations of a like generality, 
these fragments might well have proved sufficient foundation for a satis
factory calculus or logic. 

III. FROM LEIBNIZ TO DE MORGAN AND BOOLE 

After Leibniz, various attempts were made to develop a calculus of 
logic. Segner, Jacques Bernoulli, Ploucquet, Tonnies, Lambert, Holland, 
Castillon, and others, all made studies toward this end. Of these, the 
most important are those or Ploucquet, Lambert and Castillon, while one 
or Holland's is or particular interest because it intends to be a calculus 
in extension. But this attempt was not quite a success, and the net result 
or the others is to illustrate the fact that a consistent calculus of logical 
relations in intension is either most difficult or quite impossible. 
. Of Segner's work and Ploucquet's we can give no account, since no 

copies of these writings are available.36 Venn makes it clear that Ploue-

36 There seem to be no copies of Ploucquet's books in this country, and attempts to 
secure them from the continent have so far failed. 
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quet's calculus was a calculus of intension and that it involved the quanti
fication of the predicate. 

Lambert31 wrote voluminously on the subject of logic, but his most 
important contribution to symbolic procedure is contained in the Sedl8 
Versuche einer Zeichenkunst in der Vernunftlehre.38 These essays are not 
separate studies, made from different beginnings; later essays presuppose 
those which precede and refer to their theorems; and yet the development 
is not entirely continuous. Materilal given briefly in one will be found 
set forth more at length in another. And discussion of more general prob
lems of the theory of knowledge and of scientific method are sometimes 
introduced. But the important results can be presented as a continuous 
development which follows in general the order of the essays. 

Lambert gives the following list of his s.ymbols: 

The symbol of equality (Gleichgultigkeit) 
addition (Zusetzung) + 

abstraction (Absonderung) 
opposition (des Gegentlzeils) X 
universality > 
particularity < 
copula 
given concepts (Begriffe) a, b, c, d, etc. 
undetermined concepts 
unknowns 
the genus 
the difference 

n, m, l, etc. 
x, y, z. 

'Y 

o 
The calculus is developed entirely from the point of view of intension: 

the letters represent concepts, not classes, [+ 1 indicates the union of two 
concepts to form a third, [- 1 represents the withdrawal or abstraction of 
some part of the connotation of a concept, while the product of a and "& 

represents the common part of the two concepts. 'Y and 0 qualify any 
. term" multiplied" into them. Thus a'Y represents the genus of a, ao the 
difference of a. Much use is made of the well-known law of formal logic 
that the concept (of a given species) equals the genus plus the difference. 

(1) a'Y + ao = a("{ + 0) = a 

37 Johann Heinrich Lambert (1728-77), German physicist, mathematician, and astrono
mer. He is remembered chiefly for his development of the equation x"+px = q in an 
infinite series, and his proof, in 1761, of the irrationality of 1r. 

38 In Logische und philoBophische Abhandlungen; ed. Joh. Bernoulli (Berlin, 1782), 
vol. I. 
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a"{ + ao is the definition or explanation (EJ-ldanmg) of a. As immediate 
consequences of (1), we have also 

(2) a"{ = a - ao (3) ao = a - a"{ 

Lambert takes it for granted that [+] and [-] are strictly inverse opera
tions. We have alread;y noted the difficulties of Leibniz on this point. 
If two concepts, a and b, haye any part of their connotation in common, 
then (a + b) - b wiHnot be a but only that part of a which does not belong 
also to b. If "European" and" carpenter" have the common part "man", 
then (" European" + "carpenter") minus "carpenter" is not "European" 
but" European" minus "man". And [+ 1 and [-] will not here be true 
inverses. But this difficulty may be supposed to disappear where the 
terms of the sum are the genus and difference of some concept, since genus 
and difference may be supposed to be mutually exclusive. We shall return 
to this topic later. 

More complex laws of genus and difference may be elicited from the 
fact that the genus of any giyen a is also a concept and can be "explained," 
as can also the difference of a. 

(4) 

But a = a"{ + aO. Hence Q.E.D. 

That is to say: if one wish to define or expJain a, one need not stop at 
giving its genus and difference, but may define the genus in terms of its 
genus and difference, and define the difference similarly. Thus a is" equiva
lent to the genus of the genus of a plus the difference of the genus of a plus 
the genus of the difference of a plus the difference of the difference of a. 
This may be called a "higher" definition or "explanation" of a. 

Obviously, this process of higher and higher "explanation" may be 
carried to any length; the result is what Lambert calls his "Newtonian 
form ula " . We shall best understand this if we take one more preliminary 
step. Suppose the explanation carried one degree further and the resulting 
terms arranged as follows: 

a = a("{3 + "{"{O + "{oo + 03) 

+ "{O"{ + o"{o 

+ O"{"{ + oo"{ 

The three possible arrangements of two "{'s and one 0 might be summarized 
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by 31'20; the three arrangements of two o's and one I' by 31'02• With this 
convention, the formula for an explanation carried to any degree, n, is: 

n(n-1) n(n-1)(n-2)' 
(5) a = a( 'Y n + n'Yn-1a + -~ 'Yn-202 + 31 'Yn-303 + ... etC'. 

This "Newtonian formula" is a rather pleasant mathematical conceit. 
Two further interesting laws are gi\'en: 

(6) 

Proof: 

But 

and 

(7) 

Proof: 

But 

and 

a = ao + a'Yo + a'Y20 + a'Y30 + ... etc. 

a = a'Y + ao 

a'Y = a'Y2 + a'Yo 

a')'2 = aI's + a'Y2o 

a'Y3 = a'Y4 + a,),3(j, etc. etc. 

a = a'Y + ao'Y + ao2'Y + ao3'Y + ... etc. 

a = a'Y + ao 

ao = ao!' + ao2 

ao2 = aD2'Y + aDS 

aos = aDS I' + ao4, etG. etc. 

Just as the genus of a is represented by aI', the genus of the genus Qf 
a by a'Y2, etc., so a species of which a is genus may be represented by a'Y-1, 
and a species of which a is genus of the genus by a'Y-2, etc. In general, as 
a'Yn represents a genus above a, so a species below a may be represented by 

or 
a 

'Yn 

Similarly ainy concept of which a is difference of the difference of the differ-
ence etc., may be represented by 

ao-n or 

Also, j'ust as a = a( I' + 0) n, where a is a concept and a( I' + 0) nits" explana-

." a h a. h d h" I ." tlOn ,so (I' + Il)n = a, were ('Y + Il)n IS t e concept an ate exp anatlOn 

of it. 
Certain cautions in the transformation of expressions, both with respect 

to "multiplication" and with respect. to "division," need to be observed.40 

39 Seeks Versucke, p. 5. 
40 Ibid., pp. 9-10. 
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The concept a-y2 + aO-y is very different from the concept (a'Y + aoh, because 

(8) 

while a'Y2 + ao'Y is the genus of the genus of a plus the genus of the difference 

a b d·· . hed f a'Y of a. Also - 'Y must e IstmgUls rom -. 
'Y 'Y 

species x of which a is the genus, i. e., 

(9) 

~ 'Y is the genus of any 
'Y 

But a'Y h is any species of which the genus of a is the genus, i. e., any 
species x such that a and x belong to the same genus. 

We turn now to consideration of the relation of concepts which have a 
common part. 

Similarity is identity of properties. Two concepts are similar if, and 
in so far as, they comprehend identical properties. In respect to the 
remaining properties, they are different.41 

ab represents the common properties of a and b. 

a - ab represents the peculiar properties of a. 

a + b - ab - ab represents the peculiar properties of a together with 
the peculiar properties of b. 

It is evident from this last that Lambert does not wish to recognize in 
his system the law a + a = a; else he need only have written a + b - abo 

If x and a are of the same genus, then 

and ax = a'Y = X'Y 

If now we symbolize by alb that part of a which is different from b,42 then 

(10) alb+bla+ab+ab = a+b 

Also x - xla = a'Y, or 

ax = ao 

a - ax = all 

a = ax + ao 

ax = a - all = a'Y = X'Y 

41 Ibid., p. 10. 
42 Lambert sometimes uses a I b for this, sometimes a : b. 
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a'Y 
x =--

ax+alx=a 

ax=a-alx=x-xla 

alx = a - ax 

ax+xla = x 

x!a=x-ax 

23 

The fact that y is a property comprehended in x may be expressed by 
y = xy or by Y+ xly = x. The manner in which Lambert deduces the 
second of these expressions from the first is interesting.43 If y is a property 
of x, then y I x is null. But by (10), 

Hence in this case, 

And since Y = xV, 

Hence 

2xy + x I y + y I x = x + y 

2xy+xly = x+y 

2y+xly = x +y 

y+xlY=x 

He has subtracted Y from both sides, in the last step, and we observe that 
2y - Y = y. This is rather characteristic of his procedure; it follows, 
throughout, arithmetical analogies which are quite invalid for logic. 

With the complications of this calcul)ls, the reader will probably be 
little concerned. There is no general type of procedure for elimination or 
solution. Formulae of solution for different types of equation are given. 
They are highly ingenious, often complicated, and of dubious application. 
It is difficult to judge of possible applications because in the whole course 
of the development, so far as outlined, there is not a single illustration of a 
solution which represents logical reasoning, and very few illustrations of 
any kind. 

The shortcomings of this calculus are fairly obvious. There is too 
much reliance upon the analogy between the logical relations symbolized 
and their arithmetical analogues. Some of the operations are logically 
uniriterpretable, as for example the use of numerical coefficients other than 
o and 1. These have a meaning in the "Newtonian formula ", but 2yeither 
has no meaning or requires a conventional treatment which is not given. 
And in any case, to subtract y from both sides of 2y = x + y and get Y = x 
represents no valid logical operation. Any adequate study of the properties 
of the relations employed is lacking. x = a + b is transformed into a = x 
- b, regardless of the fact that a and b may have a common part and that 

43 Seeks Versuche, p. 12. 
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x - b represents the abstraction of the whole of b from x. Suppose, for 
example, man = rational + animal. Then, by Lambert's procedure, we 
should haye also rational = man - animal. Since Leibniz had pointed 
out this difficulty,-that addition and subtraction (with exactly these 
meanings) are not true inYerses, it is the more inexcusable that Lambert 

should err in this. 
There is a still deeper difficulty here. As Lambert himself remarks,44 

no two concepts are so completely dissimilar that they do not have a common 
part. One might say that the concept "thing" (Lambert's word) or "be
ing" is common to every pair of concepts. This being the case, [+ ] and [-] 
are ne'ver really inverse operations. Hence the difficulty will not really 
disappear even in the case of a'Y and ao; and a - a'Y = ao, a - ao = a'Y 
'will not be strictly valid. In fact this consideration vitiates altogether the 
use of "subtraction" in a calculus based on intension. For the meaning 
of a - b becomes w'holly doubtful unless [-] be treated as a wholly con
ventional inverse of r + ], and in that case it becomes wholly useless. 

The method by which Lambert treats the traditional syllogism is only 
remotely connected with what precedes, and its value does not entirely 
depend upon the general validity of his calculus. He reconstructs the 
whole of Aristotelian logic by the quantification of the predicate.45 

The proposition "All A is B" has two cases: 
(1) A = B, the case in which it has a universal converse, the concept 

A is identical with the concept B. 
(2) A > B, the case in which the converse is particular, the concept B 

comprehended in the concept A. 
The particular affirmative similarly has two cases: 
(1) A < B, the case in which the converse is a universal, the subject A 

comprehended within the predicate B. 
(2) The case in which the converse is particular. In this case the 

subject A is comprehended within a subsumed species of the predicate and 
the predicate within a subsumed species of the subject. Lambert says 
this may be expressed by the pair: 

112A >B and A < nB 

Those who are more accustomed to logical relations in extension must 
not make the mistake here of supposing that A > 112A, and 112A < A. 
112A is a species of A, and in intension the genus is contained in the species, 

44 Ibid., p. 12. 
45 Ibid., pp. 93 ff. 
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not vice versa. Hence mA > B does not give A > B, as one might expect 
at first glance. vVe see that Lambert here translates "Some A" by mA, a 
species comprehended in A, making the same assumption which occurs in 
Leibniz, that any subdivision or portion of a class is capable of being treated 
as some species comprehended under that class as its genus. 

In a universal negatiye proposition-Lambert says-the subject and 
predicate each have peculiar properties by virtue of whose comprehension 
neither is contained in the other. But if the peculiar properties of the 
subject be taken awa~', then what remains is contained in the predicate; 
and if the peculiar properties of the predicate be taken away, then what 
remains is contained in the subject. Thus the universal negatiye is repre
sented by the pair 

A 
- <B 
rn 

and 

The particular negative has two cases: 

B 
A >

n 

(1) 'When it has a universal affirmative converse, 1. e., ,,·hen some A 
is not B but all B is A. This is expressed by 

A<B 

(2) When it has not a universal affirmative converse. In this case a 
subsumed species of the subject is contained in the predicate, and a sub
sumed species of the predicate in the subject. 

rnA >B and A <nB 

Either of the signs, < and >, may be reversed by transposing the 
terms. And if P < Q, Q > P, then for some l, P = lQ. Also, "multi
plication" and "division" are strict inverses. 
these expressions as follows: 

A > B is equivalent to A = mB 

A < B nA = B 
I 

1nA > B l 
r 

A < nB j 

A <B 1 
rn 

A >~J 

{ mA = kBl 
lA = nB f 

{ ~~!l 
l n J 

Hence we can transform 

or pA. = qB 

A B 
or 

p q 

It is evident from these transformations and from the propositional equiva-
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lents of the "inequalities" that the following is the full expression of these 

equations: 

(1) A = mB: All A is B and some B is not A. 
(2) nA = B: Some A is not B and all B is A. 
(3) mA = nB: Some, but not all, A is B, and some, but not all, B is A. 

A B N A' B (4)-=-: 0 IS. 
m n 

The first noticeable defect here is that Aim = Bin is transformable into 
nA = mB and (4) can mean nothing different from (3). Lambert has, in 
fact, only four different propositions, if he sticks to the laws of his calculus: 

(1) A =B: AlIA is all B. 
(2) A = mB: All A is some B. 
(3) nA = B: Some A is all B. 
(4) mA = nB: Some A is some B. 

These are the four forms which become, in Hamilton's and De Morgan's 
treatises, the four forms of the affirmative. A little scrutiny will show that 
Lambert's treatment of negatives is a failure. For it to be consistent at 
all, it is necessary that "fractions" should not be transformed. But 
Lambert constantly makes such transformations, though he carefully re
frains from doing so in the case of expressions like Aim = Bin which are 
supposed to represent universal negatives. His method further requires 
that m and n should behave like positive coefficients which are always 
greater than 0 and such that m =!= n. This is unfortunate. It makes it 
impossible to represent a simple proposition without" entangling alliances". 
If he had taken a leaf from Leibniz's book and treated negative propositions 
as affirmatives with negative predicates, he might have anticipated the 
calculus of De Morgan. 

In symbolizing syllogisms, Lambert always uses A for the major term, 
B for the middle term, and 0 for the minor. The perfectly general form of 
proposition is: 

mA nB 
p q 

Hence the perfectly general syllogism will be: 46 

46 Ibid., pp. 102-103. 
47 Ibid., p. 107. 

Major 
mA nB 
-=-
p q 
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Minor 
fJ-C vB 
-=-

7r P 

Conclusion fJ-n C = rnv A 
7rq PP 

The indeterminates in the minor are always represented thus by Greek 
letters. 

The conclusion is de ved from the premises as follows: 

The major premise gives B = mq A. 
np 

The minor gives B = f.LP O. 
7rV 

Hence mq A = fJ-P O. 
np 7rV 

fJ-n 111v 
and therefore - C = -A. 

7rq PP 

The above being the general form of the syllogism, Lambert's scheme of 
moods in the first figure is the following: it coincides with the traditional 
classification only so far as indicated by the use or the traditional names: 

I. 

Barbara 

B = mA nB = mA 
VII. 

0= vB fJ-C = B 
Lilii 

0= mvB nfJ-C = mA 

B=A 

II. 
Canerent 

0 B B=A 
VIII. 

7r P Magogos 
fJ-C = nB 

0 A }.to = nA 
7r p 

III. B A IX. B A 

Decane 

sive 

Celarent 

q P Negligo 
q p 

C = vB 
sive 

C = vB 

0 vA 
Ferio 

pO vA 
-=- -=--
q p q p 
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IV. 

Fideleo 

V. 
Gabini 

srve 

Darii 

VI. 

Hilario 

A Survey of Symbolic Logic 

nB = A 

o B 
7r P 

nC A 
7r P 

B = 'inA 

fJ,C = vB 

fJ,0 = mvA 

nB = 1nA 

O=B 
nO = mA 

x. 
Pilosos 

XI. 

Romano 

XII. 

Somnio 

nB = A 

fJ,0 = B 

nfJ,O = A 

nB = mA 

O=B 
nO = mA 

nB = mA 

fJ,0 = B 

lLfJ,O = mA 

The difficulty about" division" does not particularly affect this scheme, 
since it is only required that if one of the premises involve "fractions", 
the conclusion must also. It will be noted that the mood IIilario is identi
cal in form with Romano, and Lili?, with Somnio. The reason f9r this 
lies in the fact that nB = 1nA has two partial meanings, one affirmative 
and one negative (see above). Hilario and Lilii take the affirmative 
interpretation, as their names indicate; Romano and SO?lwio, the negative. 

Into the discussion of the other three figu'res, the reader will probably 
not care to go, since the manner of treatment is substantially the same as 
in the above. 

There are various other attempts to devise a convenient symbolism and 
method for formal logic; 48 but these are of the same general type, and 
they meet with about the same degree and kind of success. 

Two brief passages in which there is an anticipation of the logic of 
relatives possess some interest.49 Relations, Lambert says, are" external 
attributes ", by which he means that they do not belong to the object 
an sich. "Metaphysical" (i. e., non-logical) relations are represented by 
Greek letters. For example if f = fire, h = heat, and a = cause, 

f = a:: h 

The symbol :: represents a relation which behaves like multiplication: 

48 See in Sechs Versuche, v and VI. Also fragments "Uber die Vernunftlehre", in 
Logische und Philosophische Abhandlungen, I, XIX and XX; and Anlage zur Architektonik, 
p.190jf. 

49 Secks Versuche, pp. 19,27 jf. 



The Development of Symbolic Logic 29 

a: : h is in fact what Peirce and Schroder later called a "relative produ.:t". 
Lambert transforms the above equation into: 

f a 
l~ =-

h 

f a 

Fire is to heat as cause to effect. 

Fire is to cause as heat to effect. 

Heat is to fire as effect to cause. 

The dot here represents Wil'l~un{1 (it might be, JVil'klic hke it, in consonance 
with the metaphysical interpretation, suggesth-e of Aristotle, which he 
gives to Ursache). It has the properties of 1, as is illustrated elsewhere50 

by the fact that ')'0 may be replaced by this symbol. 
Lambert also uses powers of a relation. 

If a = ip : : b, and b = ip: : c, 

And if a = ip2 : : c, 

and 

And more to the same effect. 
No use is made of this symbolism; indeed it is difficult to see how 

Lambert could haw used it. Yet it is interesting that he should have felt 
that the powers of a relation ought to be logically important, and that he 
here hit upon exactly the concept by which the riddles of "mathematical 
induction" were later to be solved. 

Holland's attempt at a logical calculus is contained in a letter to Lam
bert.51 He himself calls it an "unripe thought ", and in a letter some three 
years later52 he expresses a doubt if logic is really a purely formal discipline 
capable of mathematical treatment. But this study is of particular interest 
because it treats the logical classes in extension-the only attempt at a 
symbolic logic from the point of view of extension from the time of Leibniz 
to the treatise of Solly in 1839. 

Holland objects to Lambert's method of representing the relation of 
concepts by the relation of lines, one under the other, and argues that the 

5, Ibid., p. 21. 
51 J ohan. Lamberts deulscher Gelehrten Briefwechsel, Brie] III, pp. 16:if. 
52 See Ibid., Brief XXVII, pp. 259:if. 
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relation of "men" to "mortals" is not sub but inter. He is apparently not 
aware that this means exchanging the point of view of intension for that 
of extension, yet all his relations are consistently represented in extension, 

as we shall see. 
(1) If S represent the subject, P the predicate; and p, 11" signify unde

termined variable numbers, Sip = P/11" will come to: A part of S is a part 
of P, or certain of the S's are certain of the P's, or (at least) an S is a P. 

This expression is the general formula of all possible judgments, as is 
evident by the following: 

(2) A member is either positive or negative, and in both cases, is either 
finite or infinite. We shall see in what fashion p and 11" can be understood. 

(3) If p = 1 in S /p, then is S /p as many as all S, and in this way S /p 
attains its logical maximum. Since, then, p cannot becOl;ne less than 1, 
it can still less disappear and consequently cannot become negative. 

The same is true of 11". 

(4) Therefore p and 11" cannot but be positive and cannot be less than 1. 
If p or 11" becomes infinite, the concept becomes negative. 

(5) If f expresses a finite number> 1, then the possible forms of judg
ment are as follows: 

(1) ~ = ~ All S is all P. 
1 1 

(2) ~ = ~ All S is some P. 
1 f 

Now 0 expresses negatively what 1/ <Xl expresses positively. To say that 
an infinitely small part of a curved line is straight, means exactly: No part 
of a curved line is straight. 

(3) 
S P 

All S is not P. -=-
1 <Xl 

(4) 
S P 

Some S is all P. - =-
f 1 

(5) 
S P 

Some S is some P. - =-
f f 

(6) 
S P 

Some S is not P. -=-
f 00 

(7) _s -__ P 1 Al not-S is all P. 
CfJ 1 

53 See Ibid., Brief IV. 
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S P 
(8) - = - All not-S is some P. 

00 f 

S P 
(9) - = - All not-S is aU not-Po 

00 00 
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(1), (2), and (9) Holland says are universal affirmative propositions; 
(3), (7), and (8), universal negatiYes; (4) and (5), particular affirmatives; 
(6), a particular negative. 

As Venn has said, this notation anticipates, in a way, the method of 
Boole. If instead of the fraction ,ve take the value of the numerator 
indicated by it, the three values are 

S 
- = l·S 
1 ' 

S 
- = v·S 
f ' 

where 0 < v < 1, and SIOC! = O·S. But the differences between this and 
Boole's procedure are greater than the resemblances. The fractional form 
is a little unfortunate in that it suggests that the equations may be cleared 
of fractions, and this would give results which are logically uninterpretable. 
But Holland's notation can be made the basis of a completely successful 
calculus. That he did not make it such, is apparently due to the fact that 
he did not give the matter sufficient attention to elaborate the extensional 
point of view. 

He gives the following examples: 

Example 1. 

M 
H=

p 

Ergo, 

Example 2. 

All men H are mortal M 
All Europeans E are men H 

M 
E = - [All Europeans are mortal} 

p7r 

All plants are organisms 

All plants are no animals 

o P=
p 

A 
P=-

00 

o A 
Ergo, - = [Some organisms are not animals} 

p 00 
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Example 3. 
R 

All men are rational H = -
P 

R 
All plants are not rational P = -

co 

Ergo, All plants are no men 

In this last example, Holland has evidently transformed H = Rip into 
pH = R, which is not legitimate, as we have noted. pH = R would be 
"Some men are all the rational beings". And the conclusion P = IJH i co 

is also misinterpreted. It should be, "All plants are not some men". A 
correct reading would have revealed the invalid operation. 

Lambert replied vigorously to this letter, maintaining the superiority 
of the intensional method, pointing out, correctly, that Holland's calculus 
would not distinguish the merely non-existent from the impossible or 
contradictory (no calculus in extension can), and objecting to the use of 
co in this connection. It is characteristic of their correspondence that each 
pointed out the logical defects in the logical procedure of the other, and 
neither profited by the criticism. 

Castillon's essay to·ward a calculus of logic is contained in a paper 
presented to the Berlin Academy in 1803.54 The letters S, A, etc., represent 
concepts taken in intension, J.l1 is an indeterminate, S + lr1 represents the 
"synthesis" of Sand M, S - M, the withdrawal or abstraction of 111 
from S. S - M thus represents a genus concept in which S is subsumed, 
JJI being the logical "difference" of S in S - M. Consonantly S + JJf, 
symbolizing the addition of some" further specification" to S, represents a 
species concept which contains (in intension) the concept S. 

The predicate of a universal affirmative proposition is contained in the 
subject (in intension). Thus" All S is A" is represented by 

The universaillegative "No S is A" is symbolized by 

S = - A + M = (- A) + M 

The concept S is something, M, from which A is withdrawn-is no A. 
Particular propositions are divided into two classes, "real" and "il

lusory". A real particular is the converse of a universal affirmative; the 

54 "Memoire sur un nouvel algorithme logique", in M emoires de l' Academie des Sciences 
de Berlin, 1803, Classe de philosophie speculative, pp. 1-14. See also his paper, uRetlexions 
sur Ia Logique", loco cit., 1802. 
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illusory particular, one whose converse also is particular. The real particu
lar affirmative is 

A=S-.M 

since this is the converse of S = A + ...11. The illusory particular affirmative 
is represented by 

S=ATJ1 

Castill~m's explanation of this is that the illusory particular judgment gives 
us to understand that some S alone is A, or that S is got from A by ab
straction (S = A - . .'11), when in reality it is A which is drawn from S by 
abstraction (S = 111 + A). Thus this judgment puts - M where it should 
put + J1; one can, then, indicate it by S = A T J1. 

The fact is, of course, that "Some 8 is A " indicates nothing about 
the relations of the concepts 8 and A except that they are not incompatible. 
This means, in intension, that if one or both be fUl'ther specified in proper 
fashion, the results will coincide. It might well be symbolized by S + jV 

= A + M. We suspect that Castillon's choice of 8 = A T J1 is really 
governed by the consideration that S = A + JI may be supposed to give 
S = A T M, the universal to give its subaltern, and that A = S - J1 
will also give 8 = A =t= J.11, that is to say, the real particular-v;hich is 
"All A is S "-will also give 8 = A =t= M. Thus" Some 8 is A" may be 
derived both from" All S is A" and from "All A is 8 ", which is a de
sideratum . 

. The illusory negative particular is, correspondingly, 

8=-A=t=jj[ 

Immediate inference works out fairly "yell in this s;ymbolism. 
The universal affirmative and the real particular are converses. 
8 = A + M gives A = S - M, and vice versa. The universal negative 

is direc'tly convertibl,e. 
8 = - A + M gives A = - S + M, and vice versa. The illusory par

ticular is also convertible. 
S = A =t= J."f\,f gives - A = - S T M. Hence A = S =F .M, which 

comes back to 8 = A =F M. 
A universal gives its subaltern 
S = A +M gives S = A =t= .M, and 
8 = - A + M gives 8 = - A =F :M. 
And a real particular gives also the converse illusory particular, for 
A = 8 - :M gives 8 = A + :M, 
4 
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which gives its subaltern, S = A =F M, 
which gives A = S =F M. 

All the traditional moods and £gures of the syllogism may be symbolized 
in this calculus, those which involve particular propositions being valid 
both for the real particular and for the illusory particular. For example: 

.4JI .M is A 
AlJ Sis M 
All S is A 

No Mis A 
All Sis lYl 
No S is A 

All M is A 
Some S is j~1 
Some S is A 

M=A+N 
S = M+P 
S = A + (N + P) 

M = - A+N 
S = M+P 
S = - A + (N +P) 

M=A+N 
S = M =F P or S = M - P 
S = (A + N) =F P or S = (A + N) - P 

This is the most successful attempt at a calculus of logic in intension. 
The difficulty about" subtraction" in the XIX Fragment of Leibniz, 

and in Lambert's calculus, arises because M - P does not mean" .1.11 but 
not P" or ".M 'which is not P". If it mean this, then [+ ] and [-] are not 
true inverses. If, on the other hand, M - P indicates the abstraction from 
the concept M of all that is involved in the concept P, then M - P is 
difficult or impossible to interpret, and, in addition, the idea of negation 
cannot be represented by [-]. How does it happen, then, that Castillon's 
notation works out so well when he uses [-] both for abstraction and as 
the sign of negation? It would seem that his calculus ought to illvolve 
him in both kinds of difficulties. 

The answer is that Castillon has, apparently by good luck, hit upon a 
. method in which nothing is ever added to or subtracted from a determined 
concept, S or A, except an indeterminate, M or N or P, and this indeter
minate, just because it is indeterminate, conceals the fact that [+ ] and [-] 
are not true inverses. And when the sign [ -] appears before a determinate, 
A, it may serve as the sign of negation, becaUi~e no difficulty arises from 
supposing the whole of what is negated to be absent, or abstracted. 

Castillon's calculus is theoretically as unsound as Lambert's, or more 
so if unsoundness admits of degree. It is quite possible that it was worked 
out empirically and procedures which give invalid results avoided. 
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'iVhoever studies Leibniz, Lambert and Castillon cannot fail to be con
vinced that a consistent calculus of concepts in intension is either immensely 
difficult or, as Couturat has said, impossible. Its main difficulty is not 
the one which troubled Leibniz and which constitutes the main defect in 
Lambert's system-the failure of [+ ] and [-] to behave like true im'erses. 
This can be avoided by treating negative propositions as affirmatives with 
negative predicates, as Leibniz did. The more serious difficulty is that a 
calculus of "concepts" is not a calculus of things in actu but only in possibile, 
and in a rather loose sense of the latter at that. Holland pointed this out 
admirably in a letter to Lambert.55 He giyes the example according to 
Lambert's method. 

All triangles are figures. T = iF 

All quadrangles are figures. Q = qF 

'iVhence, 
T Q 

F =- =-, 
t q 

or qT = tQ 

and he then proceeds: 56 

"In general, if from A = mC and B = nC the conclusion nA = 1nB 
be drawn, the calculus cannot determine whether the ideas nA and mB 
consist of contradictory partial-ideas, as in the foregoing example, or not. 
The thing must be judged according to the matter." 

This example also calls attention to the fact that Lambert's calculus, 
by operations which he continually uses, leads to the fallacy of the undis
tributed middle term. If" some A" is simply some further specification 
of the concept A, then this mode is not fallacious. And this observation 
brings down the whole treatment of logic as a calculus of concepts in in
tension like a house of cards. The relations of existent things cannot be 
determined from the relations of concepts alone. 

The calculus of Leibniz is more successful than any invented by his 
continental successors-unless Ploucquet's is an exception. That the long 
period between him and De Morgan and Boole did not produce a successful 
system of symbolic logic is probably due to the predilection for this inten
sional point of view. It is no accident that the English were so quickly 
successful after the initial interest was aroused; they habitually think of 
logical relations in· extension, and when they speak of "intension" it is 
usually clear that they do not mean those relations of concepts which the 
"intension" of traditional logic signifies. 

55 Deutscher Gelehrter Briefwechsel, I, Brief XXVII. 

56 Ibid., pp. 262-63. 
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The beginning of thought upon this subject in England is marked by the 
publication of numerous treatises, all proposing some modification of the 
traditional logic by quantifying the predicate. As Sir William Hamilton 
notes,07 the period from Locke to 1833 is singularly barren of any real con
tributions to logic. About that time, Hamilton himself proposed the 
-quantification of the predicate. As we now know, this idea was as old at 
least as Leibniz. Ploucquet, Lambert, Holland, and Castillon also had 
quantified the predicate. Both Hamilton and· his student Thomson men
tion Ploucquet; but this new burst of logical study in England impresses 
one as greatly concerned about its own innovations and sublimely indifferent 
to its predecessors. Hamilton quarrelled at length with De Morgan to 
establish his priority in the matter.58 This is the more surprising, since 
George Bentham, in his O'l.ltline of a New System of Logic, published in 1827, 
had quantified the predicate and given the following table of propositions: 

1. X in toto = Y ex parte; 

2. X in toto I! Y ex parte; 

3. X in toto = Y in toto; 

4. X in toto II Y in toto; 

5. X ex parte = Y ex parte; 

6. X ex parte II Y ex parte; 

7. X ex parte = Y in toto; 

8. X ex parte II Y in toto. 

(II is here the sign of "diversity"). 
But Hamilton was certainly the center and inspirer of a new movement 

in logic, the tendency of which was toward more precise analysis of logical 
significances. Bayne's Essay on the New Analytic and Thomson's Laws of 
Thought are the most considerable permanent record of the results, but 
there was a continual fervid discussion of logical topics in various peri
odicals; logistic was in the air. 

This movement produced nothing directly which belongs to the history of 
symbolic logic. Hamilton's rather cumbersome notation is not made the 
basis of operations, but is essentially only an abbreviation of language. 
Solly's scheme of representing syllogisms was superior as a calculus. But 

57 See Discussions on Philosophy, pp. 119 fJ. 
68 This controversy, begun in 1846, was continued for many years (see various articles 

in the London Atheru:eum, from 1860 to 1867). It was concluded in the pages of the Con-' 
temporary Review, 1873. 
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this movement accomplished two things for symbolic logic: it emphasized 
in fact-though not always in name-the point of view of extension, and 
it aroused interest in the problem of a ne\ver and more precise logic. These 
may seem small, but whoever studies the history of logic in this period 
will easily convince himself that ,vithdut these things, symbolic logic might 
never have been revived. 'Vithout Hamilton, we might not have ha:d 
Boole. The record of symbolic logic on the continent is a record of failure, 
in England, a record of success. The continental students habitually 
emphasized intension; the English, extension. 

IY. DT£ ?lIOBGAX 

De Morgan59 is known to most students of symbolic logic only through 
the theorem which bears his name. But he made other contributions of 
permanent value-the idea of the" uniYerse of discourse ",60 the discoyery 
of certain new types of propositions, and a beginning of the logic of rela
tions. Also, his originality in the invention of new logical forms, his ready 
wit, his pat illustrations, and the clarity and liveliness of his ,niting did 
yeoman service in breaking dOiyn the prejudice against the introduction 
of "mathematical" methods in logic. His important writings on logic 
are comprised in the Formal Logic, the Syllabus of a ProposecZ Sysiern of 
Logic, and a series of articles in the TransaciionfJ of the Cambridge Philo
sophical Society.61 

59 Augustus De Morgan (1806-78), A.B. (Cambridge, 1827), Professor of Mathematics 
in the University of London 1828-31, reappointed 1835; writer of numerous mathematical 
treatises which are characterized by exeeptional accuracy, originality and clearness. Per
haps the most valuable of these is wFoundations of Algebra" (Camb. Phil. Trans., VII, 

VIII); the best known, the Budget of Paradoxes. :For a list of his papers, see the Royal 
Society Catalogue. For many years an active member of the Cambridge Philosophical 
Society and the Royal Astronomical Society. Father of William F. De Morgan, the novelist 
and poet. For a brief biography, see Monthly Notices of the Royal Astronomical Sor:iety, 
XII,112. 

60 The idea is introduced with these words: "Let us take a pair of contrary names, 
as man and not-man. It is plain that between them they represent everything, imaginable 
or real, in the universe. But the contraries of co=on language embrace, not the whole 
universe, but some one general idea. Thus, of men, Briton and alien are contraries: 
every man must be one of the two, no man can be both. . • . The same may be said of 
integer and fraction among numbers, peer and co=oner among subjects of a realm, 
male and female among animals, and so on. In ordet: to express this, let us say that the 
whole idea under consideration is the universe (meaning merely the whole of which we are 
considering parts) and let names which have nothing in co=on, but which between them 
contain the whole of the idea under consideration, be called contraries in, or with nspect to, 
that universe." (Formal Logic, p. 37; see also Camb. Phil. Trans., VIII, 380.) 

61 Formal Logic: or, The CalculWi of Inference, Necessary and Probable, 1847. Here
after to be cited as F. L. 
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Although the work of De Morgan is strictly contemporary with that of 
Boole, his methods and symbolism ally him rather more with his prede
cessors than with Boole and those who follow. Like Hamilton, he is bent 
upon improving the traditional Aristotelian logic. His :first step in this 
direction is to enlarge the number of typical propositions by considering 
all the combinations and distributions of two terms, X and Y, and tlze'ir 

negatives. It is a feature of De Morgan's notation that the distribution of 
each term,62 and the quality-affirmative or negative-of the proposition 
are indicated, these being sufficient to determine completely the type of 
the proposition. 

That a term X is distributed is indicated by writing half a parenthesis 
before or after it, with the horns turned toward the letter, thus: X), or (X. 

An undistributed term is marked by turning the half-parenthesis the other 
way, thus: Xc, or )X. X))1', for example, indicates the proposition in 
which the subject, X, is distributed and the predicate, Y, is undistributed, 
that is, "All X is 1'''. XOY indicates a proposition with both terms un
distributed, that is, "Some X is r".H3 The negatiye of a term, X, is indi
cated by x; of Y by y, etc. A negative proposition is indicated by a dot 
placed between the parenthetical curves; thus "Some X is not Y" will 
be X(· (1'.640 T"\vo dots, or none, indicates an affirmative proposition. 

All the different forms of proposition which De Morgan uses can be 
generated from hvo types, the universal, "All ... is ... ," and the 
particular, "Some ... is ... ," by using the four terms, X and its nega
tive, x, Y and y. For the universals we have: 

Syllabus of a Pr'oposcd System of Logic, 1860. Hereafter to be cited as Syll. 
Five papers (the first not numbered; various titles) in Camb. Phil. Trans., VIII, IX, x. 
The articles contain the most valuable material, but they are ill-arranged and inter-

spersed with inapposite discussion. Accordingly, the best way to study De Morgan is to 
get these articles and the Formal Logic, note in a general way the contents of each, and 
then use the Syllabus as a point of departure for each item in which one is interested. 

62 He does not speak of "distribution" but of terms which are "universally spoken of" 
or "particularly spoken of ", or of the "quantity" of a term. 

63 This is the notation of Syll. and of the articles, after the first, in Camb. Phil. Trans. 
For a table comparing the different symbolisms which he used, see Camb. Phil. Trans., 
IX, 9l. 

64 It is sometimes hard to determine by the conventional criteria whether De Morgan's 
propositions should be classed as affirmative or negative. He gives the following ingenious 
rule for distinguishing them (Syll., p. 13): "Let a proposition be affirmative which is true 
of X and X, false of X and not-X or X; negative, which is true of X and x, false of X and X. 
Thus 'Every X is Y' is affirmative: 'Every X is X' is true; 'Every X is x' is false. But 
'Some things are neither X's nor Y's' is also affirmative, though in the form of a denial: 
'Some things are neither X's nor X's' is true, though superfluous in expression; 'Some 
things are neither X's nor x's' is false." 
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(1)X»Y AllXisY. 

(2) x»y All not-X is not-Yo 

(3) X»y All X is not-I'. 

(4) x» I' All not-X is Y. 

and for particulars we have: 

(5) XOY Some X is Y. 

(6) x()y Some not-X is not-Yo 

(7) XOy Some X is not-I'. 

(S) x() Y So.me not-X is Y. 

39 

The rule for transforming a proposition into other equivalent forms may 
be stated as follows: Change the distribution of either term-that is, tUrn 
its parenthetic curve the other way,-change that term into its negative, 
and change the quality of the proposition. That this rule is valid will 
appear if \ve remember that "two negatives make an affirmative", and note 
that we introduce one negative by changing the term, another by changing 
the quality of the proposition. Th;lt the distribution of the altered term 
should be changed follows frc,m the fact that whatever proposition distrib
utes a term leaves the negative of that term undistributed, and whatever 
proposition leaves a term undistributed distributes the negati\'e of that 
term. Using this rule of transformation, we get the following table of 
equivalents for our eight propositions: 

(CL) (b) (c) (d) 

(1) X»Y = X)·(y = x«y = x(·)Y 

(2)x»y =x)·(Y =X«Y=X(')y 

(3) X»y = X)·(Y = a:«Y = x(·)y 

(4) x»Y = x)·(y = X«y = X(·)Y 

(5) XOY = X(·(y = x)(y = x)·)Y 

(6) xOy = x(·(Y = X)(Y = X)·)y 

(7)XOy =X(·(Y=x)(Y =x)·)y 

(8) xOY = x(·(y = X)(y = X)·)Y 

It will be observed that in each line there is one proposition with both 
terms positive, X and Y. Selecting these, we have the eight different types 

of propositions: 
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CIa) X»Y 

(2e) X(CY 

. (3b) X)·(Y 

(4d) XC·)Y 

(5a) XOY 

(6e) X)(Y 

(7b) X(· (Y 

(8d) X)·)Y 
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All X is Y. 

Some X is all Y; or, All Y is X. 

No X is Y. 

Everjothing is either X or Y. (See below.) 

Some X is Y. 

Some things are neither X nor Y. (See below.) 

Some X is not Y. 

All X is not some Y; or, Some Y is not X. 

Since the quantity of each term is indi~ted, anyone of these propositions 
may be read or written backwards-that is, with Y subject and X predicate 
-proyided the distribution of terms is preserved. (4d) and (Ge) are diffi
cult to understand. We might attempt to read X(·) Y "Some X is not 
some Y", but we hardly get from that the difference between X ( . ) Y and 
X(·(Y, "Some X is not (any) Y". Also, X(·)Y is equivalent to uni
versals, and the reading, "Some X is not some Y", would make it par
ticular. X(·)Y is equivalent to x»Y, "All not-X is }T", and to x)'Cy, 
":\0 not-X is not-Y". The only equivalent of these with the terms 
X and Y is, "Eyerything (in the universe of discourse) is either X or Y 
(or both)". (6e), X)(Y, we should be likely to read "All X is all Y", or 
"X and Y are equivalent"; but this would be an error,65 since its equivalents 
are particular propositions. (6a), xOy, is "Some not-X is not-Y". 
The equivalent of this in terms of X and Y is plainly, "Some things are 
neither X nor Y". 

Contradictories66 of propositions in line (1) will be found in line (7); 
of those in line (2), in1ine (8); of line (3), in line (5); of line (4), in line (6). 
We give those with both terms positive: 

(Ia) X»Y 

(2e) X«Y 

(3b) X). (Y 

(4d) X(·)Y 

con tradicts 

" 
" 
" 

(7b) XC· (Y 
(8d) X)·)Y 

(5a) XOY 

(6e) X)(Y 

6/i An error into which it might seem that De Morgan himself has fallen. See e. g., 
Syll., p. 25, and Camb. Phil. Trans., IX, 98, where he translates X) (Y by "All X is all Y", 
or " Anyone X is anyone Y". But this belongs to another interpretation, the" cumular", 
which requires X and Y to be singular, and not-X and not-Y will then have common 
members. However, as we shall note later, there is a real difficulty. 

6/i De Morgan calls contradictory propositions "contraries" (See F. L., p. 60j Syll., 
• p. 11), just as he calls terms which are negatives of one another "contraries". 
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Thus the rule is that two propositions having the same terms contradict 
one another when one is affirmative, the other negative, and the distribution 
of terms is exactly opposite in the two cases. 

The rule for transforming propositions which has been stated and 
exemplified, together with the observation that any symbolized proposition 
may be read or written backwards, provided the distribution of the terms 
be preserved, gives us the principles for the immediate inference of uni
versals from universals, particulars from particulars. For the rest, we have 
the rule, "Each universal affirms the particulars of the same quality ".6' 

For syllogistic reasoning, the test of validity and rule of inference are 
as follows: 6" 

"There is inference: 1. "Vhen both the premises are universal; 2. "\Vhen, 
one premise only being particular, the middle term has different quantities 
in the two premises. 

"The conclusion is found by erasing the middle term and its quantities 
[parenthetic curyes]." This rule of inference is stated for the special 
arrangement of the syllogism in "which the minor premise is put first, and 
the minor term first in the premise, the major term being the last in the 
second premise. Since any proposition may be written backward, this 
arrangement can always be made. According to the rule, X» Y, "All X 
is Y", and y). (Z, "No Y is Z", give X)· (Z, "~o X is Z". X)· CY, "No 
X is Y", and Y(·(Z, "Some Y is not Z", giye X)· ·(Z, or X)(Z, which is 
"Some things are neither X nor Z." The reader may, by inventing other 
examples, satisfy himself that the rule given is sufficient for all syllogistic 
reasoning, ,vith any of De Morgan's eight forms of propositions. 

De Morgan also invents certain compound propositions which give com
pound syllogisms in a fashion somewhat analogous to the preceding: 6g 

"1. X) 0) Y or both X» Y and X)·) Y All X's and some things be
sides are Y's. 

2. XII Y or both X»Y and XCCY All X's are Y's, and all Y's 
are X's. 

3. XCO(Y or both XCCY and X(·(Y Among X's are all the Y's and 
some things besides. 

4. X)oCY or bothX)-·(Y and X)(Y Nothing both X and Yand 
some things neither. 

67 Syll., p. 16. 
68 Syll., p. 19. 
69 Syll., p. 22. 
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5. XI·I Y or both X)· (Y and X(·) Y Nothing both X and Y and 
everything one or the other. 

G. X ( 0 ) r or both X ( . ) Y and X 0 Y Everything either ;r or Y and 
some things both." 

Each of these propositions may, with due regard for the meaning of the 
sign 0, be read or written backward, just as the simple propositions. The 
rule of transformation into other equivalent forms is slightly different: 
Change the quantity, or distribution, of any term and replace that term 
by its negatiye. \Ve are not required, as with the simple propositions, to 
change at the same time the quality of the proposition. This difference 
is due to the manner in which the propositions are compounded. 

The rules for mediate, or "syllogistic ", inference for these compound 
propositions are as follows: 70 

"If any two be joined, each of which is [of the form of] 1, 3, 4, or 5, 
with the middle term of different quantities, these premises yield a con
clusion of the same kind, obtained by erasing the symbols of the middle 
term and one of the symbols 10]. Thus X) 0 (Y( O)Z gives X) O)Z: or 
if nothing be both X and Y and some things neither, and if everything be 
either Y or Z and some things both, it follows that all X and two lots of 
other things are Z's. 

"In anyone of these syllogisms, it follows that II may be written for 
) 0) 01' ) 0 ( in one place, without any alteration of the conclusion, except 
reducing the two lots to one. But if this be done in both places, the con
clusion is reduced to II or 1·1, and both lots disappear. Let the reader 
examine for himself the cases in which one of the premises is cut down to a 
sim pie uni versaL 

"The following exercises will exemplify what precedes. Letters written 
under one another are names of the same object. Here is a universe of 12 
instances of which 3 are X's and the remainder P's; 5 are Y's and the 
remainder Q's; 7 are Z's and the remainder R's. 

XXX 

YYY 

ZZZ 

PP PP PPPPP 

YY QQ QQQQQ 

Z Z Z Z RRRRR 

We can thus verify the eight complex syllogisms 

X)O)Y)O)Z 

P(o)Y)o(R 

70 Syll., p. 23. 

P(O)Y)O)Z 

X)O)Y)O(R 

P(O(Q(O)Z 

X)O(Q(O(R 

P(O(Q(O(R 

X)O(Q(O)Z 



The Development of Symbolic Logic 43 

In every case it will be seen that the two lots in the middle form the quantity 
of the particular proposition of the conclusion." 

In so much of his work as we have thus far revie,ved, De Morgan is still 
too much tied to his starting point in Aristotelian logic. He somewhat 
simplifies traditional methods and makes new generalizations which include 
old rules, but it is still distinctly the old logic. He does not question the 
inference from universals to particulars nor observe the problems there 
inyolved.71 He does not seek a method by which any number of terms 
may be dealt with but accepts the limitation to the traditional two. And 
his symbolism has several defects. The dot introduced between the 
parenthetic curves is not the sign of negation, so as to make it possible to 
read (.) as, "It is false that ()". The negative of 0 is ). (, so that this 
simplest of all relations of propositions is represented by a complex trans
formation applicable only when no more than two terms are inyolved in the 
propositional relation. Also, there are two distinct senses in which a 
term in a proposition may be distributed or "mentioned uniwrsally", and 
De Morgan, following the scholastic tradition, fails to distinguish them and 
symbolizes both the same way. .This is the secret of the difficulty in reading 
X)(Y, which looks like "All X is all Y", and really is "Some things are 
neither X nor y".72 Mathematical symbols are introduced but without any 
corresponding mathematical operations. The sign of equality is used both 
for the symmetrical relation of equiyalent propositions and for the un
symmetrical relation of premises to their conclusion.73 

His investigation of the logic of relations, however, is more successful, 
and he laid the foundation for later researches in that field. This topic 
is suggested to him by consideration of the formal and material elements 
in logic. He says: 74 

71 But he does make the assumption upon which all inference (in extension) of a 
particular from a universal is necessarily based: the assumption that a class denoted by a 
simple term has members. He says (F. L., pp. 110), "Existence as objects, or existence as 
ideas, is tacitly claimed for the terms of every syllogism". 

72 A universal affirmative distributes its subject in the sense that it indicates the class 
to which every member of the subject belongs, i. e., the class denoted by the predicate. 
Similarly, the universal negative, No X is Y, indicates that every X is not-Y, every Y is 
not-X. No particular proposition distributes a term in that sense. The particular nega
tive tells us only that the predicate is excluded from some unspecified portion of the class 
denoted by the subject. X)(Y distributes X and Y in this sense only. Comparison with 
its equivalents shows us that it can tell us, of X, only that it is excluded from some un
specified portion of not-Yj and of Y, only that it is excluded from some unspecified portion 
of not-X. We cannot infer that X is wholly included in Y, or Y in X, or get any other 
relation of inclusion out of it. 

73 In one passage (Carnb. PhiZ: T"ans., x, 183) he suggests that the relation of two 
premises to their conclusion should be symbolized by A B < C. 

74 Carrib. Phil. Trans., x, 177, footnote. 
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"Is there any consequence without form? Is not consequence an action 
of the machinerr? Is not logic the science of the action of the machinery? 
Consequence is always an act of the mind: on every consequence logic ought 
to ask, What kind of act? What is the act, as distinguished from the acted 
on, and from any inessential concomitants of the action? For these are of 
the form, as distinguished from the matter. 

" ... The copula performs certain functions; it is competent to those 
functions ... because it has certain properties, which are sufficient to 
validate its use .... The ,yord 'is,' which identifies, does not do its work 
because it identifies, except insofar as identification is a transitive and 
convertible motion: 'A is that 1vhich is 13' means 'A is 13'; and 'A is 13' 
means' B is A '. Hence every transitive and convertible relation is as fit 
to validate the syllogism as the copula' 'is', and by the same proof in each 
case. Some forms are valid when the relation is only transitive and not 
convertible; as in 'give'. Thus if X-Y represent X and Y connected 
by a transitive copuIa, Camestres in the second figure is valid, as in 

Every Z-Y, 00 X-Y, therefore No X-Z. 

In the following chain of propositions, there is exclusion of matter, 
form being preserved at every step: 

(Positively true) Every man is animal 

" 
" 
" 
" 

Every man is Y 

Every X is Y 

Every X-Y 

a of X-Y 

Hypothesis 

Y has existence. 

X has existence. 

-- is a transitive relation. 

a 1s a fraction < or = 1.. 

(Probability fJ) a of X --Y (3 is a fraction < or = 1. 

The last is nearly the purely formal judgment, with not a single material 
point about it, except the transitiveness of the copula. 75 

". . . I hold the supreme forrn of the syllogism of one middle term to 
be as follows: There is the probability a that X is in the relation L to Y; 
there is the probability fJ that Y is in the relation M to Z; whence there is 
the probability a(3 that X is in the relation L of M to Z.76 

" ... The copula of cause and effect, of motive and action, of all which 
post hoc is of the form and propter hoc (perhaps) of the m~tter, will one day 
be carefully considered in a more complete system of logic." 77 

75 Ibid., pp. 177-78. 
76 Ibid., p. 339. 
77 Ibid., pp. 179-80. 
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De Morgan is thus led to a study of the categories of exact thinking in 
general, and to consideration of the types and properties of relations. 
His division of categories into logico-mathematicaI, logico-physical, logico
metaphysical, and logico-contraphysical,78 is inauspicious, and nothing 
much comes of it. But in connection with this, and an attempt to rebuild 
logic in the light of it, he propounds the well-known theorem: "The con
trary [negative] of an aggregate [logical sum] is the compound [logical 
product] of the contraries of the aggregants: the contrary of a compound 
is the aggregate of the contraries or the components." 79 

For the logic of relations, X, Y, and Z will represent the class names; 
L, 111, N, relations. X .. LY will signify that X is some one of the objects 
of thought which stand to Y in the relation L, or is one of the L's of Y.80 
X . LY will signify that X is not anyone or the L's of r. X .. (LJJ) Y or 
X .. L.M Y will express the fact that X is one or the L's of one or the .Jl's 
of Y, or that X has the relation L to some Z which has the relation 111 to Y. 
X . L111 Y will mean that X is not an L of any J[ of Y. 

It should be noted that the union of the two relations Land JI is what 
we should call today their" relative product"; that is, X .. LY and Y .. MZ 
together give X .. L.11-! Z, but X .. LY and X .. . MY do not give X .. L1l1 Y. 
If L is the relation "brother of" and 111 is the relation "aunt of", X .. L.M Y 
will mean" X is a brother of an aunt of Y". (Do not say hastily, "X is 
uncle of Y". "Brother of an aunt" is not equivalent to "uncle" since 
some uncles have no sisters.) L, or lYI, written b;y itself, will represent 
that which lias the relation L, or .111, that is, a brother, or an aunt, and LY 
stands for any X which has the relation L to Y, that is, a brother of Y.81 

In order to reduce ordinary syllogisms to the form in which the copula 
has that abstractness which he seeks, that is, to the form in which the 
copula may be any relation, or any relation of a certain type, it is necessary 
to introduce symbols of quantity. Accordingly L1l1* is to signify an L of 
every M, that is, something which has the relation L to every member of 
the class M (say, a lover of every man). L*M is to indicate an L of none 
but M's (a lover of none but men). The mark of quantity, * or *, ahvays 

78 See ibid., p. 190. 
79 Ibid., p. 208. See also Syll., p. 41. Pp. 39-60 of Syll. present in summary the ideas 

of the paper, "On th~ Syllogism, No.3, and on Logic in General." 
80 Camb. Phil. Trans., x, 341. We follow the order of the paper from this point on. 
81 I tried at first to make De Morgan's symbolism more readily intelligible by intro

ducing the current equivalents of his characters. But his systematic ambiguities, such 
as the use of the same letter for the relation and for that which has the relation, made 
this impossible. For typographical reasons; I use the asterisk where he has a small accent. 
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goes with the letter which precedes it, but L*JJ1 is read as ~f' [*] modified 
the letter 'which foIlo"\\'s. To obviate this difficulty, De Morgan suggests 
that L*J.lI be read, "An every-L of M; an L of 111 in every way in which 
it 'is an L," but we shall stick to the simpler reading, "An L of none but 
111's" . 

LJ1*X means an L of every M of X: LdIX, an L of none but 111's of X: 
L*.111*, an L of eyery 1~1 and of none but JJ1's: LMX*, an L of an 1'\;10f 
every X, and so on. 

Two more symbols are needed. The converse of L is symbolized by L-I. 
If L is "lover of ", L -I is "beloved of"; if L is "aunt", L-I is "niece or 
nephew". The contrary (or as we should say, the negative) of L is symbol
ized by 1; the contrary of JJ1 by 'In. 

In terms of these relations, the following theorems can be stated: 

(1) Contraries of c'onverses are themselves contraries. 
(2) Converses of contraries are contraries. 
(3) The contrary of the converse is the converse of the contrary. 
(4) If the relation L be contained in, or imply, the relation M, then (a) the 
converse of L, L-1, is contained in the converse of M, M-I; and (b) the 
contrary of 111, 1n, is contained in the contrary of L, l. 

For example, if "parent of" is contained in "ancestor of ", (a) "child of" 
is contained in "descendent of", and (b) "not ancestor of" is contained in 
"not parent of". 

(5) The conversion of a compound relation is accomplished by converting 
both components and inverting their order; thus, (LJJ1)-1 = ~M-IL-I. 

If X be teacher of the child of Y, Y is parent of the pupil of X. 
When a sign of quantity is involved in the conversion of a compound 

relation, the sign of quantity changes its place on the letter; thus, (LM*)-l 
= 111*-IL-I, 

If X be teacher of every child of Y, Y is parent of none but pupils of X. 

(6) When, in a compound relation, there is a sign of quantity, if each 
component be changed into its contrary, and the sign or quantity be shifted 
from one component to the other and its position on the letter ch!;tllged, 
the resulting relation is equivalent to the original; thus LM* = l*m and 
L*111 = lm*. ' 

A lover or every man is a non-lover of none but non-men; and a lover 
of none but men is a non-lover of every non-man. 
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(7) When a compound relation invoh'es no sign of quantity, its contrary 
is found by taking the contrary of either component and giving quantity 
to the other. The contrary of L111 is 10.11* or L*m. 

" Not (lover of a man)" is "non-lover of every man" or "lover of none 
but non-men"; and there are two equivalents, by (6). 

But if there be a sign of quantity in one component, the contrary is 
taken by dropping that sign and taking the contrary of the other component. 
The contrary of LM* is l.N!; of L*M is Lm. 

" Nat (lover of every man)" is "non-lover of a man"; and" not (Ioyer 
of none but men)" is "lover of a non-man". 

So far as they do not involve quantifications, these theorems are familiar 
to us today, though it seems not generally known that they are due to 
De Morgan. The following table contains all of them: 

Com-erse of Contrary 
Combination Converse Contrary Contrary of Converse 

L.ZIJ 111-1L-1 lJ1* or L*J1 ...11*-1l-1 or m-1L-1* 
LlYl* or l*1n 111*-lL-1 or 'in-Il-I * l111 ...11-1l-1 

L*M or lm* JJI-1L-l* or 1n*-1[-1 Lm '1/1,-1L-1 

The sense in which one relation is said to be ., contained in" or to 
"imply" another should be noted: L is contained in ...11 in case e\"er~- X 
which has the relation L to any Y has also the relation J1 to that r. This 
must not be confused with the relation of class inclusion between two rela
tive terms. Every grandfather is also a father, the class of grandfathers is 
contained in the class of fathers, but" grandfather of" is not contained in 
"father of ",because the grandfather of Y is not also the father of r. The 
relation "grandfather of" is contained in "ancestor of ", since the grand
father of Y is also the ancestor of Y. But De Morgan appropriately uses 
the same symbol for the relation "L contained In .M" that he uses for" All 
Lis 111", where Land M are class terms, that is, L»M. 

In terms of this relation of relations, the following theorems can be 

stated: 

(8) If L»M, then the contrary of 0.11 is contained in the contrary of L,
that is, L»M gives m»l. 

Applying this theorem to compound relations, we have: 

(8') LM»N gives n»lM* and n»L*m. 
(8") If LM»N, then L-1n»m and nM-1»l. 

Proof: If LM»N, then n»lM*. Whence nlJ;1-I»lM*J.vl-1• But an 1 of 
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every JI of an M-l of Z must be an 1 of Z. Hence nM-l»l. Again; if 
LM»N, then n»L*m. vVhence L-ln»L-IL*m. But whatever has the 
relation converse-of-L to an L of none but rn's must be itself an 'm. Hence 
L-1n»m. 

De Morgan calls this "theorem K" from its use in Batoko and Bolwtdo. 

(9) If L.M = lv', then L»NM-l and M»L-IN. 

Proof: If LM = N, then LMM-l = NM-l and L-ILM = L-IN. Now 
for any X, i1flv!-IX and L-1LX are classes which contain X; hence the 
theorem. 

'Ye do not have L = NM-l and lJ1 = L-IN, because it is not generally 
true that j"'f111-1X = X and L-ILX = X. For example, the child of the 
parent of X mar not be X but X's brother: but the class" children of the 
parent of X" will contain X. The relation Mil1-1 or M-IM will not always 
cancel out. 111 j\;£-1 and 111-1 ill! are always symmettical relations; if XM JJf;-1 Y 
then YMJJf-lX. If X is child of a parent of Y, then Y is child of a parent 
of X. But 111i1;f-1 and M-IM are not e:eclusively reflexive. XMM-IX does 
not always hold. If we know that a child of the parent of X is a celebrated 
linguist we may not hastily assume that X is the linguist in question. 

With reference to transitive relations, we may quote: 82 

"A relation is transitive when a relative of a relative is a rela,tive of 
the same kind; as symbolized in LL»L, whence LLL»LL»L; and so on. 

"A transitive relation has a transitive converse, but not necessarily it 

transitive contrary: for L-IL-l is the converse of LL, so that LL»L gives 
L-IL-l»L-l. From these, by contraposition, and also by theorem ]{ and 
its contra positions, we obtain the following results: 

L is contained in LL-1*, l*[-I, l-1[*, L*-IL 
L-l .......... L*L-1, ll-I*, l*-ll, L-IL* 
l . ............ 1L*, L*l 
l-1 ........... L*-I[-I, l-IL-l* 
LL ........... L 
L-IL-l ..... '" L-l 
L-1l, lL-l ...... 1 
Ll-I, l-IL . ..... [-1 

"I omit demonstration, but to prevent any doubt about correctness of 
printing, I subjoin instances in words: L signifies ancestor and L-1 descendent. 

S2 Camb. Phil. Trans., x, 346. For this discussion of transitive relations De Morgan 
treats all reciprocal relations, such as XLL-1Y, as also reflexive, though n;t necessarily 
exclusively reflexive. 
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"An ancestor is always an ancestor of all descendents, a non-ancestor 
of none but non-descendents., a non-descendent of all non-ancestors, and a 
descendent of none but ancestors. A descendent is always an ancestor of 
none but descendents, a non-ancestor of all non-descendents, a non-descend
ent of none but non-ancestors, and a descendent of all ancestors. A non
ancestor is always a non-ancestor of all ancestors, and an ancestor of none 
but non-ancestors. A non-descendent is a descendent of none but non
descendents, and a non-descendent of all descendents. Among non
ancestors are contained all descendents of non-ancestors, and all non
ancestors of descendents. 1\..ll10ng non-descendents are contained all 
ancestors of non-descendents, and all non-descendents of ancestors." 

In terms of the general relation, L, or Ji, representing any relation, the 
syllogisms of traditional logic may be tabulated as follows: 83 

" 1 .2 " 4 .) 

X .. Lr X.Lr X .. Lr X. L}' 

I Y .. LZ r .. MZ Y.JIZ Y. JIZ 

X .. LMZ X .. lMZ X .. LlllZ X .. lmZ 

X.LY X .. Lr X .. LY X.Lr 

II Z .. MY Z ... MY Z .. MY Z .. MY 

X .. lJ.1f.-IZ X .. LM-IZ X . . Lm-IZ X .. lm-1Z 

Y .. LX r.LX Y .. LX :r. LX 

III Y. lJ1Z Y .. l1IZ r .. MZ Y .. MZ 

X .. L-1mZ X .. l-lMZ X .. L-I.MZ X .. Z-lmZ 

Y.LX Y .. LX Y.LX Y .. LX 

IV Z.MY Z . ~ilIY Z .. 1111' Z ... MY 

X .. l-lm-1Z X .. L-lm-lZ X .. l-IlJ1-1Z X . . L-IM-IZ" 

The Roman numerals here indicate the traditional figures. All the con
clusions are given in the affirmative form; but for each affirmative con
clusion, there are two negative conclusions, got by negating the relation and 
replacing it by one or the other of its contraries. Thus X . . LMZ gives 
X . lJJ1*Z and X . L*1nZ; X .. 1.Llf-lZ gives X. L.l1!1-1*Z and X .1*71r1Z, 

and so on for each of the others. 

88 Ibid., p. 350. 

5 
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When the copula of all three propositions is limited to the same transitive 

relation, L, or its converse, the table of syllogisms will be: 84 

" X .. Ll' X.LY X .. LY 

I Y .. LZ Y .. L-IZ Y. L-IZ ----

X .. LZ X.LZ X. L-1Z 

X.LY X .. LY X .. LY 

II Z .. LY Z .. L-IY Z.LY ----

X.LZ X .. LZ X.L-IZ 

Y .. LX Y.LX Y .. LX 

III Y.LZ Y .. LZ Y .. L-IZ ----

X.LZ X. L-IZ X .. L-IZ 

Y .. LX Y.LX Y .. LX 

IV ---- Z. L-IY Z .. L-IY Z .. LY 

X.LZ X.L-IZ X . . L-IZ" 

Here, again, in the logic of relations, De Morgan would very likely have 
done better if he had left the traditional syllogism to shift for itself. 'The 
introduction of quantifications and the systematic ambiguity of L, 111, 
etc., which are used to indicate both the relation and that which has the 
relation, hurry him into complications before the simple analysis of rela
tions, and types of relations, is ready for them. This logic of relations was 
destined to find its importance in the logistic of mathematics, not in an~' 
applications to, or modifications of, Aristotelian logic. And these compli
cations of De Morgan's, due largely to his following the clues of formallogie. 
had to be discarded later, after Peirce discovered the connection between 
Boole's algebra and relation theory. The logic of relative terms has been 
reintroduced by the work of Frege and Peano, and more especially of 
Whitehead and Russell, in the logistic development of mathematics. But 
it is there separated-and has to be separated-from the simpler analysis 
of the relations themselves. Nevertheless, it should always be remembered 
that it was De Morgan who laid the foundation; and if some part of his 
work had to be discarded, still his contribution was indispensable and of 
permanent value. In concluding his paper on relations, he justly remarks: 85 

84 Ibid., p. 354. 
85 Ibid., p. 358. 
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"And here the general idea of relation emerges, and for the first time 
in the history of knowledge, the notions of relation and relation of relation 
are symbolized. And here again is seen the scale of graduation of forms, 
the manner in which what is difference of form at one step of the ascent is 
difference of matter at the next. But the relation of algebra to the higher 
developments of logic is a subject of far too great m.:tent to be treated here. 
It will hereafter be acknowledged that, though the geometer did not think 
it necessary to throw his ever-recurring principiu1n et eXempl'll17Z into imita
tion of Omnis homo est animal, Sortes est homo, etc., yet the algebraist was 
living in the higher atmosphere of s~·llogism, the unceasing composition of 
relation, before it was admitted that such an atmosphere existed." 86 

v. BOOLE 

The beginning from which symbolic logic has had a continuous develop
ment is that made by George Boole.87 His significant and vital contribution 
was the introduction, in a fashion more general and systematic than before, 
of mathematical operations. Indeed Boole allows operations which have 
no direct logical interpretation, and is obviously more at home in mathe
matics than in logic. It is probably the great advantage of Boole's work 
that he either neglected or was ignorant of those refinements of logical 
theory which hampered his predecessors. The precise mathematical 
development of logic needed to make its own conventions and interpreta
tions; and this could not be done without sweeping aside the accumulated 
traditions of the non-symbolic Aristotelian logic. As "lye shall see, all the 
nice problems of intension and extension, of the existential import of uni
versals and particulars, of empty classes, and so on, return later and demand 
consideration. It is well that, with Boole, they are given a l"acation long 
enough to get the subject started in terms of a simple and general procedure. 

Boole's first book, The Mathematical Analysis of Logic, being an Essay 
toward a Calculus of Deductive Reasoning, was published in 1847, on the 

86 I omit, with some misgivings, any account of De Morgan's contributions to prob
ability theory as applied to questions of authority and judgment. (See Syll., pp. 67-72; 
F. L., Chap. IX, X; and Camb. Phil. Trans., VIII, 384-87, and 393-405.) His work on this 
topic is less closely connected with symbolic logic than was Boole's. The allied subject of 
the "numerically definite syllogism" (see Syll., pp. 27-30; F. L., Chap. VIII; and Carnb. 
Phil. Trans., x, *355-*358) is also omitted. 

87 George Boole (1815-1864) appointed Professor of Mathematics in Queen's College, 
Cork, 1849; LL.D. (Dublin, 1852), F.R.S. (1857), D.C.L. (Oxford, 1859). For a biographi
cal sketch, by Harley, see Brit. Quart. Rev., XLIV (1866), 141-81. See also Froc. Roy. 
Soc., xv, (1867), vi-xi. 
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same day as De Morgan's Formal Logic. 88 The next year, his article, "The 
Calculus of Logic," appeared in t~e Cambridge 11I athematical J oumal. This 
article summarizes wry briefly and clearly the important innovations pro
posed br Boole. But the authoritative statement of his system is found 
in An Tnvestigaiion of the La1CS of Thought, on which are founded the Mathe
matical Theories of Logic and Probability, published in 1854. 89 

Boole's algebra, unlike the systems of his predecessors, is based squarely 
upon the relations of extension. The three fundamental ideas upon which 
his method depends are: (1) the conception of "elective symbols"; (2) the 
laws of thought expressed as rules for operations upon these symbols; (3) 
the observation that these rules of operation are the same which \vould 
llOld for an alg'ebra of the numbers 0 and 1. 90 

For reasons which vvill appear shortl~', the "universe of conceivable 
objects" is represented by 1. All other classes or aggregates are supposed 
to be formed from this by selection or limitation. This operation of electing, 
in 1, all the X's, is represented by 1·:(' or :1'; the operation of electing all 
the }"s is similarly represented by l·y or y, and so on. Since Boole does 
not distinguish between this operation of election represented by x, and 
the result of performing that operation-an ambiguity common in mathe
matics~;1' becomes, in practice, the symbol for the class of all the X's. 
Thus x, y, z, etc., representing ambiguously operations of election or classes, 
are the variables of the algebra. Boole speaks of them as" elective symbols" 
to distinguish them from coefficients. 

This operation of election suggests arithmetical multiplication: the 
suggestion becomes stronger when we note that it is not confined to 1. 

I·x· y or xy will represent the operation of electing, first, all the X's in the 
"universe ", and from this class by a second operation, all the Y's. The 
result of these two operations will be the class whose members are both 
X's and }"s. Thus ;t:y is the class of the common members of x and y; 

xyz, the class of those things which belong at once to x, to y, and to z, 
and so on. And for any x, l·x = x. 

The operation of "aggregating parts into a whole" is represented by +. 
x + y symbolizes the class formed by combining the two distinct classes, 
x and y. It is a distinctive feature of Boole's algebra that x and y in x + y 
must have no common members. The relation may be read, "that which 

8& See De Morgan's note to the article "On Propositions Numerically Definite", Camb. 
Phil. Trans., XI (1871), 396. 

89 London, Walton and Maberly. 
90 This principle appears for the first time in the Laws of Thought. See pp. 37-38. 

Work hereafter cited as L. of T. 
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is either x or y but not both". Although Boole does not remark it, x + y 

cannot be as completely analogous to. the corresponding operation of 
ordinary algebra as xy is to the ordinary algebraic product. In numerical 
algebras a number may be added to itself: but since Boole concei\'es the 
terms of any logical sum to be "quite distinct", 91 mutually exclusive classes, 
x + x cannot have a meaning in his system. As we shall see, this is yery 
awkward, because such expressions still occur in his algebra and have to be 
dealt with by troublesome deyices. 

But making the relation ;1: + y completely disjullcth'e has one advantage 
-it makes pos~ible the inverse relation of "subtraction". The "separa
tion of a part, x, from a \yhole, y", is represented by 11 - ;1.'. If.r + z = y, 
then since x and z haye nothing in common, y - ;l: = z a'nd y - z = x. 
Hence [+ J and [- J are strict inverses. 

a: + 11, then, symbolizes the class of those things 'which are either members 
of x 01' members of y, but not of both. :r'lI or .ry symbolizes the class of 
those things wlIich are both members of .r and members of y. x - y repre
sents the class of the members of x which are not members of v-the x's 
except the V's. [= J represents the relation of two classes which haye the 
same members, i. e., have the same extension. These are the fundamental 
relations of the algebra. 

The entity (1 - .1:) is of especial importance. This represents the 
universe except the .1:'S, or all things which are not x's. It is, then. the 
supplement or negative of a:. 

With the use of this symbolism for the negatiye of a class, the sum of two 
classes, x and y, which have members in common, can be represented by 

:t:y + x(l - 11) + (1 - .r,)y. 

The first term of this sum is the class which are both x's and V's; the second, 
those which are x's but not y'Sj the third, those which are y's but not x's. 
Thus the three terms represent classes which are all mutually exclusive, 
and the sum satisfies the meaning of +. In a similar fashion, x + y may 

be expanded to 
xCI - y) + (1 - a:)y. 

Consideration of the laws of thought and of the meaning of these sym

bols will show us that the following principles hold: 

(1) xy = yx 

(2) x + y = y+ X 

91 See L. of T., pp. 32-33. 

What is both x and y is both y and x. 

What is either x or y is either y or x. 
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(3) z(x + y) = Z.l· + zy 

(4) z(x - y) = Z.I; - zy 

(.5) If x = y, then zx = zy 

Z+X=Z+y 

x-z=y-z 

(6) x - y = - y + x 

That which is both z and (either x or y) 

is either both z and x or both z and y. 

That which is both z and (x but not y) 

is both z and x but not both z and y. 

This last is an arbitrar~r convention: the first half of the expression gives 

the meaning of the last half. 
It is a peculiarity of "logical symbols" that if the operation x, upon 1, 

be repeated, the result is not altered by the repetition: 

l·x = l·x·x = 1·.(;·;(;·;); .... 

(7) :(;2 = x 
Hence we have: 

Boole calls this the" index law". 92 

All these laws, except (7), hold for numerical algebra. It may be 
noted that, in logie, "If :r = y, then X:l' = xy" is not reversible. At first 

glance, this may seem to be another difference between numerical algebra 
and the system in question. But" If zx = zy, then x = y" does not hold 
in numerical algebra when .z = O. Law (7) is, then, the distinguishing 

principle of this algebra. The only finite numbers for which it holds are 
o and 1. All the above laU's hold for an algebra of the lW'mbc1's 0 and 1. With 
this observation, Boole adopts the entire procedure of ordinary algebra, 

modified by the law a:2 = x, introduces numerical coeffim:ents other than 0 
and 1, and makes use, on occasion, of the operation of division, of the 
properties of functions, and of any algebraic transformations which happen 

to serve his purpose. 93 

This borrowing of algebraic operations which often have no logical 

interpretation is at first confusing to the student of logic; and commen
tators have seemed to smile indulgently upon it. An example will help: 
the derivation of the "law of contradiction" or, as Boole calls it, the "law 
of duality", from the "index law ".94 

92 In Mathernalical Analysis of Logic he gives it also in the form xn = x, but in L. oj T. 
he avoids this, probably because the factors of xn - x (e. g., x3 - x) are not always logically 
interpretable. 

93 This procedure characterizes L. of T. Only 0 and 1, l1nd the fractions which can 
be formed from them l1ppear in Math. An. oj Logic, l1nd the use of division and of fractional 
coefficients is not successfully explained in that book. 

94 L. of T., p. 49. 
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Since x2 = ;!.', x - x2 = O. 
Hence, factoring, xCI - x) = O. 

55 

This transformation hardly represents any process of logical deduction. 
\Vhoever says "vVhat is both x and x, X2, is equivalent to x; therefore what 
is both x and not-x is nothing" may well be asked for the steps of his reason
ing. Nor should we be satisfied if he reply by interpreting in logical terms 
the intermediate expression, x - x2 = O. 

Nevertheless, this apparently arbitrary way of using uninterpretable 
algebraic processes is thoroughly sound. Boole's algebra may be viewed 
as an abstract mathematical system, generated by the laws we have noted, 
which has two interpretations. On the one hand, the "logical" or "elec
tive" symbols may be interpreted as variables whose yalue is either numeri
cal 0 or numerical 1, although numerical coefficients other than 0 and 1 are 
admissible, provided it be remembered that such coefficients do not obey 
the "index law" which holds for" elective" symbols. All the usual alge
braic transformations will have an interpretation in these terms. On the 
other hand, the "logical" or "elective" symbols may be interpreted as 
logical classes. For this interpretation, some of the algebraical processes 
of the system and some resultant e:A,})ressions will not be expressible in terms 
of logic. But whene\'er they are interpretable, they will be yalid conse
quences of the premises, and even 'when they are not interpretable, any 
further results, derived from them, which are interpretable, will also be 
valid consequences of the premises. 

It must be admitted that Boole himself does not observe the proprieties 
of his procedure. His consistent course would have been to develop this al
gebra without reference to logical meanings, and then to discuss in a thorough 
fashion the interpretation, and the limits of that interpretation, for logical 
classes. By such a method, he would have avoided, for example, the 
difficulty about x + x. We should have x + x = 2~1:, the interpretation of 
which for the numbers 0 and 1 is obvious, and its interpretation for logical 
classes would depend upon certain conventions which Boole made and 
which will be explained shortly. The point is that the two interpretations 
should be kept separate, although the processes of the system need not be 
limited by the narrower interpretation-that for logical classes. Instead 
of making this separation of the abstract algebra and its two interpretations, 
Boole takes himself to be developing a calculus of logic; he observes that 
its" axioms" are identical with those of an algebra of the numbers 0 and 1; 95 

95 L. of T., pp. 37-38. 
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hence he applies the whole machinery of that algebra, yet arbitrarily rejects 
from it any expressions Ivhich are not finally interpretable in terms of logical 
relations. The retaining of non-interpretable expressions which can be 
transformed into interpretable expressions he compares to "the employ
ment of the uninterpretable symbol -..J -1 in the intermediate processes 
of trigonometry. "96 It would be a pretty piece of research to take Boole's 
algebra, find independent postulates for it (his laws are entirely insufficient 
as a basis for the operations he uses), complete it, and systematically investi
gate its interpretations. 

But neglecting these problems of method, the expression of the simple 
logical relations in Boole's symbolism will no"" be entirely clear. Classes 
will be represented by :r, y, Z, etc.; their negatives, by (1 - ;r), (1 - y), 

etc. That ,vhich is both x and y will be a:y; that which is x but not y will 
be .1'(1 - y), etc. That which is x or y but not both, will be ;l' + y, or 
;r(I - y) + (1 - x)y. That which is ;l~ or y or both will be ;1; + (1 - ~e)y

i. e., that ·which is x or not x but y-or 

;TY + ;l'(1 - y) + (1 - ;l')Y 

-that which is both x and y or x but not y or y but not x. 1 represents the 
"universe" or "everything". The logical significance of 0 is determined 
by the fact that, for any y, Oy = 0: the only class which remains unaltered 
by any operation of electing from it ,vhatever is the class "nothing". 

Since Boole's algebra is the basis of the classic algebra of logic-,vhich 
is the topic of the ne:h.i: chapter-it will be unnecessary to comment upon 
those parts of Boole's procedure which ·were taken over into the classic 
algebra. These will be clear to any who understand the algebra of logic 
in its current form or who acquaint themselves with the content of Chapter 
II. We shall, then, turn our attention chiefly to those parts of his method 
which are peculiar to him. 

Boole does not symbolize the rel.a tion "x is included in y". Conse
quently the only copula by which the relation of terms in a proposition can 
be represented is the relation =. And since all relations are taken in 
extension, x = y symbolizes the fact that x and yare classes with identical 
membership. Propositions must be represented by equations in 'which 
something is put = 0 or = 1, or else the predicate must be quantified. 
Boole uses both methods, but mainly relies upon quantification of the 
predicate. This involves an awkward procedure, though one which still 
survives-the introduction of a symbol v or w, to represent an indefinite 

96 L. of T., p. 69. 
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class and s~111bolize "Some". Thus" .-\.ll ,(, is (some) y'J is represented by 
x = vy: "Some x is (some) y ", b,\- lC.1.: = 1'y. If VJ or 1(', ,,-ere here" the 
indefinite class" or "any class ", this method ,,-ould be less objectionable. 
But in such cases v, or 1£', must be very definitely specified: it must be a 
class" indefinite in all respects but this, that it contains some members of 
the class to ,yhose expression it is prefixed".97 The uni,-ersaI affirmative 
can also be expressed, ,,-ithout this s~'mboI for the indeterminate, as ,('(1 - y) 

= 0; "All ~1: is y" means "That ,Yhich is x but not y is nothing ". Xegath-e 
propositions are treated as affirmati,-e propositions with a negati-<.-e predi
cate. So the four typical propositions of traditional logic are ~xpres,-ed as 
follo,ys: 98 

All ;(; is y: ,(, = ty, or, ,('(1 - y) = o. 
Xo x is y: ,(, ('(1 - y), or ,1'y = O. 
Some x is y: I'." /i' (1 - y), or, .. = ,ry. "' 
Some x is not y: ~',l' le(l - y), or, /) = - y). 

Each of these has yarious other equi\-alents which may be readily deter
mined by the laws of the algebra. 

To reason by the aid of this symbolism, one has only to express his 
premises explicitly in the proper manner and then operate upon the resultant 
equation according to the laws of the algebra. Or, as Boole more explicitly 
puts it, valid reasoning requires: 09 

"1st, That a fixed interpretation be assigned to the symbols employed 
in the expression of the data; and that the lu\\'s of the combination of these 
symbols be correctly determined from that interpretation. 

"2nd, That the formal processes of solution or demonstration be con
ducted throughout in obedience to all the la,vs determined as aboye, with
out regard to the question of the interpretation of the particular results 
obtained. 

"3rd, That the final result be interpretable in form, and that it be 
actually interpreted in accordance with that system of interpretation which 
has been employed in the .expression of the data." 

As we shall see, Boole's methods of solution sometimes invoh-e an 
uninterpretable stage, sometimes not, but there is proyided a machinery by 

91 L. of T., p. 63. This translation of the arbitrary v by "Some" is unwarranted, and 
the above statement is inconsistent vvith Boole's later treatment of the arbitrary coefficient. 
There is no reason why such an arbitrary coefficient may not be null, 

98 See klath. An. of Logic, pp. 21-22; L. of T., Chap. IT. 

99 L. of T., p. 68. 
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,vhich any equation may be reduced to a form which is interpretable. To 
comprehend this we must first understand the process known as the develop
ment of a function. With regard to this, we can be brief, because Boole's 
method of development belongs also to the classic algebra and is essentially 
the process explained in the next chapter. loo 

Any expression in the algebra which involves x or (1 - x) may be 
called a function of ,to A function of :r is said to be developed when it has 
the form Ax+B(l - :1'). It is here required that x be a "logical symbol", 
susceptible only of the values 0 and 1. But the coefficients, A and B, are 
not so limited: A, or B, may be such a "logical symbol" which obeys the 
"law of duality", or it may be some number other than 0 or 1, or involve 
such a number. If the function, as given, does not have the form Ax 
+ B(l - ;(:), it may be put into that form by observing certain interesting 
laws which govern coefficients. 

Let 

Then 

And 

Hence 

Thus if 

Hence 

f(:1:) = .11.1: + B(l - x) 

f(l) = A·1+B(1 - 1) = A 

f(O) = A·O+B(l - 0) = B 

f(x) = f(l)·x + f(O)· (1 - x) 

f(a;) 
1 + x 

= ------
2 - :r' 

1+1 
f(l) = 2 _ i = 2; f(O) 

1 At) = 2x + 2 (1 - x) 

1+0 1 
= -

2-0 2 

A denloped function of two variables, :e and y, will have the form: 

Aa:y + Ba;(l - y) + 0(1 - x)y + D(I - x)(l - y) 

And for any function, f(x, y), the coefficients are determined by the law: 

f(x, y) = f(l, 1) ·xy + f(l, 0) ·x(l - y) + f(O, 1)· (1 - x)y 

+f(O, 0)·(1 - x)(l - y) 

100 See Math. An. of Logic, pp. 60-69; L. of T., pp. 71-79; "The Calculus of Logic," 
Cambridge and Dublin Math. Jour., III, 188-89. That this same method. of development 
should belong both to Boole's algebra and to the remodeled algebra of logic, in which + 
is not completely disjunctive, is at first surprising. But a completely developed function, 
in -either algebra, is always a sum of terms any two of which have nothing in common. 
This accounts for the identity of form where there is a real and important difference in the 
meaning of the symbols. 
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f(;1:, y) = ax + 2by, 

f(l, 1) = a·l+2b·l = a+2b 

f(I,O) = a·l+2b·0 = a 

f(O, 1) = a·0+2b·l = 2b 

f(O,O) = a·0+2b·0 = 0 

39 

Hence f(x, y) = (a + 2b):l'Y + a.1"(l - y) + 2b(1 - .1')1/ 

An exactly similar law go,Terns the expansion and the 
coefficients, for functions of any number of variables. 
Boole: 101 

determination of 
In the words of 

"The general rule of development ,,,ill ... consist of two parts, the 
first of which will relate to the formation of the cOllstituents of the expansion, 
the second to the determination of their respective coefficients. It is as 
follows: 

"1st. To e.rpand any fUllction of the symbols .1', y, .:::-Form a series 
of constituents in the following manner: Let the first constituent be the 
product of the symbols: change in this product any symbol::; into 1 - z, 
for the second constituent. Then in both these change an~' other symbol 
y into 1 - y, for two more constituents. Then in the four constituents 
thus obtained change any other symbol x into 1 - .r, for four ne,"\' constit
uents, and so on until the number of possible changes has been exhausted. 

"2ndly. To find the coefficient of any cOl1stituent-If that constituent 
involves x as a factor, change in the original function .1' into 1: but if it 
involves 1 - x as a factor, change in the original function ,l' into O. Apply 
the same rule with reference to the symbols y, z, etc.: thE' final calculated 
value of the function thus transformed will be the coefficient sought." 

Two further properties of developed functions, which are useful in 
solutions and interpretations, are: (1) The product of an::' two constituents 
is O. If one constituent be, for example, a:yz, any other constituent will 
ha\'e as a factor one or more of the negatives, 1 - x, 1 - y, 1 - z. 
Thus the product of the two will haw a factor of the form x(1 - a.:). And 
where x is a "logical symbol ", susceptible only of the values 0 and 1, a.·(l - x) 

is always O. And (2) if each constituent of any expansion have the coef

ficient 1, the sum of all the constituents is l. 
.All information which it may be desired to obtain from a gh'en set of 

premises, represented by equations, will be got either (1) by a solution, to 
determine the equivalent, in other terms, of some "logical symbol" ;1::, or 

101 L. of T., pp. 75-76. 



60 A Survey of Symbolic Logic 

(2) by an elimination, to discover what statements (equations), which are 
independent of some term ;l:, are ,varranted by given equations which in
volye ;1:, or (3) by a combination of these two, to determine the equivalent 
of x in terms of t, u, v, from equations ,vhich involve x, t, u, v, and some 
other "logical" S~'mboJ or symbols which must be eliminated in the desired 
result. "Formal" reasoning is accomplished by the elimination of ii middle" 

terms. 
The student of symbolic logic in its current form knows that any set 

of equations may be combined into a single equation, that any equation 
il1';olving a term x may be given the form Ax + B(1 - x) = 0, and that 
the result of eliminating x from such an equation is AB = 0. Also, the 
solution of any such equation, provided the condition AB = 0 be satisfied, 
will be x = B + v(l - A), where v is undetermined. Boole's methods 
achie\"e these same results, but the presence of numerical cocfficients other 
than ° and 1, as well as the inverse operations of subtraction and division, 
necessarily complicates his procedure. And he does not present thc matter 
of solutions in the form in \vhich we should expect to find it but in a more 
complicated fashion which nevertheless gives equivalent results. We have 
now to trace the procedures of interpretation, reduction, etc. by which 
Boole obviates the difficulties of his algebra \vhich have been mentioned. 

The simplest form of equation is that in \vhich a developed function, 
of any number of variables, is equated to 0, as: 

A.1; + B(l - ;1:) = 0, or, 

Axy + B:r(l - y) + e(l - ;r)y + D(l - .1') (1 - y) = 0, etc. 

It is an important property of such equations that, since the product of 
any two constituents in a developed function is 0, any such equation gives 
anyone of its constituents, ,>vhose coefficient does not vanish in the develop
ment, = O. For example, if we multiply the second of the equations given 
by xy, all constituents after the first ,vill vanish, giving Axy = 0. Whence 
we shall have xy = O. 

Any equation in which a developed function is equated to 1 may be 
reduced to the form in which one member is 0 by the law; If V = 1, 
1 - V = O. 

The more general form of equation is that in which some "logical 
symbol ", w, is equated to some function of such symbols. For example, 
suppose x = yz, and it be desired to interpret z as a function of x and y. 

x = yz gives z = x/y; but this form is not interpretable. We shall, then, 
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deyelop x/y by the law 

](;1:, y) =](1, 1)·xy+f(l, O)·;r(l - y)+f(O, 1)·(1 - ~.:)y 

+f(O, 0)·(1 - x)(l - y) 
By this law: 

I x 
f.3 = -, then 

y 

1 0 
z = xy+ 0;('(1 - y) + 0(1 - J:)y+ 0 (1 - :r)(1 - y) 

These fractional coefficients represent the sole necessary difference of Boole's 
methods from those at present familiar-a difference due to the presence 
of division in his system. Because any function can alv,ays be de
veloped, and the difference between any t\yo deyeloped functions, of the 
same variables, is always confined to the coefficients. If, then, we can 
interpret and successfully deal 'with such fractional coefficients, one or the 
difficulties of Boole's system is removed. 

The fraction % is indeterminate, and this suggests that a proper inter
pretation of the coefficient 0/0 would be to regard it as indicating an unde
termined portion of the class whose coefficient it is. This interpretation 
may be corroborated by considering the s;ymbolic interpretation of U All 
x is y", which is x(1 - y) = 0. 

If x(l - y) = 0, then x - xy = ° and x = xy. 
Whence y = x/x. 

Developing x/x, we haye y = x + ~ (1 - x). 

If "All x is y", the class y is made up of the class x plus an undetermined 
portion of the class not-x. Whence % is equiyalent to an arbitrary 
parameter v, which should be interpreted as "an undetermined portion of" 
or as "All, some, or none of". 

The coefficient I/O belongs to the general class of symbols which do not 
obey the "index law", x2 = x, or its equivalent, the "law of duality", 
xCI - x) = o. At least Boole says it belongs to this class, though the 
numerical properties or 1/0 would, in fact, depend upon laws which do not 
belong to Boole's system. But in any case, I/O belongs with the class or 
such coefficients so far as its logical interpretation goes. Any constituent of a 
developed function which does not satisfy the index law must be separately 

equated to O. Suppose that in any equation 

w = At+P 
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w be a "logical symbol ", and t be a constituent of a developed function 
'whose coefficient A. does not satisfy the index law, A2 = A. And let P 
be the sum of the remaining constituents whose coefficients do satisfy this 
law. Then 

t2 = t, and 

Since the product of any two constituents of a development is 0, 

w2 = (At + P)2 = A2t2 + p2 

Hence 

Subtracting this from the original equation, 

(A - A2)t = O' = A(l - A)t 

Hence since A (1 - A) =1= 0, t = 0 

Hence any equation of the form 

o 1 
w = P + OQ + - R + - S o 0 

is equivalent to the two equations 

~D = P+ vR and 

which together represent its complete solution. 
It will be noted that a fraction, in Boole's algebra, is always an am

biguous function. Hence the division operation must never be pe1jormed: 
the value of a fraction is to be determined by the law of development only, 
except for the numerical coefficients, which are elsewhere discussed. \Ve 
have already remarked that ax = bx does not give a = b, because x may 
have the value O. But we may transform a.1: = bx into a = bx/x and 
determine this fraction by the law 

f(b,x) =f(l,l)·bx+f(l,O)·b(l-x)+f(O,l)·(l-b)~"C 

+.f(0, 0)· (1 - b)(l - x) 
We shall then have 

bx 0 0 
a = a; = bx+ abel - x)+ 0(1 - b)(l - x) 

and this is not, in general, equivalent to b. Replacing % by indeterminate 
coefficients, v and w, this gives us, 

If ax = bx, then 

a = bx+v·b(l - x)+w·rl - b)(l - x) 
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And this result is always valid. Suppose, for example, the logical equation 

rational men = married men 

and suppose we wish to discover who are the rational beings. Our equation 
will not give us 

rational = married 
but instead 

rational = married men + v· married non-men + 11)' non-married non-men 
THat is, our hypothesis is satisfied if the class "rationa,l beings" consist of 
the married men together with any portion (which may be null) of the 
class "married women" and a similarly undetermined portion of the class 
"unmarried women". 

If we consider Boole's system as an algebra of 0 and 1, and the fact that 
for any fraction, x/V, 

x 1 0 Y = xy + 0 x(I - y) + 0 (l - ;1:) (1 - y) 

we shall find, by investigating the cases 

(1) x = 1 and y = 1; (2) x = 1, Y = 0; (3) x = 0, y = 1; 

and (4) x = 0, y = 0, 

that it requires these three possible cases: 

(1) ~ = 1 

o 
(2) 0 = ° 
(3) ~ = ~ ·0 ° 0 

Or, to speak more accurately, it requires that 010 be an ambiguous function 
susceptible of the values 0 and 1. 

Since there are, in general, only four possible coefficients, 1, 0, 0/0, and 
such as do not obey the index law, of \vhich 1/0 is a special case, this means 
that any equation can be interpreted, and the difficulty due to the presence 
of an uninterpretable division operation in the system has disappeared. 
And any equation can be solved for any "logical symbol" ;1:, by trans
ferring .all other terms to the opposite side of the equation, by subtraction 
or division or both, and developing that side of the equation. 

Any equation may be put in the form in which one member is 0 by 
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bringing all the terms to one side. "When this is done, and the equation 
fully expanded, all the coefficients which do not vanish may be changed to 
unity, except such as already have that value. Boole calls this a "rule of 
interpretation" .1 02 Its validity follows from two considerations: (1) Any 
constituent of an equation with one member 0, whose coefficient does not 
vanish in deyelopment, may be separately equated to 0; (2) the sum of 
the constituents thus separately equated to 0 will be an equation with one 
member 0 in which each coefficient will be unity. 

Xegatiyc coefficients may be eliminated by squaring both sides of any 
equation in which they appear. The "logical symbols" in any function 
are not altered by squaring, and any expression of the form (1 - ;r), where 
x is a "logical symbol ", is not altered, since it can have only the values 
o and 1. Hence no constituent is altered, except that its coefficient may be 
altered. And any negative coefficient 'will be made positive. 1\0 new 
terms 'will be introduced by squaring, since the product of any t,vo terms 
of a deyeloped function is always null. Hence the only change effected 
by squaring any de,"'eloped function is the alteration of any negatiye coef
ficients into positive. Their actual numerical value is of no consequence .. 
because coefficients other than 1 can be dealt with by the method described 
aboye. 

For reducing any t,yO or more equations to a single equation, Boole 
first proposed the "method of indeterminate multipliers ",103 by which 
each equation, after the first, is multiplied by an arbitrary constant and the 
equations then added. But these indeterminate multipliers complicate the 
process of elimination, and the method is, as he afterward recognized, an 
inferior one. More simply, such equations may be reduced, by the methods 
just described, to the form in which one member is 0, and each coefficient 
is 1. They may then be simply added; the resulting equation will combine 
the logical significance of the equations added. 

Any "logical symbol" which is not wanted in an equation may be 
eliminated by the method which is familiar to all students of symbolic 
logic. To eliminate x, the equation is reduced to the form 

Ax+B(l - x) = 0 

The result of elimination will bel04 

AB = 0 
102 L. of T., p. 90. 
103 See Math. An. of Logic, pp. 78-81; L. of T., pp. 115-120. 
104 See L. of T., p. 101. We do not pause upon this or other matters which will be 

entirely clear to those who understand current theory. 
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By these methods, the difference between Boole's algebra and the classic 
algebra of logic which gre,y out of it is reduced to a minimum. Any logical 
results obtainable by the use of the classic algebra ma:," also be got b~' 
Boole's procedures. The difference is solely one of ease and mathematical 
neatness in the method. T,,'o important Jaws of the classic algebra ,yhich 
do not appear among Boole's principles are: 

(1) :1: + x = x, and (2) x = ;r + a:y 

These seem to be inconsistent with the Boolean meaning of +; the first of 
them does not hold for x = 1; the second does not hold for ;r = 1, Y = 1. 
But although they do not belong to Boole 's s~'stem as an abstract algebra, 
the methods or reduction which have been discussed will ahvays give x in 
place or :r +;1: or of x + xv, in any equation in "'hich these appear. The 
expansion of x + .1: gives 2x; the expansion of .r + J:y gives 2;ry + x(l - V). 

By the method for dealing with coefficients other than unity, 2x may be 
replaced in the equation by x, and 2.ry + :['(1 - y) by xy + .1'(1 - V), ·which 
is equal to x.· 

The methods of applying the algebra to the relations of logical classes 
should now be sufficiently clear. The application to propositions is made 
by the familiar device of correlating the "logical symbol ", .1', with the 
times when some proposition, T, i8 true. ;ry will represent the times y;-11en 
X and r are both true; ;);(1 - y), the times when X is true and r is false, 
and so on. Congruent with the meaning of +, x + ~J will represent the 
times when either X or Y (but not both) is true. In oraAr to s~'mbolize 
the times when X or Y or both are true, we must write x + (1 - .1:)Y, or 
XJJ + a:(l - ]/) + (1 - ;l')Y' 1, the" universe ", will represent" all times ,. or 
"always"; and 0 will be "no time" or "newr". x = 1 ,yill represent 
"X is always true"; x = 0 or (1 - a') = 1, "X is never true, is always 
false" . 

Just as there is, with Boole, no symbol for the inclusion relation or 
classes, so there is no symbol for the implication relation of propositions. 
For classes, "All X is r" or" X is contained in Y" becomes;r = vy. Cor
respondingly, "All times \vhen X is true are times when r is true" or "If 
X then r" or "X implies Y" is x = vy. x = y will mean, "The times 
w hen X is true and the times when Y is true are the same" or "X implies 
Y and Y implies X". 

The entire procedure for "secondary propositions" is summari7.ed as 
follows: 105 

105 L. of T., p. 178. 
(l 
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"Rule.-Express symbolically the given propositions. 
"Eliminate separately from each equ:ation in "ihich it is found the 

indefinite symbol 11. 

"Eliminate the remaining symbols which it is desired to banish from 
the final solution: always before elimination, reducing to a single equation 
those equations in which the symbol or symbols to be eliminated are found. 
Collect the resulting equations into a single equation [one member of which 

is OJ, F = O. 
"Then proceed according to the particular form in which it is desired 

to express the final relation, as 
1st. If in the form of a denial, or system of denials, develop the 

function V, and equate to 0 all those constituents whose coefficients do 
not vanish. 

2ndly. If in the form of a disjunctive proposition, equate to 1 the 
sum of those constituents whose coefficients vanish. 

3rdly. If in the form of a conditional proposition having a simple 
element, as x or 1 - x, for its antecedent, determine the algebraic 
expression of that element, and develop that expression. 

4thly. If in the form of a conditional proposition having a com
pound expression, as xy, xy + (1 - ;r)(l -- y), etc., for its antecedent, 
equate that expression to a new symbol t, and determine t as a developed 
function of the symbols which are to appear in the consequent .... 

5thly. . .. If it only be desired to ascertain whether a particular 
elementary proposition x is true or false, we must eliminate all the 
symbols but x; then the equation x = 1 will indicate that the proposi
tion is true, x = 0 that it is false, 0 = 0 that the premises are insuf
ficient to determine whether it is true or false." 

It is a curious fact that the one obvious law of an algebra of 0 and 1 
which Boole does not assume is exactly the law which would have l1:rnited 
the logical interpretation of his algebra to propositions. The law 

If x =1= 1, x = 0 and if x =1= 0, x = 1, 

is exactly the principle which his successors added to his system when it 
is to be considered as a calculus of propositions. This principle would have 
made his system completely inapplicable to logical classes. 

For propositions, this principle means, "If x is not true, then x is false, 
and if x is not false, it is true". But careful attention to Boole's interpre
tation for" propositions" shows that in his system x = 0 should be inter-
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preted "x is false at all time8 (or in all cases) ", and ,-r = 1 should be in
terpreted "x is true at all times". This reYeals that fact that what Boole 
calls" propositions" are what 'we should now call" propositional functions ", 
that is, 8tatement8 ,vhich may be true under some circumstances and false 
under others. The limitation put upon what we now call" propositions "
namely that they must be absolutely determinate, and hence simply true 
or false-does not belong to Boole's system. And his treatment of "propo
sitional symbols" in the application of the algebra to probability theory 
gives them the character of "propositional functions" rather than of our 
absolutely determinate propositions. 

The last one hundred and seventy-fi\'e pages of the Lall'8 of Th011glzt 
are devoted to an application of the algebra to the solution of problems in 
probabilities,lo6 This application amounts to the invention of a new 
method-a method \vhereby an;,; logical analysis inyoh'ed in the problem 
is performed as automatically as the purely mathematical operations. 
vVe can make this provisionally clear by a single ill ustra tion : 

All the objects belonging to a certain collection are classified in three 
'ways-as A's or not, as B's or not, and as C's or not. It is then found 
that (1) a fraction min of the A's are also B's and (2) the C's consist of the 
A's which are not B's together with the B's which are not A's. 

Required: the probability that if one of the A's be taken at random, 
it will also be a C. 

By premise (2) 
C = A (1 - B) + (1 - A)B 

Since A, B, and C are "logical s;rmbols", A2 = A. and ACI - A) = O. 
Hence, AC = A2 C1 - B) + A(l - .A.)B = A(l - B). 

The A's which are also C's are identical with the A's which are not B's. 
Thus the probability that a given A is also a C is exactly the probability 
that it is not a B; or by premise (1), 1 - rn/n, which is the required solution. 

In any problem concerning probabilities, there are usually two sorts of 
difficulties, the purely mathematical ones, and those involved in the logical 
analysis of the situation upon 'which the probability in question depends. 
The methods of Boole's algebra provide a means for expressing the relations 
of classes, or events, given in the data, and then transforming these logical 

106 Chap. 16if. See also the Keith Prize essay "On the Application of the Theory of 
Probabilities to the Question of the Combination of Testimonies or Judgments", Tra.ns. 
Roy. Soc. Edinburgh, XXI, 597 if. Also a series of articles in Phil. Mag., 1851-54 (see 
Bibl). .An article on the related topic "Of Propositions Numerically Definite" appeared 
posthumously; CarnJJ. Phil. Trans., XI, 396-411. 
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equations so as to express the class which the q1WBSitu1n concerns as a func
tion of the other classes involved. It thus affords a method for untangling 
the problem-often the most difficult part of the solution. 

The parallelism between the logical reJations of classes as expressed in 
Boole's algebra and the corresponding probabilities, numerically expressed, 
is striking. Suppose ~t represent the class of cases (in a given total) in which 
the event X occurs-or those which" are favorable to" the occurrence of 
XJ07 And let p be the probability, numerically expressed, of the event X. 
The total class of cases will constitute the logical "universe", or 1; the 
null class will be O. Thus, if x = I-if all the cases are favorable to X
then p = I-the probability of X is "certainty". If x = 0, then p = O. 
Further, the class of cases in which X does not occur, will be expressed by 
1 - x; the probability that X will not occur is the numerical 1 - p. Also, 
x + (1 - x) = 1 and p + (1 - 17) = l. 

This parallelism extends likewise to the combinations of two or more 
events. If x represent the class of cases in which X occurs, and y the class 
of cases in which Y occurs, then ;ey ,;vill be the class of cases in which X 
and Y both occur; x(1 - y), the cases in which X occurs without Y; 

(1 - x)y, the cases in which Y occurs without X; (1 - x)(1 - y), the 
cases in which neither occurs; xCI - y) + y(l - x), the cases in which 
X or Y occurs but not both, and so on. Suppose that X and Yare" simple" 
and "independent" events, and let 17 be the probability of X, q the prob
ability of Y. Then we have: 

Combination of events 
expressed in Boole's algebra 

xy 

x(l - y) 

(1 - x)y 

(1 - x)(1 - y) 

x(1 - y) + (1 - x)y 

Etc. etc. 

Corresponding probabilities 
numerically expressed 

pq 

pC1 - q) 

(1 '- q)p 

(1 - p)(1 - q) 

p(1 - q) + (1 - p)q 

In fact, this parallelism is complete, and the following rule can be 
form ulated: 108 

107 Boole prefers to consider x as representing the times when a certain proposition, 
asserting an occurrence, will be true. But this interpretation comes to exactly the same 
thing. 

108 L. of T., p. 258. 
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"If p, q, r, ... are the respectiYe probabilities of unconditioned simple 
eYents, x, y, z, ... ,the probability of any compound e,'ent V will be [Fl, 
this function [V] being formed by changing, in the function r, the symbols 
x, y, z, ... into p, q, r, .... 

"According to the well-known la\v of Pascal, the proba,bility that if 
the eyent V occur, the event T"' 'will occur with it, is expressed by a fraction 
whose numerator is the probability of the joint occurrence of rand P, 
and whose denominator is the probabilit~- of the occurrence of r. ,Ye can 
then extend the rule just giwn to such cases: 

"The probability that if the eyent T' occur, any other e,-ent r' wiII 

also occur, will be [T:/~/J, where W P] denotes the result obtained by 

multiplying together the logica:I functions V and P, and changing in the 
result x, y, z, ... into 1), q, r, .... " 

The inverse problem of finding the absolute probability of an eyent 
when its probability upon a giyen condition is known can also be soh-ed. 

Given: The probabilities of simple eyents :r, y, z, ... are respectively 
p, q, r, ... when a certain condition V is satisfied. 

To determine: the absolute probabilities l, In, 12, ••• of x, y, Z, •••• 

By the rule just given, 

[;l~V] 
-W] = p, 

[yr] w] = q, 
[zr] 
w] = r, etc. 

And the number of such equations will be equal to the number of unknowns, 
l, m, n, ... to be determined.lOg The determination of any logical expres
sion of the form xV is peculiarly simple since the product of x into any 
developed function V is the sum of those constituents of r which contain x 

as a factor. For example: 

if V = xyz + xCI - y)z + (1 - x)y(I - z) + (1 - x)(1 - y)z, 

xV = xyz+ x(I - y)z 

yV = xyz+ (1 - x)y(I - z) 

zV = xyz+ x(I - y)z+ (1 - x)(1 - y)z 

Thus any equation of the form 

[xV] 
lVj = P 

109 On certain difficulties in this connection, and their solution, see Cayley, "On a 
QUestion in the Theory of Probability" (with discussion by Boole), Phil. Mag., Ser. IV, 

XXIII (1862), 352-{)5, and Boole, "On a General Method in the Theory of Probabilities", 
ibid., xxv (1863), 313-17. 
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is readily determined as a numerical equation. Boole gives the following 
exam pIe in ill ustra tion: 110 

"Suppose that in the dr~wings of balls from an urn, attention had only 
been paid to those cases in which the balls drawn were either of a particular 
color, 'white,' or of a particular composition, 'marble,' or were marked by 
both of these characters, no record having been kept of those cases in which 
a ball \vhich was neither white nor of marble had been drawn. Let it then 
have been found, that whenever the supposed condition was satisfied, there 
was a probability p that a white ball would be drawn, and a probability q 
that a marble ball would be drawn: and from these data alone let it be 
;required to find the probability m that in the next drawing, without refer
.ence at all to the condition above mentioned, a white ball will be drawn; 
,also a probability n that a marble ball will be drawn. 

"Here if x represent the drawing of a white ball, y that of a marble 
ball, the condition V will be represented by the logical function 

Hence we have 

Whence 

xy + x(I - y) + (1 - x)y 

xV = xy+x(l - y) =:r 
yV = xy+ (1 - x)y = y 

[xV] = 112, [yV] = 1'1 

and the final equations of the problem are 

from which we find 

112 
mn + 112(1 - n) + (1 - m)n = p 

n 
mn + 112(1 - 1'1) + (1 - m)n = q 

p+ q - 1 
112 = -",-"--, , 

q 
1'1 

p+ q - 1 

P 

. To meet a possibJe objection, I here remark that the above reasoning 
does not require that the drawings of a white and a marble ball should be 
independent, in virtue of the physical constitution of the balls. 

"In general, the probabilities of any system of independent events 
being given, the probability of any event X may be determined by finding a 
logical equation of the form 

o 1 
x = A + OB + - 0 + - D o 0 

110 L. of T., p. 262. I have slightly altered the illustration by a change of letters. 
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where A, B, C, and D are functions of the symbols of the other events. 
As has already been shown, this is the general type of the logical equation, 
and its interpretation is given by 

x = A +vC, 

D = 0 

where v is arbitrary and 

By the properties of constituents, we have also the equation, 

A+B+C+D = 1 
and, since D = 0, 

A + B + C thus gives the 'universe' of the events in question, and the prob
abilities given in the data are to be interpreted as conditioned by A + B + C 
= 1, since D = 0 is the condition of the solution x = A + vc. If the given 
probability of some event S is p, of Tis q, etc., then the supposed' absolute' 
probabilities of S, T, etc., may be determined by the method which has 
been described. Let V = A + B + C, then 

[817] 
[V] = p, 

[tV] 
[V] = q, etc. 

where [8V], [tV], etc. are the "absolute probabilities" sought. These, 
being determined, may be substituted in the equation 

[A +vC] 
Prob. w = [V) 

which will furnish the required solution. 
"The term vC will appear only in cases where the data are insufficient 

to determine the probability sought. Where it does appear, the limits of 
this probability may be determined by giving v the limiting values, 0 and 1. 
Thus' 

Lower limit of Prob. w = i~ 

Upper limit 
[A+C]" 

[V] 

With the detail of this method, and with the theoretical difficulties of 
its application and interpretation, we need not here concern ourselves. 
Suffice it to say that, with certain modifications, it is an entirely workable 
method and seems to possess certain marked advantages over those more 
generally in use. It is a matter of surprise that this immediately useful 
application of symbolic logic has been so generally overlooked. 
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\'1. JEYONS 

It has been sho'wn that Boole's "calculus of logic" is not so much a 
system of logic as an algebra of the numbers 0 and 1, some of whose ex
pressions are capable of simple interpretation as relations of logical classes, 
01' propositions, and some of ydlOSe transformations represent processes of 
reasoning. If the entire algebra can, with sufficient ingenuity, be inter
preted as a system of logic, still Boole himself failed to recognize this fact, 
and this indicates the difficulty and unnaturalness of some parts of this 
interpretation. 

Jeyonslll pointed a way to the simplification of Boole's algebra, dis
carding those expres~ions which have no obvious interpretation in logic, 
and laying down a procedure which is just as general and is, in important 
respects, superior. In his first book on this subject, Jevons says: 112 

"So long as Professor Boole's system of mathematical logic ,vas capable 
of giving results beyond the power of any other system, it had in this fact 
an impregnable stronghold. Those \vho were not prepared to draw the 
same inferences in some other manner could not quarrel ,,,jth the manner 
of Professor Boole. But if it be true that the system of the foregoing 
chapters is of equal po~-er with Professor Boole's system, the case is altered. 
Tl1ere are now two systems of notation, giving the same formal results, one 
of which gj,-es them with self-evident force and meaning, the other by dark 
and symbolic processes. The burden of proof is shifted, and it must be 
for the author or supporters of the dark system to shoy; that it is in some 
way superior to the evident system." 

He sums up the advantages of his system, compared ,'lith Boole's, as 
follows: 113 

"1. Every process is of self-eyident nature and force, and gcl\erned by 
laws as simple and primary as those of Euclid's axioms. 

"2. The process is infallible, and gives us no un interpretable or anom
alous results. 

"3. The inferences may be drawn with far less labor than in Professor 
Boole's system, which generally requires a separate computation and 
development for each inference." 

111 William Stanley Jevons (1835-1882), B.A., M.A. (London), logician and economist; 
professor of logic and mental and moral philosophy and Cobden professor of political 
economy in Owens College, Manchester, 1866-76; professor of political economy, Uni
versity College, London, 1876-80. 

112 Pure Logic, or the Logic of Quality apart from Quantity, p. 75. 
113 Ibid., p. 74. 
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The third of these obsen-ations is not entirely lYarrantec1. Jevons 
unduly restricts the operations and methods of Boole in such wise that 
his own procedure is often cumbersome and tedious where Boole's would 
be expeditious. Yet the honor of first pointing out the simplifications 
which have since been generally adopted in the algebra of logic belongs to 
Jevons. 

He discards Boole's im-erse operations, a - band alb, and he interprets 
the sum of a and b as "either a or b, where a and b are not necessarily 
exclusive classes". (\Ye shall symbolize this relation by (0+ b: Jeyons has 
A + B or A·J·B.)114 Thus', for Jeyons, a+ a = a, whereas for Boole a+ a 
is not interpretable as any relation of logical classes, and if it be taken as 
an expression in the algebra of 0 and 1, it obe;ys the usual arithmetical laws, 
so that a + a = 2a. As has been indicated, this is a source of much awk
ward procedure in Boole's system. The Jaw a + a = a eliminates numerical 
coefficients, other than 0 and 1, and this is a most important simplification. 

Jevons supposes that the fundamental difference between himself and 
Boole is that Boole's system, being mathematical, is a calculus of things 
taken in their logical extension, while his own system, being "pure logic", 
is a calculus of terms in intension. It is true that mathematics requires 
that classes be taken in extension, but it is not true that the calculus of 
logic either requires or derives important advantage from the point of view 
of intension. Since Jevons's system can be interpreted in extension "without 
the slightest difficulty, we 'shall ignore this supposed difference. 

The fundamental ideas of the system are as follows: 

(1) a b denotes that v,-hich is both a and b, or (in intension) the sum 
of the meanings of the two terms combined. 

(2) a + b denotes that which is either a or b or both, or (in intension) a 
term with'one of two meanings.ll5 

(3) a = b a is identical with b, or (in intension) a means the same as b. 
(4) -b Not-b, the negative of b, symbolized in Boole's system by 

1 - b.u6 

(5) 0 According to Jevons, 0 indicates that which is contradictory or 
"excluded from thought". He prefers it to appear as a factor rather than 

114 A + B in Pure Logic; A' I . B in the other papers. (See Bibl.) 
115 Jevons would add "but it is not known which". (See Pure Logic, p. 25.) But 

this is hardly correct; it makes no difference if it is known which, since the meaning of 
a + b does not depend on the state of our knowledge. Perhaps a better qualification would 
be "but it is not specified which". 

116 Jevons uses capital roman letters for positive terms and the corresponding small 
italics for their negatives. Follovi'ing De Morgan, he calls A and a "contrar;y" terms. 
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by itself.l17' The meaning given is a proper interpretation of the symbol in 
intension. Its meaning in extension is the null-class or "nothing", as with 
Boole. 

Jevons does not use any symbol for the" universe ", but writes out the 
"logical alphabet". This "logicaJ alphabet", for any number n of ele
ments, (I, b, c, ... , consists of the 2" terms \vhich, in Boole's system, form 
the constituents of the expansion of 1. Thus, for two elements, a and b, 
the "logical alphabet" consists of a b, a -b, -a b, and -a -b. For three 
terms, x, y, z, it consists of x y z, x y -z, x -y z, x -y -z, x y -z, -x -y z, and 
-x -y -z. Jevons usually writes these in a column instead of adding them 
and putting the sum = 1. Thus the absence of 1 from his system is simply 
a whim and represents no real difference from Boole's procedure. 

The fundamental laws of the system of Jevons are as follows: 

(1) If a = band b = c, then a = c. 
(2) a b = b a. 
(3) a a = a. 
(4) a-a = O. 
(5) a + b = b + a. 
(6) a + a = a. 
(7) a + 0 = a. This law is made use of but is not stated. 
(8) a(b+c) = ab+ac and (a+b)(c+d) = ac+ad+bc+bd. 

(9) a + a b = a. This law, since called the "law of absorption ", allows 
a direct simplification which is not possible in BooIe. Its analogue for 
multiplication 

a(a + b) = a 

follows from (8), (3), and (9). The law of absorption extends to any 
number of terms, so that we have also 

a+ab+ac+abd+ ... = a 

(10) a = a(b + -b)(c + -0) ... ' This is the rule for the expanSlOn of 
any term, a, with reference to any other terms, b, 0, etc. For three terms 
it gives us 

a = a (b + -b) (0 + -0) = abc + a b -c + a -b 0 + a -b -c 

This expansion is identical with that which appears in Boole's system, except 
for the different meaning of +. But the product of any two terms of such 
an expansion will always have a factor of the form a -a, and hence, by (4), 
will be null. Thus the terms of any expansion will always represent classes 

117 See Pure Logic, pp. 31-33. 
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"\vhich are mutually exclusive. This accounts for the fact that, in spite of 
the different meaning of +, deyeloped functions in Boole's system and in 
Jevons's always have the same form. 

(11) The "logical alphabet" is made up of any term plus its negatiYe, 
a + -a. It follows immediately from this and law (10) that the logical 
alphabet for any number of terms, a, b, c, ... , will be 

(a + -a) (b + -b) (c + -c) . .. 

and will have the character which ,ve haye described. It corresponds to 
the expansion of 1 in Boole's system because it is a developed function and 
its terms are mutually exclusive. 

A procedure by which Jevons sets great store is the "substitution of 
similars", of a for b or b for a ·when a = b. Not only is this procedure valid 
when the expressions in which a and b occur belong to the system, but it 
holds good whatever the rational complex in which a and b stand. He 
considers this the first principle of reasoning, more fundamental than 
Aristotle's dictum de omni et nullo,118 In this he is undoubtedly correct, 
and yet there is another principle, which underlies Aristotle's dictum, which 
is equally fundamental-the substitution for variables of values of these 
variables. And this procedure is not reducible to any substitution of 
eq ui valents. 

The only copulative relation in the system is [=]j hence the expression 
of simple logical propositions is substantially the same as with Boole: 

All a is b: a = a b 
No a is b: a = a-b 
Some a is b: c a = cab or Ua=rab 

" U" is used to suggest " Unknown". 
The methods of working with this calculus are in some respects simpler 

than Boole's, in some respects more cumbersome. But, as Jevons claims, 
they are obvious while Boole's are not. Eliminations are of two sorts, 
"in trinsic" and "extrinsic". Intrinsic eliminations may be performed by 
substituting for any part of one member of an equation the whole of the 
other. Thus from a = bcd, we get 

a=acd=abd=ac=ad 

This rule follows from the principles a a = a, a b = b a, and if a = b, 

a c = be. For example 

If a=bcd 
a' a = b cd· bed = b b· c c· d d = bed· d = a d. 

118 See Substitution of Similar/!, passim. 
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Also, in cases 'where a factor or a term of the form a(b + -b), or of the form 
a -a, is involved, eliminations may be performed by the rules a(b + -b) = a 

and a-a = O. 
Extrinsic elimination is that simplification or "solution" of equations 

which may occur when two or more are united. Jevons does not add or 
multiply such equations but uses them as a basis for striking out terms in 
the same "logical alphabet". 

This method is equivalent, in terms of current procedures, to first 
forming the expansion of 1 (which contains the terms of the logical alphabet) 
and then putting any equations given in the form in which one member 
is 0 and "subtracting" them from the expansion of 1. But Jevons did not 
hit upon the current procedures. His own is described thus: 119 

"1. Any premises being given, form a combination containing every 
term involved therein. Change successively each simple term of this 
into its contrary [negative], so as to form all the possible combinations of 
the simple terms and their contraries. [E. g., if a, b, and c are involved, 
form the "logical alphabet" of all the terms in the expansion of 

(a + -a) (b + -b) (c + -c).] 

"2. Combine successively each such combination [or term, as abc,] 
with both members of a premise. When the combination forms a con
tradiction [an expression having a factor of the form (a -a)l with neither 
side of a premise, call it an included s~lbject of the premise; when it forms a 
contradiction with both sides, call it an excluded subject of the premise; 
when it forms a contradiction with one side only, call it a conimdicto1'Y com
bination or s1lbject, and strike it out. 

"We may call an included or excluded subject a possible subject as 
distinguished from a contradictory combination or impossible subject. 

"3. Perform the same process with each premise. Then a combination 
is an included subject of a series of premises, when it is an included subject 
of anyone; it is a contradictory subject when it is a contradictory subject 
of anyone; it is an excluded subject when it is an excluded subject of 
every premise. 

"4. The expression of any term [as a or b] involved in the premises 
consists of all the included and excluded subjects containing the term, 
treated as alternatives [in the relation +]. 

"5. Such expressions may be simplified by reducing all dual terms [of 
119 Pure Logic, pp. 44-46. 
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the rorm a(b + -b)], and by intrinsic elimination of all terms not required 
in the expression. 

"6. '''hen it is observed that the expression of a term contains a com
bination 'which would not occur in the expression of an;: contrary of that 
term, we may eliminate the part of the combination common to the term 
and its expression. . . . 

"7. Unless each term of the premises and the contrary of each appear 
in one or other of the possibJe subjects, the premises must be deemed in
consistent or contradictory. Hence there must always remain at least h'o 
possible subjects. 

"Required by the aho,'e process the inferences of the premise a = b c. 
"The possible combinations of the terms a. b, c, and their contraries 

are as given [in the column at the left, which is, for this case, the 'logical 
alphabet'1. Each of these being combined with both sides of the premise. 
,ye have the follo-wing results: 

abc Cl b c = Cl be Cl be included subject 

. a b-c a b-c = abc-c =0 a b-c contradiction 

a -b c (t -b c = a b -b c =0 Cl -b c contradiction 

a-b -e a-b-c = a b -b c-c =0 Cl-b -c contradiction 

-a b c o = a -a b c = -abc -a be contradiction 

-ab -c o = a -a b-e = -a b c-c =0 -([ b-c excluded subject 

-a -b c o = a -a -b e = -a b -be =0 -a-b c excluded subject 

-a -b-e o = a -a -b -c = -a b -b c -c = 0 -a -b -c excluded subject 

"It appears, then, that the four combinations a b -c to -a be are to 
be struck out, and only the rest retained as possible subjects. Suppose ' .... e 
now require an expression for the term -b as inferred from the premise 
a = b c. • Select from the included and excluded subjects such as contain -b, 

namely -a -b c and -a -b -c. 
"Then -b = -a -b c + -a -b -c, but as -a c occurs only with -b, and 

not with b, its contrary, we may, by Rule fI, eliminate -b from -a -b c; 

hence -b = -a c + -a -b -c." 

This method resembles nothing so much as solu\tion by means of the 
Venn diagrams'Cto be explained in Chapter III). The "logical alphabet" 
is a list of the different compartments in such a diagram; those marked 
" contradiction" are the ones which would be struck out in the diagram by 
transforming the equations given into the form in which one member is O. 



78 A Survey of Symbolic Log,ic 

The advantage which Jevolls claims for his method, apart from its obvious
ness,-namely, tJlat the solutions for different terms do not require to be 
separately performed,-is also an advantage of the diagram, 'which exhibits 
all the possibilities at once. 

H any problem be Iyorked out by this method of Jevons and also that 
of Boole, it will be found that the comparison is as fonows: The "logical 
alphabet" consists of the terms Iyhich when added give 1, or the universe. 
Any term marked" contradiction" will, by Boole's method, have the coef
ficient 0 or 1/0; any term marked "included subject" '.vill have the coef
ficient 1; any marked" excluded subject" will have the coefficient 0/0, or 1) 

where 1) is arbitrary. If, then, we remember that, according to Boole, 
terms with the coefficient 1/0 are equated to 0 and thus eliminated, we 
see that the two methods give substantially the same results. The single 
important difference is in Boole's favor: the method of Jevons does not 
distinguish decisively between the coefficients 1 and v. If, for example, 
the procedure of Jeyons gives x = x -y z, Boole's will give either x = -y z 
or:r=1)-Yz. 

One further, rather obvious, principle may be mentioned: 120 

Any subject of a proposition, remains an included, excluded, or con
tradictory subject, after combination with any unrelated terms. This 
means simply that, ill any problem, the value of a term remains its value 
as a factor when the term is multiplied by any new terms which may be 
introduced into the problem. In a problem involving a, b, and c, let 
a -b c be a "contradictory" term. Then if x be introduced, a -b c x and 
a -b c -x will be "contradictory". 

On the whole Jevons's methods are likely to be tedious and have little 
of mathematical nicety about them. Suppose, for example, we have three 
equations involving altogether six terms. The "logical alpha]:>et" will 
consist of six'iy-four members, each of which will have to be investigated 
separately for each equation, making one hundred and ninety-two separate 
operations. Jevons has emphasized his difference from Boole to the extent 
of rejecting much that would better have been retained. It remained for 
others, notably Mrs. Ladd-Franklin and Schroder, to accept Jevons's 
amended meaning of addition and its attendant advantages, yet retain 
Boole's methods of development and similar methods of elimination and 
solution. But Jevons should have credit for first noting the main clue to 
this simplification-the laws a + a = a and a + a b = a. 

120 Pure Logic, p. 48. 
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YH. PEIRCE 

The contributions of C. S. Peirce!3! to symbolic logic are more numerous 
and varied than those of any other writer-at least in the nineteenth 
century. He understood how to profit by the ,,'ork or his predecessors, 
Boole and De Morgan, and built upon their foundations, and he anticipated 
the most important procedures of his successors eyen when he did not 
work them out himself. Again and again, one finds the clue to the most 
recent developments in the writings of Peirce. These contributions may 
be summed up under three heads: (1) He improwd the algebra of Boole 
by distinguishing the relations which are more characteristic of logical 
classes (such as multiplication in Boole's algebra) rrom the relations which 
are more closely related to arithmetical operations (such as subtraction and 
division in Boole). The resulting algebra has certain advantages OWl' the 
system of Jevons because it retains the mathematical methods of dewlop
ment, transformation, elimination .. and solution, and certain adyantages 
over the algebra of Boole because it distinguishes those operations and 
relations which are always interpretable ror logical classes. _-\1so Peirce 
introduced the "illative" relation, "is contained in", or "implies", into 
symbolic logic. (2) Following the researches of De ::\Iorgan, he made 
marked advance in the treatment of relations and relatiye terms. The 
method of dealing with these is made more precise and "mathematical", 
and the laws which govern them are related to those of Boole's algebra of 
classes. Also the method of treating" some ,. and "all" propositions as 
sums (~) and products Cll) respectively of "propositions" containing 
variables was here first introduced. This is the historic origin of "formal 
im plication" and all that has been built upon it in the more recent dewlop
ment or the logic of mathematics. (3) Like Leibniz, he conceived symbolic 
logic to be the science or mathematical form in general, and did much to 
revive the sense of logistic proper, as we have used that term. He ,yorked 
out in detail the deri"ation of various multiple algebras from the calculus 
of relatives, and he improved Boole's method of applying symbolic logic to 

problems in probability. 
J21 Charles Saunders Peirce (1839-1914), son of Benjamin Peirce, the celebrated 

mathematician, A.B. (Har';'ard, 1859), B.S. (Harvard, 1863), lecturer in logic at Johns 
Hopkins, 1890- ? For a number of years, Peirce was engaged in statistical researches 
for the U. S. Coast Survey, and was at one time head of the Department of Weights and 
Measures. His writings cover a wide variety of topics in the history of science, meta
physics, mathematics, astronomy, and chemistry. According to William James, his 
articles on "Some illustrations of the Science of Logic", Pop. Sci. 11to., 1877-78, Ilre the. 
source of pragmatism. 
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'Ye shall take up these contributions in the order named. 
The improvement of the Boolian algebra is set forth mainly in the 

brief article, "On an Improvement in Boole's Calculus of Logic "/22 and in 
two papers, "On the Algebra of Logic ".123 

It "will be remembered that Boole's calculus has four operations, or rela
tions: a + b indicates the class made up of the two mutually eJ.:cl118'ive classes, 
a and b; [-'-] is the strict inverse of [+], so that if x + b = a, then x = a - b; 
a, x b or a b denotes the class of those things which are common to a and b; 
and di\·ision is the strict inverse of multiplication, so that if x b = a, then 
x = a/b. These relations are not homogeneous in type. Boole's [+] 
and [-] have properties 'which approximate closely those of arithmetical 
addition and subtraction. If [n]x indicate the number of members of the 
class x, 

[n]a + [n]b = [n](a + b) 

because a and b are mutually exclusive classes, and every member of a 
is a member of (a + b) and every member of b is a member of (a + b). This 
relation, then, differs from arithmetical addition only by the fact that 
a and b are not necessarily to be regarded as numbers or quantities. Simi
larly, 

[nla - [n]b = [n]Ca - b) 

But in contrast to this, for Boole's a x b or a b, 

[n]a x [n]b = [n](a b) 

will not hold except for 0 and 1: this relation is not of the type of its arith
metical counterpart. And the same is true of its inverse, a/b. Thus, in 
Boole's calculus, addition and subtraction are relations of the same type 
as arithmetical addition and subtraction; but multiplication and division 
are different in type from arithmetical multiplication and division. 

Peirce rounds out the calculus of Boole by completing both sets of these 
relations, adding multiplication and division of the arithmetical type, and 
addition and subtraction of the non-arithmetical type.124 The general 
character of these relations is as follows: 

122 Proc. Amer. Acad., VII, 250-61. This paper will be referred to hereafter as "Boole's 
Calculus ". 

l23Amer. Jour. Math., III (1880), 15-57, and VII (1885), 180-202. These two papers 
will be referred to hereafter as Alg. Log. 1880, and Alg. Log. 1885, respectively. 

124 "Boole's Calculus," pp. 250-54. 
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A. The" Non-Arithmetical" or Logical Relations 

(1) a + b denotes the class of those things which are either a's or b's or 
both.125 

(2) The inverse of the aboye, a f-b, is such that if x + b = a, then 
x = a f-b. 

Since x and b, in x + b, need not be mutually exclusive classes, a f- b is 
an ambiguous function. Suppose x + b = a and all b is x. Then 

a f- b = ~~, and a I- b = a 

Thus a f- b has an upper limit, a. But suppose that x + b = a and no b 
IS x. Then a f- b coincides with a - b (a which is not b)-i. e., 

a f- b = x, and af-b=a-b 

Thus a f- b has a lower limit, a - b, or (as we elsewhere symbolize it) 
a -b. And in any case, a f- b is not interpretable unless all b is a, the 
class b contained in the class a. 'Ye ma;". summarize all these facts by 

a f- b = a -b + 'V a b + [OJ-a b 

where v is undetermined, and [0] indicates that the term to which it is 
prefixed must be null. 

(3) a b denotes the class of those things which are both a's and b's. 
This is Boole's a b. 

(4) The inverse of the preceding, alb such that if b x = a, then x = a/b. 
This is Boole's a/b. 

a./b is an ambiguous function. Its upper limit is a + -b; its lower 
limit, a.126 It is uninterpretabIe unless b is contained in a-i. e., 

alb = a b+v-a-b+ [0] a-l} 

B. The" Arithmetical" Relations 

(5) a + b denotes the class of those things which are either a's or b's, 
where a and b are mutually exclusive classes. This is Boole's a + b. 

a + b = a -b + -a b + [0] a b 

(6) The inverse of the preceding. a - b signifies the class" a which 
is not b". As has been mentioned, it coincides with the lower limit of a f-b. 

(7) a X b and a + b are strictly analogous to the corresponding relations 
125 Peirce indicates the logical relations by putting a comma underneath the sign of 

the relation: that which is both a and b is a, b. 
126 Peirce indicates the upper limit by a : b, the lower limit by a -;. b. These occur 

only in the paper "Boole's Calculus". 

7 
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of arithmetic. They have no such connection with the corresponding 
"logical" relations as do a + b and a-b. Peirce does not use them 
except in applying this system to probability theory. 

For the" logical" relations, the following familiar laws are stated: 127 

a+ a = a 

a+b=b+a 

(a+b)+c = a+ (b+c) 

(a+b)c = ac+bc 

aa = a 

a b = b a 

(ab)c = a(bc) 

a b+ c = (a+ c)(b+ c) 

The last two are derived from those which precede. 
Peirce's discussion of transformations and solutions in this system is 

inadequate. Any sufficient account would carry us quite beyond what 
he has given or suggested, and require our report to be longer than the 
original paper. We shall be content to suggest ways in which the methods 
of Boole's calculus can be extended to functions involving those relations 
which do not appear in Boole. As has been pointed out, if any function 
be developed by Boole's laws, 

f(x) = f(I)·x + f(O)· -x, 

<p(x, y) = <p(I, 1)· x y + <pCl, 0) . x -y + <p(0, 1) . -x y + <p(0, 0)· -x -y, 

Etc., etc., 

the terms on the right-hand side of these equations will always represent 
mutually exclusive classes. That is to say, the difference between the 
"logical" relatio'n, +, and the" arithmetical" relation, +, here vanishes. 
Thus any relation in this system of Peirce's can be interpreted by developing 
it according to the above laws, provided that we can interpret these rela
tions when they appear in the coefficients. And the correct interpretation 
of these coefficients can always be discovered. 

Developing the "logical" SUill, x + y, we have, 

x + y = (1 + 1) . x y + (1 + 0) . x -y + (0 + 1) . -x Y + (0 + 0)· -x -y 

Comparing this with the meaning of x + y given above, we find that (1 + 1) 
= 1, (1 + 0) = 1, (0 + 1) = 1, and (0 + 0) = O. 

Developing the "logical" difference, a I-b, we have 

x I-y = (1 f-l)·x y + (1 I-O)·x -y + (0 f-l). -x y + (0 1:-0)· -x -y 

Comparing this with the discussion of x I-y above, we see that (1 1-1) is 
equivalent to the undetermined coefficient v; that (1 1-0) = 1; that 

127 "Boole's Calculus, " pp. 250-53. 
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(0 1-1) is equivalent to [0], which indicates that the term to which it is 
prefixed must be null, and that (0 f-O) = O. 

The interpretation of the "arithmetical" relations, X and -+-, in coef
ficients of class-symbols is not to be attempted. These are of service only 
in probability theory, where the related symbols are numerical in their 
significance. 

The reader does not require to be told that this system is too complicated 
to be entirely satisfactory. In the "Description of a Kotation for the 
Logic of Relatives", all these relations except -+- are retained, but in later 
papers we find only the "logical" relations, a + b and a b. 

The relation of "inclusion in" or "being as small as" (which we shall 
symbolize by c )128 appears for the first time in the :'Description of a 
Notation for the Logic of Relatives ".129 Aside from its treatment of 
relative terms and the use of the" arithmetical" relations, this monograph 
gives the laws of the logic of classes almost identically as they stand in the 
algebra of logic t9day. The following principles are stated.l30 

(1) If x cy and y cz, then x cz. 

(2) If a c b, then there is such a term x that a + x = b. 

(3) If a c b, then there is such a term y that b y = a. 
(4) If b x = a, then a c b. 
(5) If acb, (c+a) c(c+b). 

(6) If acb, caccb. 

(7) If a c b, ace b c. 
(8) abc a. 

(9) xc(x+y). 

(10) x+y = y+x. 

(11) (x + y) + z = x + (y + z). 

(12) x(y+z) = xy+xz. 

(13) x y = y x. 
(14) (x y)z = x(y z). 

(15) xx = x. 

(16) x -x = 0.131 

(17) x + -x = 1. 
123 Peirce's symbol is -< which he explains as meaning the same as :::: but being sim

pler to write. 
129 Memoirs of the Amer. Acad., n. s., IX (1867), 317-78. 
130 "Description of a Notation for the Logic of Relatives," loco cit., pp. 334-35, 338-39, 

342. 
131 In this paper, not-x is symbolized by tt", "different from every x," or by (J'-X. 
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(18) x +0 = x. 
(19) x + 1 = 1. 

A Survey of Symbolic Logic 

(20) \O(x) = \0(1)' x + \0(0) . -x. 
(21) \O(x) = [\O(1)+x][\O(0)+-x1· 
(22) If \O(x) = 0, \0(1)· <p(0) = O. 

(23) If <p(x) = 1, <p(1) + 10(0) = 1. 

The last of these gives the equation of condition and the elimination re
sultant for equations with one member 1. Boole had stated (22), which 
is the corresponding law for equations with one member 0, but not (23). 

Most of the above laws, beyond (9), had been stated either by Boole or 
by Jevons. (1) to (9) are, of course, novel, since the relation c appears 
here for the same time since Lambert. 

Later papers state further properties of the relation c, notably,-

If x cy, then -y c-x. 

And the methods of elimination and solution are given in terms of this 
relation.132 Also, these papers extend the relation to propositions. In this 
interpretation, Peirce reads x c y, "If x is true, y is true," but he is well 
aware of the difference between the meaning of x c y and usual significance 
of "x implies y". He says: 133 

"It is stated above that this means' if x is true, y is true'. But this 
meaning is greatly modified by t:tJ.e circumstance that only the actual state 
of things is referred to. . . . Now the peculiarity of the hypothetical 
proposition [ordinarily expressed by 'if x is true, y is true'] is that it goes 
out beyond the actual state of things and declares what would happen were 
things other than they are or may be. The utility of this is that it puts 
us in possession of a rule, say that' if A is true, B is true', such that should 
we afterward learn something of which we are now ignorant, namely that 
A is true, then, by virtue of this rule, we shall find that we know something 
else, namely, that B is true. [In contrast to this] ... the proposition, 
a c b, is true if a is false or if b is true, but is false if a is true while b is false . 
. . . For example, we shall see that from -(x c y) [the negation of x c y] 
we can infer z ex. This does not mean that because in the actual state of 
things x is true and y false, therefore in every .state of things either z is 
false or x true; but it does mean that in whatever state of things we find x 
true and y false, in that state of things either z is false or x is true [since, 
ex hypothesi, x is true anyway]." 

132 Alg. Log. 1880, see esp. § 2. 
133 Alg. Log. 1885, pp. 186-87. 
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\Ve now call this relation, x e y, "material implication, " and the peculiar 
theorems which are true of it are pretty well known. Peirce gives a number 
of them. They will be intelligible if the reader remember that x e y means, 
"The actual state of things is not one in which x is true and y false". 

(1) x e (y ex). This is the familiar theo;em: "A true proposition is 
implied by any proposition". 

(2) [(x ey) ex] ex. If "x implies y" implies that x is true, then x is 
true. 

(3) [(x ey) e a] ex, where a is used in such a sense that (x ey) ea 

means that from x e y every proposition follows. 

The difference between "material implication" and the more usual 
meaning of "implies" is a difficult topic into which we need not go at this 
timeP4 But it is interesting to note that Peirce, who introduced the 
relation, understood its limitations as some of his successors have not. 

Other theorems in terms of this relation are: 

(4) x ex . 

. (5) [x e (y ez)] e [y e (x ez)]. 
(6) x e [(x ey) cy]. 

(7) (x ey) e [(y cz) c (x cz)]. This is a fundamental law, since called 
the "Principle of the Syllogism". 

Peirce worked most extensively with the logic of relatives. His interest 
here reflects a sense of the importance of relative terrns in the analyses of 
mathematics, and he anticipates to some extent the methods of such later 
researches as those of Peano and of Principia llcfathemat-ica. To follow 
his successive papers on this topic would probably result in complete con
fusion for the reader. Instead, we shall make three divisions of this entire 
subject as treated by Peirce: (1) the modification and extension of De 
Morgan's calculus of relatives by the introduction of a more "mathe
rna tical" symbolism-for the most part contained in the early paper, 
"Description of a Notation for the Logic of Relatives"; (2) the calculus 
of relations, expressed without the use of exponents and in a form which 
makes it an extension of the Boolean algebra-a later development which 
may be seen at its best in "The Logic of Relatives", Note B in the Studies 
in Logic by members of Johns Hopkins University; and (3) the systematic 

. consideration of the theory of relatives, which is scattered throughout the 
papers, but has almost complete continuity. 

134 But see below, Chap. lV, Sect. I, and Chap. v, Sect. v. 
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The terms of the algebra of relatives may usually be regarded as simple 
relative terms, such as "ancestor", "lover," etc. Since they are also class 
names, they ,,,,ill obey all the laws of the logic or classes, which may be 
taken for granted without further discussion. But relative terms have 
additional properties which' do not belong to non-relatives; and it is to 
these that our attention must be given. If w signifies "woman" and s, 
" servant," logic is concerned not only with such relations as s w, the 
<c logical product" "servant woman", s + w, the "logical sum" "either 
servant or woman (or both) ", and sew, "the class' servants J is contained 
in the class' women ',-relations which belong to class-terms in general
but also with the relations first symbolized by De Morgan, "servant of a 

woman," "servant of every woman," and "servant or none but women". 
We may represent "servant or a woman" by sl W.IS5 This is a kind of 

"multiplication" relation. It is associative, 

sl(llw) = (sll)lw 

"Servant of a lover-of-a-woman" is "servant-of-a-Iover of a woman". 
Also, it is distributive with respect to the non-relative" addition" symbol
ized by +, 

sl(m+w) =slm+slw 

"Servant of either a man or a woman" is "servant of a man or servant of 
a woman". But it is not commutative: sllisnotlls, "servant of a lover" 
is not equivalent to "lover of a .,servant". To distinguish sl w from s w, 
or s x w-the class of those who are both servants and women-we shall 
call sl w the relative product of sand w. 

For "servant of every woman" Peirce proposed sW, and for "servant 
of none but women" ·w. As we shall see, this notation is suggested by 
certain mathematical analogies. We may represent individual members 
or the class was Wr, W2, Ws, etc., and the class or all the W's as WI + W2 

+ Ws + .. o. Remembering the interpretation or +, we may write 

W=W1 +W2 +W3 + ... 

and this means, "The class-term, w, denotes WI or W2 or Wa or .. 0," 
that is, w denotes an unspecified member of the class or W's. The servant 
of a (some, any) woman is, then, sl w. 

slw = sICWI + W 2 + Ws+ 00') = sIWI +sIW2 +sIWs + .. 0 

"A woman" is either Wl or W 2 or Ws, etc.; "servant or a woman" is either 

135 Peirce's notation for this is 8 Wi he uses 8, W for the simple logical product. 
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servant of W1 or servant of W2 or servant of W3, etc. Similarly," servant 
of every woman" is servant of W1 and servant of W 2 and servant of TVa, 
etc.; or remembering the interpretation of x, 

SW = S(Wl+W2+W,+",) = (sl WI) x (sl W2) x (sl TVa) x ... 

where, of course, sl W n represents the relative product, "s of TV n," and x 
represents the non-relative logical product translated by "and". The 
above can be more briefly symbolized, following the obvious mathematical 
analogies, 

silO = :Zw(slW) 

S10 = II lO (s\ W) 

Unless lo represent a null class, we shall have 

or s'"' cs!,w 

The class "servants of every woman" is contained in the class "servants 
of a woman". This law has numerous consequences, some of which are: 

(lls)w c (l\sjw) 

A lover of a servant of all women is a lover of a servant of a woman. 

l8W c (lls)1O 

A lover of every servant-of-all-women stands to every woman in the rela
tion of lover-of-a-'Servant of hers (unless the class S10 be null). 

l81w cZ.jlO 

A lover of every servant-of-a-woman stands to a (some) woman in the 

relation of lover-of-a-servant of hers. 
From the general principle,13s 

ml [II,J(x)] cII,,[mif(x)] 

136 The proof of this theorem is as follows: 

a=abe ... +ab-e ... +a-be ... + ... , " 
or a = abc . .. + P, where P is the sum of the remaining terms. 

Whence, if 0 represent any relation distributive with respect to +, 

mOa = mOabc ... +mOP 

Similarly, mOb =mOabc ... +mOQ 

mOe = mOabc ... +mOR 

Etc., etc. 

Now let a, b, c, etc., be respectively lex,), !(x.), f(X3), etc., and multiply together all 
the above equations. On the left side, we have 

[m O!(XI) 1 [m O!(:I4) 1 [m Olexa) 1 ... 
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we have also, 

l![IIw(slw)] cIIw[(lls)lw], or 

A lover of a (some) servant-of-every-woman stands to every woman in the 
relation of lover-of-a-servant of hers. 

vVe have also the general formulae of inclusion, 

If 1 cs, then lw csw 

and, If s c w, then lw c l8 

The first of these means: If all lovers are servants, then a lover of every 
woman is also a servant of every woman. The second means: If all servants 
are women, then a lover of every woman is also a lover of every servant. 
These laws are, of course, general. "\Ve have also: 137 

(lls)lw = ll(slw) 

(l')W = l(8[ w) 

l8+W = l' x lw 

The last of these is read: A lover of every person who is either a servant 
or a woman is a lover of every servant and a lover of every woman. An 
interesting law which remainds us of Lambert's "Newtonian formula" is, 

(l+s)W = lW+~q(lW-qxsq)+sw 

One who is either-lover-or-servant of every woman, is either lover of every 
woman or, for some portion q of the class women, is lover of every woman 
except members of q and servant of every member of q, or, finally, is servant 
of every woman. Peirce also gives this law in a form which approximates 
even more closely the binomial theorem. The corresponding law for the 
product is simpler, 

which is 

On the right side, we have .. 
TIx[mO/(x)] 

(mOa be ... ) + (mOP) + CmOQ) + (mOR) + •.. , 

where K is a sum of other terms. 

or 

But (m Oa be . .. ) is m 0 [f(X,) x /(X2) x /(X3) . •• ], which is 

mOTIx/(x) 

Hence [mOTI/Cx)] +K = TIx[mO/(x)]. 
Hence mOTI/(x) cTI,,[mO/(x)]. 

(mOabc ... )+K 

Peirce does not prove this theorem, but illustrates it briefly for logical mUltiplication (see 
"Description of a Notation", p. 346). 

137 "Description of a Notation, p. 334. 
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One who is both-Iover-and-servant of every woman, is both a lover of every 
woman and a servant of every ,Yoman. 

Peirce introduces a fourth term, and summarizes in ?- diagram the inclu
sion relations obtained by extending the formulae already giYen.t38 The 
number of such inclusions, for four relath'es, is somewhat more than one 
hundred eighty. He challenges the reader to accomplish the precise 
formulation of these by means o! ordinary language and formal logic. 

An 8 of none but members of w, Peirce symbolizes by 'w. He calls this 
operation "backward involution", and relatives of the type 8W he refers to 
as "infinitesimal relatives", on account of an e::i..-tended and difficult mathe
matical analogy which he presents.I3S The laws of this relation are analo
gous to those of 8W • 

If 8 C~L', then l8 c l10 

If all servants are women, then a lover of none but servants is lover of none 
but women. 

If l c 8, then 8!(' C I,W 

If all lovers are servants, then a servant of none but women is a lover of 
none but women. 

l(8U:) = (1Is)W 

The lovers of none but servants-of-none-but-"women are the lovers-o!· 

servants of none but women. 

Those who are either-lovers-or-servants of none but women are those who 
are lovers of none but women and servants of none but \vomen. 

B(W xv) = 'w X "v 

The servants of none but those who are both women and violinists are 
those who are servants of none but women and servants of none but vio

linists. 
(II ')w c (z") W 

"Whoever is lover-of-a-servant of none but women IS a Iover-of-every

servant of none but women. 
llBw c (!8}'W 

A lover of one who is servant to none but women is a lover-of-none-but

servants to none but women. 

138 Ibid., p. 347. 
139 Ibid., pp. 348 jJ. 
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Whoever stands to a woman in the relation of lover-of-nothing-but-servants 
of hers is a lover of nothing but servants of women. 

The two kinds of involution are connected by the laws: 

l(sw) = (ls)w 

A lover of none but those who are servants of every woman is the same as 
one who stands to every woman in the relation of a lover of none but 

servants of hers. 
lS = -l-s 140 

Lover of none but servants is non-lover of every non-servant. It appears 
from this last that ;/ and "'yare connected through negation: 

_(l8) = -lis, Not a lover of every servant is non-lover of a servant. 
-(Is) = ll-s, Not a lover of none but servants is lover of a non

servant. 
l-S = -(lis) = _l8, A lover of none but non-servants is one who is 

not lover-of-a-servant, a non-lover of every servant. 
-lS = -(-ll-s) = Z-B, A non-lover of none but servants is one who is 

not a non-Iover-of-a-non-servant, a lover of every non-servant. 
We have the further laws governing negatives: 141 

-[(l xs)w] = -(lw) + -Csw) 

_[l(S xw)] = -(Is) + -(lw) 

-(l+'w) = -(lw) + -C'w) 

_(ls+w) = -(Zs) + _(lw) 

In the early paper, "On the Description of a Notation for the Logic 
of Relatives", negatives are treated in a curious fashion. A symbol is 
used for" different from" and the negative of 8 is represented by U', "differ
ent from every s". Converses are barely mentioned in this study. In the 
paper of 1880, converses and negatives appear in their usual notation, 
"relative addition" is brought in to balance" relative multiplication ", and 
the two kinds of involution are retained. But in "The Logic of Relatives" 
in the Johns Hopkins Studies in Logic, published in 1882, involution has 
disappeared, converses and negatives and" relative addition" are retained. 
This last represents the final form of Peirce's calculus of relatives. We 
have here, 

(1) Relative terms, a, b, ... x, y, z. 
(2) The negative of x, -x. 

140 See ibid., p. 353. Not-x is here symbolized by (1 - x). 
141 Alg. Log. 1880, p. 55. 
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(3) The converse of x, vx. If x is "loyer", v;t is "beloved"; if va: is 
"lover", x is "beloved". 

(4) Non-relative addition, a + b, "either a or b". 
(5) Non-relative multiplication, a x b, or a b, "both a and b". 

(6) Relative multiplication, alb, "a of a b". 

(7) Relative addition, at b, "a of e,'erything but b's, a of every non-b". 

(8) The relations = and e, as before. 
(9) The universal relation, 1, "consistent with," which pairs every 

term with itself and with every other. 
(10) The null-relation, 0, the negative of 1. 

(11) The relation "identical with", I, which pairs every term with 
itself. 

(12) The relation "different from ", N, which pairs any term with 
every other term which is distinct.l42 

In terms of these, the fundamental laws of the calculus, in addition to 
those which hold for class-terms in general, are as follows: 

(1) v(va) = a 
(2) -(va) = .... (-a) . 

(3) (a eb) = (vb eva) 
(4) If acb, then (alx) c(blx) and (xla) e(xlb). 

(5) If a c b, then (a t x) c (b t x) and (x t a) c (x t b). 

(6) xl(alb) = (xla)lb 

(7) x t (a t b) = (x t a) t b 

(8) xl(atb) c(xla) tb 
(9) (atb)xeat(bx) 

(10) (ajx)+(blx)c(a+b)jx 

(11) x I (a t b) e (x t a) (x t b) 

(12) (a+ b) xc (alx) + (b Ix) 

(13) (atx)(btx)c(alb)tx 

(14) -(atb) = -al-b 

(15) -(alb) =-at-b 

(16) "(a + b) = va + vb 

(17) IJ(ab) = vaIJb 

(18) v(a t b) = va t vb 
(19) ,,(alb) = val"b 

For the relations 1, 0, I~ and N, the following additional formulae are 

given: 
142 I have altered Peirce's notation, as the reader may see by comparison. 
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(20) 0 ex 
(22) x + 0 = x 

(24) x + 1 = 1 

(26) x t 1 = 1 

(28) 1 t x = 1 
(30) x t N = x 

(32) Nt x = x 

(34) x + -x = 1 

(36) Ie[xtv(-x)] 
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(21) x e 1 

(23) x·I = x 

(25) x'O = 0 

(27) xlo = 0 

(29) olx = 0 

(31) xiI = x 
(33) Ilx = x 
(35) x -x = 0 

(37) [x I ,",(-x)] eN 

This calculus is, as Peirce says, highly multiform, and no general prin
ciples of solution and elimination can be laid down.l43 Not only the variety 
of relations, but the lack of symmetry between relative multiplication and 
relative addition, e. g., in (10)-(13) above, contributes to this multiformity. 
But, as we now know, the chief value of any calculus of relatives is not in 
any elimination or solution of the algebraic type, but in deductions to be 
made directly from its formulae. Peirce's devices for solution are, there
fore, of much less importance than is the theoretic foundation upon which 
his calculus of relatives is built. It is this which has proved useful in later 
research and has been made the basis of valuable additions to logistic 
development. 

This theory is practically unmodified throughout the papers dealing 
. with relatives, as a comparison of "Description of a Notation for the Logic 

of Relatives" with "The Logic of Relatives" in the Johns Hopkins studies 
and with the paper of 1884 will indicate. 

"Individual" or "elementary" relatives are the pairs (or triads, etc.) 
of individual things. If the objects in the universe of discourse be A, B, C: 
etc., then the individual relatives will constitute the two-dimensional array, 

A : A, A : B, A : C, A : D, 

B : A, B : B, B : C, B : D, 

C:A, C:B, C:C, C:D, 

... Etc., etc. 

It will be noted that any individual thing coupled with itself is an individual 
relative but that in general A : B differs from B : A-individual relatives 
are ordered couples. 

A general relative is conceived as an aggregate or logical sum of such 
143 "Logic of Relatives" in Studies in Logic by members of Johns Hopkins University, 

p.193. 
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individual relatives. If b represent" benefactor", then 

b = "2i"2j(b)ii(I : J), 

where (b)';j is a numerical coefficient whose "I;alue is 1 in case I is a bene
factor of J, and otherwise 0, and where the sums are to be taken for all the 
individuals in the universe. That is to say, b is the logical sum of all the 
benefactor-benefitted pairs in the universe. This is the first formulation 
of "definition in extension", now widel~' used in logistic, though seldom in 
exactly this form. By this definition, b is the aggregate of all the individual 
relative~ in our two-dimensional array which do not drop out through having 
the coefficient o. It is some e:ll..,})ression of the form, 

b = (X : Y)l + (X : Y)2 + (X : Y). + ... 

If, now, we consider the logical meaning of + , we see that this may be read, 
"b is either eX: Y)l or (X: Y)2 or (X: Yh or ... ". To say that b repre
sents the class of benefactor-benefitted couples is, then, inexact: b repre
sents an unspecified individual relative, anyone of this class. (That it 
should represent" some" in a sense which denotes more than one at once
which the meaning of + in the general case admits-is precluded b~' the 
fact that any two distinct individual relatiyes are ipso facto mutually 
exclusive.) A general relative, so defined, is what l\Ir. Russell calls a 
"real variable". Peirce discusses the idea of such a variable in a most 
illuminating fashion.l 44 

"Demonstration of the sort called mathematical is founded on suppo
sition of particular cases. The geometrician draws a figure; the algebraist 
assumes a letter to signify a certain quantity fulfilling the required condi
tions. But while the mathematician supposes a particular case, his hypoth
esis is yet perfectly general, because he considers no characters of the 
individual case but those which must belong to eyery such case. The ad
vantage of his procedure lies in the fact that the logical laws of individual 
terms are simpler than those which relate to general terms, because indi
viduals are either identical or mutually exclusive, and cannot intersect or 
be subordinated to one another as classes can. . . . 

"The old logics distinguish between inditiduum signatum and indi
viduum vagum. 'Julius Caesar' is an example of the former; 'a certain 
man', of the latter. The individuum vagU'm, in the days when such con
ceptions were exactly investigated, occasioned great difficulty from its 
having a certain generality, being capable, apparently, of logical division. 

141 "Description of a Notation, pp. 342-44. 
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If we include under individ1lum vagum such a term as 'any individual 
man', these difficulties appear in a strong light, for what is true of any 
individual man is true of all men. Such a term is in one sense not an 
individual term; for it represents every man. But it represents each man 
as capable of being denoted by a term which is individual; and so, though 
it is not itself an individual term, it stands for anyone of a class of such 
terms .... The letters which the mathematician uses (whether in algebra 
or in geometry) are such individuals by second intention .... All the 
formal logical laws relating to individuals will hold good of such individuals 
by second intention, and at the same time a universal proposition may be 
substituted for a proposition about such an individual, for nothing can be 
predicated of such an individual which cannot be predicated of the whole 
class." 

The relative b, denoting ambiguously anyone of the benefactor-bene
fitted pairs in the universe, is such an individual by second intention. 
It is de:fined by means of the "propositional function", "I bene:fits J", 
as the logical sum of the (I : J) couples for which "I benefits J" is true. 
The compound relations of the calculus can be similarly defined. 

If a = ~i~i(a)ii(1 : J), and b = ~i~i(b)ii(I : J), 

then a + b = ~i~i[(a)ii+ (b)iil(1 : J) 

That is, if "agent" is the logical sum of all the (I : J) couples for which 
"I is agent of J" is true, and "benefactor" is the sum of all the (I : J) 

couples for which" I bene:fits J" is true, then "either agent or benefactor" 
is the logical sum of all the (I : J) couples for which "Either I is agent of 
J or I benefits J" is true. We might indicate the same facts more simply 
by de:fining only the" propositional function ", (a + b )ii.l45 

(a+ b)ii = (a)ii+ (b)ii 

The definition of a + b given above, follows immediately from this simpler 
equation. The definitions of the other compound relations are similar: 

(a Xb)ii = (a)ii x (b)ij 

or a xb = ~i~i[(a)ii x (b)iil(1 : J) 

"Both agent and benefactor" is the logical sum of the (I : J) couples for 
which "I is agent of J and I is benefactor of J" is true. 

(alb)ii = ~h((a)ihx(b)M} 

or alb = ~i~i[~d(a)ihx(bhd](I: J) 

145 See "Logic of Relatives ", loco cit., p. 188. 
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"Agent of a benefactor" is the logical sum of all the (I : J) couples such 
that, for some H, "I is agent of Hand H is benefactor of J" is true. 

There are tv,o difficulties in the comprehension of this last. The first 
concerns the meaning of "agent of a benefactor". Peirce, like De :Morgan, 
treats his relatives as denoting ambiguously either the relation itself or 
the things which have the relation-either relations or relatiye terms. 
a is either the relation "agent of" or the class name "agent". Now note 
that the class name denotes the first term in the pairs which haye the 
relation. With this in mind, the compound relation, a I b, will become 
clear. "Agent of a benefactor" names the 1's in the I : J pairs which 
make up the field of the relation, "agent of a benefactor of". Any reference 
to the J's at the other end of the relation is gone, just as "agent" omits 
any reference to the J's in the field of the relation" agent of". The second 
difficulty concerns the operator, 2";h, which we haye read, "For some H". 
Consider any statement involving a "propositional function ", ep'Z, \vhere z 

is the variable representing the individual of which ep is asserted. 

2";zepz = cpZl + cpZ2 + rpZg + ... 

That is, 2";zcpz symbolizes "Either cp is true of Zl or 'P is true of Z2 or ep is 
true of Za or ... ", and this is most simply expressed by "For some z (some 
z or other), rpz". In the particular case in hand, rpz is (a)ih x (bhi' "I is 
agent of Hand H is ~enefactor of J". The terms, I and J, which stand in 
the relation" I is agent of a benefactor of J", are those for which there is 
some H or other such that I is agent of Hand H is benefactor of J. 

Suppose we consider any "propositional function", cpz with the oper

ator II. 
IIzcpz = rpZl X rpZ2 X epZa x ... 

That is, IIzcpz symbolizes" cp is true of Zl and rp is true of Z2 and ep is true 
of Zg and ... ", or " rp is true for every z". This operator is needed in the 

definition of a t b. 
(atb)ii = IIh{(a)ih+(b)hi} 

"I is agent of everyone but benefactors of J" is equivalent to "For every H, 
either I is agent of H or H is benefactor of J". 

a t b = ~i2";i[IIh {(a)i}> + (bhd J(I : J) 

" Agent of all non-benefactors" is the logical sum of all the (I : J) couples 
such that, for every H, either I is agent of H or H is benefactor of J. The 
same considerations about the ambiguity of relatives-denoting either the 
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relation itself or those things which are first terms of the relation-applies 
in this case also. We need not, for the relations still to be discussed, con
sider the step from the definition of the compound "propositional func
tions ", (a t b)ii in the above, to the definition of the corresponding relation, 
at b. This step is always taken in exactly the same way. 

The converse, converse of the negative, and negative of the converse, 
are very simply defined. 

Cvb)ii = (b)ii 

[v(-b)]ii = (-b)ii 

[-(vb)]'i = -(b)li 

That the negative of the converse is the converse of the negative follows 
from the obvious fact that -(b)ii = (-b)ii. 

All the formulae of the calculus of relatives, beyond those which belong 
also to the calculus of non-relative terms,146 may be proved from such 
definitions. For example: 

To prove, v(a + b) = va + vb 

v(a + b)ii = (a + b)ii = (a)ii + (b)ii 

But (a)ii = (Va)ij, and (b)ii = (Vb)ii 

Hence v(a+ b)ii = (va)ii+ (vb)ii 

Hence l:il:i{v(a+ b)ii}(I : J) = l:il:i{(va)ii+ (Vb)ii}(J : J) QE.D. 
For the complete development of this theory, there must be a discussion 

of the laws which govern such expressions as (a)ij, or in general, expressions 
of the form rpx, where' rpx is a statement which involves a variable, x, and rpX 

is either true or false whenever any individual value of the variable is 
specified. Such expressions are now called "propositional functions ".147 
(a)i, or in the more convenient notation, rp;T" is a propositional function of 
one variable; (a)ib or rp(x, y), may be regarded as a propositional function 
of two variables, or as a function of the single variable, the individual rela
tive (J : J), or (X : Y). 

This theory of propositional functions is stated in the paper of 1885, 
'On the Algebra of Logic". It is assumed, as also in earlier papers, that 
he laws of the algebra of classes hold for propositions as well.148 The 
dditional law which propositions obey is stated here for the first time. 

146 The formulae of the calculus of classes can also be derived from these, considered as 
thelnBelves laws of the calculus of propositions (see below, Chap, VI, Sec~ ~v), 

14.7 Peirce has no name for such expressions, though he discusses their properties acutely 
(see Alg. Log. 1880, § 2). 

148 This assumption first appears in Alg. Log. 1880. 
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The current form of this law is "If x =f 0, then x = l",-which giyes 
immediately "If x = 1, then x = O"-"If x is not false, then x is true, 
and if x is not true, then x is false". Peirce uses v and f for "true" and 
"false ", instead of 1 and 0, and the law is stated in the form 

(x - f) (v - x) = ° 
But the calculus of propositional functions, though derh"ed from the 
algebra for propositions, is not identical with it. "x is a man" is neither 
true nor false. A propositional function may be true in some cases, false 
in some cases. "If x is a man, then x is a mortal" is true in all cases, or 
true of any x; "x is a man" is true in 80me cases, or true for some yalues 
of x. For reasons already suggested, 

~:tsox represents "sox is true for some value of the variable, x-that is, 
either SOX1 is true or SOX2 is true or SOX3 is true or ... " Similarly, 

ll .. sox represents "sox is true for all values of the variable, x-that IS, 

SOX1 is true and SOX2 is true and SOXs is true and . . ." 
If (a),xy, or more conveniently, so(x, y), represent "x is agent of y", 

and (b)xy, or more conveniently, if; (x , y), mean "x is benefactor of y", then 

llz~y[ so(x, y) x if;(x, y)] 

will mean that for all values of x and some"yalues of y, "x is agent of y 

and x is benefactor of y" is true-that is, it represents the proposition 
"Everyone is both agent and benefactor of someone". This will appear 
if we expand ll:t~y[ so(x, y) x if;(x, y)]: 

ll,,~y[so(x, y) xif;Cx, y)J 

= ([ SOCX1, YI) X if;(XI, Yl)] + [1"(Xj, Y2) x if;(xj, Y2)] + ... } 

x ! [SO(X2, Yl) X if;(X2, Yl)] + [1"(X2, Y2) x if;(x~, Y2)] + ... } 

x I [so(xs, Y1) x if;(X8, YI)] + [1"(X3. Y2) X if;(X3, Y2)] + ... } 

x ... Etc., etc. 

This expression reads directly "{Either [Xl is agent of Yl and ,1:1 is bene
factor of Y1] or [Xl is agent of Y2 and Xl is benefactor of Y2] or ... } and {either 
[X2 is agent of Y1 and X2 is benefactor of Yl) or [X2 is agent of Y2 and X2 is bene
factor of Y2]'or ••. } and {either [X3 is agent of Yl and X3 is benefactor of 
Y1] or [xa is agent of Y2 and X3 is benefactor of Y2] or •.• } and •.. Etc., etc". 

8 
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The operator ~, which is nearer the argument, or "Boolian" as Peirce calls 
it, indicates the operation, +, within the lines. The outside operator, II, 
indicates the operation, x, between the lines-i. e., in the columns; and 
the subscript of the operator nearer the Boolian indicates the letter which 
varies within the lines, the subscript of the outside operator, the letter 
which varies from line to line. Three operators would give a three-dimen
sional array_ With a little patience, the reader may learn to interpret 
any such expression directly from the meaning of simple logical sums and 
logical products. For example, with the same meanings of ip(x, y) and 

if;(x, y), 

will mean "Everyone (x) is agent of some (y) benefactor of himself". 
(Note the order of the variables in the Boolian.) And 

~x~yIIzlip(x, z) + if;(z, y)] 

will symbolize "There is some x and some y such that, for every z, either 
x is agent of z or z is b~nefactor of y"; or, more simply, "There is some 
pair, x and y, such that x is agent of all non-benefactors of y". 

The laws for the manipulation of such Boolians with II and ~ operators 
are given as follows: 149 

" 1st. The different premises having been written with distinct indices 
(the same index not being used in two propositions) are written together, 
and all the II's and ~'s are to be brought to the left. This can evidently be 
done, for 

IIiX,. IIiXi = IIiIIiXiXi 

~iXi. IIl"Xi = ~iIIiXiXi 
~iXi. ~iXi = ~i~iX'"Xi 

[Or in the more convenient, and probably more familiar, notation, 

II"ipx xIIyipy = IIxIIy(ipx x ipy) 

~xipX xIIyipy = ~"IIy(ipx x ipy) 

~xipX X ~yipy = ~X~y(ipX x ipy)] 

" 2d. Without deranging the order of the indices of anyone premise, 
the II's and ~'s belonging to different premises may be moved relatively 
to one another, and as far as possible the ~'s should be carried to the left 

149 Alg. Log. 1885, pp. 196-98. 
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of the II's. We have 

"2i"2iX;i = "2 i "2 i Xii [Or, "2x~lJ~(X' y) = ::;y~x~(.l', y)] 

and also "2iIIixiYi = IIj"2ixiYi [Or, "2zIIy(~x xif;y) = IIy::;x(~.r Xif;y)] 

But this formula does not hold when i and j are not separated. ,\Ye do 
have, however, 

"2 i IIixii -< IIi"2ixij [Or, "2 xII y,,(x, y) C IIy"2:r<p(.r., y)] 

It will, therefore, be well to begin by putting the ::;'s to the left as far as 
possible, because at a later stage of the work they can be carried to the 
right but not [always] to the left. For example, if the operators of two 
premises are IIi"2iIIk and "2xIIy~z> we can unite them in either of the two 
orders 

::; xII~"2 zIIi"2JIIk 

"2 xIIi::;jIIy;; zIIk 

and shall usually obtain different conclusions accordingly. There wiII 
often be room for skill in choosing the most suitable arrangement . 

. . . "5th. The next step consists in multiplying the whole Boolian 
part, by the modification of itself produced by substituting for the index 
of any II any other index standing to the left of it in the Quantifier. Thus, 

for 

we can write 

"2iII jlii 

"2iII j lijlii 

[Or, for ~",II!I~(;r, y), 

"2xIIyl ~(x, y) x ~(.r, x) lJ 
"6th. The next step consists in the re-manipulation of the Boolian 

part, consisting, 1st, in adding to any part any term we like; 2d, in dropping 
from any part any factor we like, and 3d, in observing that 

so that 

xx =j, 

xxy+z = z 

x +x = v, 

(x+x+y)z = z 

"7th. II's and "2's in the Quantifier whose indices no longer appear in 

the Boolian are dropped. 
"The fifth step will, in practice, be combined with part of the sixth 

and seventh. Thus, from T,iIIjlii we shall at once proceed to "2ilii if we like." 
We may say, in general, that the procedures which are valid in this 

calculus are those which can be performed by treating l:x~x as a sum, 
CPXl + CPX2 + cpXa + ... , and II",cpx as a product, ~Xl x CP.l:2· X ipXa X ••• ; 

T,,,,IIyif;(x, y) as a sum, for the various values of x, of products, each for 
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the various ,'alues of y, and so on. Thus this calculus may be derived from 
the calculus of propositions. But Peirce does not carry out any proofs 
of the principles of the system, and he notes that this method of proof 
would be theoretically unsound.150 "It is to be remarked that ~iXi and 
IIixi are only similar to a sum and a product; they are not strictly of that 
nature, because the individuals of the universe may be innumerable." 

Another way of saying the same thing would be this: The laws of the 
calculus of propositions cannot extend to ~iXi and IIiXi, because the extension 
·of these laws to aggregates in general, by the method which the mathemati
·cal analogies of sum and product suggest, would require the principle of 
mathematical induction, which is not sufficient for proof in case the aggre
gate is infinite. 

The whole of the calculus of relatives may be derive? from this calculus 
of propositional functions by the methods which have been exemplified
that is, by representing any relation, b, as ~i~i(b)ii(l : J), and defining the 
relations, such as "converse of ", "relative-product," etc., which dis
tinguish the calculus, as II and ~ functions of the elementary relatives. 
We need not enter into the detail of this matter, since Sections II and III 
or Chapter IV will develop the calculus of propositional functions by a 
modification of Peirce's method, while Section IV of that chapter will show 
how the calculus of classes can be derived from this calculus of propositional 
functions, Section V will indicate the manner in which the calculus of rela
tions may be similarly derived, and ~ection VI will suggest how, by a 
further important modification of Peirce's method, a theoretically adequate 
logic of mathematics may be obtained. 

It remains to consider briefly Peirce's studies toward the derivation or 
other mathematical relations, operations, and systems from symbolic logic. 
The most important paper, in this connection, is "Upon the Logic of 
Mathematics ".151 Certain portions of the paper, "On an Improvement in 
Boole's Calculus of Logic", and of the monograph, "Description of a Nota
tion for the Logic of Relatives", are also of interest. 

The first-mentioned of these is concerned to show how the relations 
+, =, etc., or arithmetic can be defined in terms of the corresponding logi

caT relations, and the properties of arithmetical relations deduced from 
theorems concerning their logical analogues,152 

"Imagine ... a particular case under Boole's calculus, in which the 
150 Alg. Log. 1885, p. 195. 
151 Proc. Am6r. Acad., vn, 402-12. 
152 Loc. cit., pp. 410-11. 
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letters are no longer terms of first intention, but terms of second int 
and that of a special kind .... Let the letters ... relate exclusi,"el~' to 
the extension of first intensions. Let the differences of the characters of 
things and events be disregarded, and let the letters signify only the differ
ences of classes as wider or narrower. In other words, the only logical 
comprehension which the letters considered as terms will have is the greater 
or less divisibility of the class. Thus, n in another case of Boole's calculus 
might, for exam pIe, denote 'X ew England States'; but in the case now 
supposed, all the characters which make these states what the:,: are, being 
neglected, it would signify only \vhat essentially belongs to a class which 
has the same relation to higher and lower classes 'which the class of Xew 
England States has,-that is, a collection of si;/;. 

"In this case, the sign of identity will recei,oe a special meaning. For,· 
if 1n denotes what essentially belongs to a class of the rank of 'sides of a 
cube', then [the logical] rn = n will imply, not that ever~o Xew England 
State is the side of a cube, and conversely, but that whatever essentially 
belongs to a class of the numerical rank of 'X ew England States' essentially 
belongs to a class of the rank of 'sides of a cube', and conversely. Identity 
of this particular sort may be termed equality. . . ." 

If a, b, c, etc. represent thus the number' of the classes, a, b, 0, etc., 
then the arithmetical relations can be defined as logical relations. The 
logical relation a + b, already defined, will represent arithmetical addition: 
And from the fact that the logical + is commutative and associatiYe, it 

. will follow that the arithmeti~l + is so also. Arithmetical multiplication 
is more difficult to deal with but may be defined as follows: 153 

a X b represents an event when a and b are events only if these eyents 
are independent of each other, in which case a X b = a b [where a b is the 
logical product]. By the events being independent is meant that it is 
possible to take two series of terms, AI, .12 , As, etc., an,d Bl1 B2, B3, etc., 
such that the following conditions are satisfied. (Here a; denotes any 
individual or class, not nothing; Am, An, Bm, Bn. any members of the 
two series of terms, and 1:: A, ~ B, 1:: (A B) logical sums of some of the 
An's, the Bn's, and the (A" Bn)'s respectively.) 

Condition 1. Ko Am is An 

" 2. No Bm is Bn 

" 3. a; = ~ (A B) 

" 4. a=~A 
153 Loc. cit., p. 403. 
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Condition 5. b = :z B 

" 6. Some Am is Bn 

This dennition'is somewhat involved: the crux of the matter is that 
a b will, in the case described, have as many members as there are combina
tions of a member of a with a member of b. Where the members of a are 
distinct (condition 1) and the members of b are distinct (condition 2), these 
combinations will be or the same multitude as the arithmetical a X b. 

It is worthy of remark that, in respect both to addition and to multi
plication, Peirce has here hit upon the same fundamental ideas by means 
of which arithmetical relations are denned in Principia M athematica.l54 

The "second intention" of a class term is, in Principia, Nc'a; a + b, in. 
Peirce's discussion, corresponds to what is· there called the "arithmetical 
sum" of two logical classes, and a X b to what is called the" arithmetical 
product". But Peirce's discussion does not meet all the difficulties-that 
could hardly be expected in a short paper. In particular, it does not 
denne the arithmetical sum in case the classes summed have members in 
common, and it does not indicate the manner of denning the number of a 
class, though it does suggest exactly the mode of attack adopted in Prin
cipia, namely, that number be considered as a property of cardinally similar 
classes taken in extension. 

The method suggested for the derivation of the laws of various numerical 
algebras from those of the logic of relatives is more comprehensive, though 
here it is only the order of the systems which is derived from the order of 
the logic of relatives; there is no attempt to define the number or multitude 
of a class in terms of logical relations.l55 

We are here to take a closed system of elementary relatives, every 
individual in which is either a T or a P and none is both. 

Let c = (T : T) 

8 = (P: P) 

p = (P: T) 

t = (T : P) 

Suppose T here represent an individual teacher, and P an individual pupil: 
the system will then be comparable to a school in which every person is 
either teacher or pupil, and none is both and every teacher teaches every 
pupil. The relative term, c, will then be defined as the relation of one 

]54 See Vol. II, Section A. 
166 "Description of a Notation, pp. 359 jf. 
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teacher to another, that is, "colleague". Similarly, sis (P: P), the rela
tion or one pupil to another, that is, "schoolmate". The relatit'e term, p, 

is (P : T), the relation of any pupil to any teacher, that is, "pupil". And 
the relative term, t, is (T: P), the relation of any teacher to any pupil, 
that is, "teacher". Thus rrom the two non-relative terms, T and P, are 
generated the rour elementary relatives, c, s, t, and p. 

The properties of this system will be clearer if we venture upon certain 
explanations of the properties of elementary relatives-which Peirce does 
not give and to the form of which he might object. For any such relatiye 
(I : J), where the 1's and the J's are distinct, we shall have three laws: 

(1) (I: J) I J = I 

Whatever has the (I : J) relation to a J must be an I: whoever has the 
teacher-pupil relation to a pupil must be a teacher. 

(2) (I: J) I I = 0 

Whatever has the teacher-pupil relation to a teacher (where teachers and 
pupils are distinct) does not exist. 

(3) (I: J) I (H : K) = [(I: J) I H] : K 

The relation of those which have the (I : J) relation to those which have 
the (H : K) relation is the relation of those-which-have-the-(I : J)-relation
to-an-H to a K. 

It is this third law which is the source of the important properties of 
the system. For example: 

tip = (T : P) I (P : T) = [( T : P) I P] : T = (T : T) = G 

The teachers of any person's pupils are that person's colleagues. (Our 
illustration, to fit the system, requires that one may be his own colleague 
or his own schoolmate.) 

G Ie = (T : T) I (T : T) = [(T : T) IT]: T = (T : T) = G 

The colleagues of one's colleagues are one's colleagues. 

tit = (T : P) I (T : P) = [( T : P) IT]: P = (0 : P) = 0 

There are no teachers of teachers in the system. 

pis = (P: T)I(P :P) = [(P: T)IP]:P = (0 :P) = 0 

There are no pupils of anyone's schoolmates in the system. 
The results may be summarized in the following multiplication table, 

in which the multipliers are in the column at the right and the multiplicands 
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at the top (relath'e multiplication not being commutative): 156 

Ii c 

~I c 
t i 0 
pip 
8io 

P 8 

tOO 
Oct 
800 
o P 8 

The s~'mmetry of the table should be noted. The reader may easily in
terpret the sixteen propositions which it gives. 

To the algebra thus constituted may be added modifiers of the terms, 
symbolized by small roman letters. If f is "French", f will be a modifier 
of the system in case French teachers have only French pupils, and vice 
versa. Such modifiers are" scalars" of the system, and any expression of 
the form 

ac+bt+cp+d8 

where c, t, p, and 8 are the relatives, as above, and a, b, c, d are scalars, 
Peirce c,alls a "logical quaternion". The product of a scalar with a term 
is commutative, 

b t = t b 

since this relation is that of the non-relative logical product. Inasmuch as 
any (dyadic, triadic, etc.) relative is resolvable into a logical sum of (pairs, 
triads, etc.) elementary relatives, it is plain that any general relative what
ever is resolvable into a sum of logical quaternions. 

If we consid.er a system of relatives, each of which is of the form 

ai+bj+ck+dl+ ... 

where i, j, k, l, etc. are each of the form 

mu+nv+ow+ ... 

where m, n, 0, etc. are scalars, and u, v, w, etc. are elementary relatives, 
we shall have a more complex algebra. By such processes of complication, 
multiple algebras of various types can be generated. In fact, Peirce says: 157 

"I can assert, upon reasonable inductive evidence, that all such [linear 
associative] a!gebras can be interpreted on the principles of the present 
notation in the same way as those given above. In other words, all such 
algebras are complications and modifications of the algebra of (156) [for 
which the multiplication table has been given]. It is very likely that this 

156 Ibid., p. 361. 
157 Ibid., pp. 363-64. 
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is true of all algebras whateyer. The algebra of (156), which is of such a 
fundamental character in reference to pure algebra and our logical nota
tion, has been shown by Professor [Benjamin] Peirce to be the algebra of 
Hamilton's quaternions." 

Peirce gives the form of the four fundamental factors of quaternions and 
of scalars, tensoi's, vectors, etc., with their logical interpretations as relative 
terms \yith modifiers such as ·were described above. 

One more item of importance is Peirce's modification of Boole's calculus 
of probabilities. This is set forth \'i"ith extreme bre,-ity in the paper, "On 
an Improvement in Boole's Calculus of Logic".l58 For the e:"'J)ression of 
the relations inyolved, we shall need to distinguish the logical relation of 
identity of two classes in extension from the relation of numerical equality. 
vVe may, then, express the fact that the class n has the same membership 
as the class b, or all n's are all b's, by a == b, and the fact that the number 
of members of a is the same as the number of members of b, by a = b. 
Also we must remember the distinction between the logical relations ex
pressed by n + b, a b, a f-b, and the corresponding arithmetical relations 
expressed by a + b, a X b, and a-b. Peirce says: 159 

"Let every expression for a class have a second meaning, which is its 
meaning in a [numerical] equation., Xamely, let it denote the proportion 
of individuals of that class to be found among all the indiyiduaIs examined 

in the long run. 
"Then we have 

Ifa==b a = b 

a + b = (a + b) + a b 

"Let ba denote the frequency of the b's among the a's. Then considered 
as a class, if a and b are events ba denotes the fact that if a happens b happens. 

a X ba = a b 

"It will be convenient to set down some obvious and fundamental proper

ties of the function ba• 

a X ba = b X ao 

<p(ba, ca) = <pCb, C)a 

(1 - b)a = 1 - ba 

ba = ~ + b1-a ( 1 - ~) 
lI>SProc. Amer. Acad., VII, 255jJ. 
159 Ibid., pp. 255-56. 
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1 - a 
ab = 1 - --b- X btl-a) 

The chief points of difference between this modified calculus of prob
abilities and the original calculus of Boole are as follows: 

(1) Where Boole puts p, q, etc. for the "probability of a, of b, etc.", 
in passing from the logical to the arithmetical interpretation of his equa
tions, Peirce simply changes the relations involved from logical relations to 
the corresponding arithmetical relations, in accordance with the foregoing, 
and lets the terms a, b, etc. stand for the frequency of the a's, b's, etc. 
in the system under discussion. 

(2) Boole has no symbol for the frequency of the a's amongst the b's, 
which Peirce represents by abo As a result, Boole is led to treat the 
probabilities of all unconditioned simple events as independent-a pro
cedure which involved him in many difficulties and some errors. 

(3) Peirce has a complete set of four logical operations, and four 
analogous operations of arithmetic. This greatly facilitates the passage 
from the purely logical expression of relations of classes or events to the 
arithmetical expression of their relative frequencies or probabilities. 

Probably there is no one piece of work which would so immediately 
reward an investigator in symbolic logic as would the development of this 
calculus of probabilities in such shape as to make it simple and practicable. 
Except for a monograph by Poretsky and the studies of H. MacColl,t60 
the subject has lain almost untouched since Peirce wrote the above in 1867. 

Peirce's contribution to our subject is the most considerable of any up 
to his time, with the doubtful exception of Boole's. His papers, h?wever, 
are brief to the point of obscurity: results are given summarily with little 
or no explanation and only infrequent demonstrations. As a consequence, 
the most valuable of them make tremendously tough reading, and they 
have never received one-tenth the attention which their importance de
serves.l6l If Peirce had been given to the pleasantly discursive style of 
De Morgan, or the detailed and clearly accurate manner of Schroder, his 
work on symbolic logic would fill several volumes. 

160 Since the above was written, a paper by Couturat, posthumously published, gives 
an unusually clear presentation of the fundamental laws of probability in terms of symbolic 
logic. See Bibl. 

161 Any who find our report of Peirce's work unduly difficult or obscure are earnestly 
requested to consult the original papers. • 
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VIII. DEVELOPMENTS SINCE PEIRCE 

Contributions to symbolic logic which have been made since the time 
of Peirce need be mentioned only briefly. These are all accessible and in a 
form sufficiently close to current notation to be readily intelligible. Also, 
they have not been superseded, as have most of the papers so far discussed; 
consequently they are worth studying quite apart from any relation to 
later work. And finally, much of the content and method of the most 
important of them is substantially the same with what will be set forth in 
later chapters, or is such that its connection with what is there set forth 
will be pointed out. But for the sake of continuity and perspective, a 
summary account may be given of these recent developments. 

,life should first mention three important pieces of work contemporary 
with Peirce's later treatises.162 

Robert Grassmann had included in his encyclopedic Wissenschaftslehre 
a book entitled Die BegrijJelehre oder Logik,163 containing (1) Lehre 'i'on den 
Begrijfen, (2) Lehre von den Ul'theilen, and (3) Lelzre 'I:on den Schlussen. 
The Begl'iffslehie is the second book of Die Formenlehre oder Mathematilc, 
and as this would indicate, the development of logic is entirely mathematical. 
An important character of Grassmann's procedure is the deriyation of the 
laws of classes, or Begl'ijfe, as he insists upon calling them, from the laws 
governing individuals. For example, the laws a + a = a and a· a = a, 

where a is a class, are derived from the laws e + e = e, e'e = e, e1·e2 = 0, 
where e, e1, e2 represent individuals. This method has much to commend 
it, but it has one serious defect-the supposition that a class can be treated 
as an aggregate of individuals and the laws of such aggregates proved 
generally by mathematical induction. As Peirce has observed, this method 
breaks· down when the number of individuals may be infinite. Another 
difference between Grassmann and others is the use throughout of the 
language of intension. But the method and the laws are those of extension, 
and in the later treatise, there are diagrammatic illustrations in which 
"concepts" are represented by areas. Although somewhat incomplete, in 

162 Alex~nder MacFarlane, Principles of the Algebra of Logic, 1879, gives a masterly 
presentation of the Boolean algebra. There are some notable extensions of Boole's methods 
and one or two emendations, but in general it is the calculus of Boole unchanged. Mac
Farlane's paper "On a Calculus of Relationship" (Proc. Roy. SOG. Edin., x, 224-32) re
sembles somewhat, in its method, Peirce's treatment of "elementary relatives". But 
the development of it seems never to have been continued. 

163 There are two editions, 1872 and 1890. The later is much expanded, but the plan 
and general character is the same. 
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other respects Grassmann's calculus is not notably different from others 
which follow the Boolean tradition. 

Hugh MacColl's first two papers on "The Calculus of Equivalent 
Statements ",164 and his first paper "On Symbolical Reasoning"/65 printed 
in 1878-S0, present a calculus of propositions which has essentially the 
properties of Peirce's, without II and 2: operators. In others words, it is 
a calculus of propositions, like the Two-Valued Algebra of Logic as we know 
it today. And the date of these papers indicates that their content was 
arrived at independently of Peirce's studies which deal with this tonic. 
In fact, MacColl writes, in 187S, that he has not seen Boole.166 

The calculus set ,forth in MacColl's book, Symbolic Logic and its 
Applications,!67 is of an entirely different character. Here the funda
mental symbols represent propositional functions rather than propositions; 
and instead of the two traditional truth values, "true" and "false", we 
have "true", "false", "certain", "impossible" and "variable" (not cer
tain and not impossible). These are indicated by the exponents 'T, t, €, 

'1, fj respectively. The result is a highly complex system, the fundamental 
ideas and procedures of which suggest somewhat the system of Strict 
Implication to be set forth in Chapter V. 

The calculus of Mrs. Ladd-Franklin, set forth in the paper" On the 
Algebra of Logic" in the Johns Hopkins studies,t68 differs from the other 
systems based on Boole by the use of the copula v. Where a and bare 
classes, a v b represents" a is-partly b ", or "Some a is b ", and its negative, 
a v b, represents" a is-wholly-not-b", or "No a is b". Thus a v b is equiva
lent to a b =l= 0, and a v b to a b = 0. These two relations can, between 
them, express any assertable relation in the algebra. a c b will be a v -b, 
and a = b is represented by the pair, (av-b)(-avb). For propositions, 

• 
a v b denotes that a and bare consistent-a does not imply that b is false 
and b does not imply that a is false. And a v b symbolizes "a and bare 
inconsistent"-if a is true, b is false; if b is true, a is false. The use of the 
terms "consistent" and "inconsistent" in this connection is possibly mis
leading: any two true propositions or any two false propositior:s are con-

164 (1) Proc. London Math. Soc., IX, 9-20; (2) ibid., IX, 177-86. 
160 Mind, v (1880), 45-60. 
166 Proc. London Math. Soc., IX, 178. 
167 Longmans, 1906. 
168 The same volume contains an interesting and somewhat complicated system by 

O. H. Mitchell. Peirce acknowledged this paper as having shown us how to express uni
versal and particular propositions as II and Z functions. B. I. Gilman's study of relative 
number, also in that volume, belongs to the number of those papers which are important 
in connecting symbolic logic with the theory of probabilities. 
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sistent in this sense, and any two propositions one of which is true and 
the other false are inconsistent. This is not quite the usual meaning of 
"consistent" and "inconsistent "-it is related to what is usually meant by 
these terms exactly as the" material implication a c b is related to what 
is usually meant by "b can be inferred from a". 

That a given class, x, is empty, or a given proposition, x, is false, x = 0, 

may be expressed by x v 00, where 00 is "eyeQ,thing" -in most systems 
represented"by 1. That a class, y, has members, is symbolized by y v 00. 

This last is of doubtful interpretation where y is a proposition, since Mrs. 
Ladd-Franklin's system does not contain the assumption which is true 
for propositions but not for classes, usually e;<,:pressed, "If x =l= 0, then 
x = 1, and if x =l= 1, then x = 0". x v 00 may be abbreviated to x v, 
a b v 00 to a b v, and y v 00 to y v, cd v 00 to c d v , etc., since it is always 
understood that if one term of a relation v or v is missing, the missing 
term is 00. This convention leads to a \'ery pretty and ·conyenient opera
tion: v or v may be moved past its terms in either direction. Thus, 

(avb) = (abv) = (vab) 

and (x vy) = (x y v) = (v x y) 

But the forms (va b) and (vx y) are never used, being redundant both 
logically and psychologically. 

Mrs. Ladd-Franklin's system symbolizes the relations of the traditional 
logic particularly well: 

All a is b. a v -b, or a -b v 
No a is b. 

Some a is b. 

Some a is not b. 

avb, 

av b, 

a v-b, 

or 

or 

or 

abv 

abv 

a-b v 
Thus v characterizes a universal, v a particular proposition. And any 
pair of contradictories will differ from one another simply by the difference 
between v and V. The syllogism, "If all a is b and all b is c, then all 
a is 0, " will be represented by 

(a v-b)(b v:'o) v (a v 0) 

where v, or v, within the parentheses is interpreted for classes, and v 
between the parentheses takes the propositional interpretation. This ex
pression may also be read, '" All a is q and all b is 0' is inconsistent with 
the negative (contradictory) of 'Some a is not c'''. It is equivalent to 

(a v -b)(b v -c) (a v-c) v 
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"The three propositions, 'All a is b', 'All b is c,' and 'Some a is not c', 
are inconsistent-they cannot all three be true". This expresses at once 

three syllogisms: 
(1) (av-b)(bv-c) v (a v-c) 

"If all a is b and all b is c, then all a is C"i 

(2) (a v-b)(a v-c) v (b v-c) 

"If all a is b and some a is not c, then some b is not c"; 

(3) (b v-c)(a v-c) v (a v-b) 

"If all b is c and some a is not c, then some a is not b". 
Also, this method gives a perfectly general formula for the syllogism . 

(a v -b)(b v c)(a v c) v 
where the order of the parentheses, and their position relative to the sign v 
which stands outside the parentheses, may be altered at will. This single 
rule covers all the modes and figures of the syllogism, except the illicit 
particular conclusion drawn from universal premises. We shall revert to 
this matter in Chapter IIL169 

The copulas v and v have several advantages over their equivalents, 
= ° and =l= 0, or c and its negative: (1) v and v are symmetrical rela
tions whose terms can always be interchanged; (2) the operation, mentioned 
above, of moving v and v with respect to their terms, accomplishes trans
formations which are less simply performed with other modes of expressing 
the copula; (3) for various reasons, it is psychologically simpler and more 
natural to think of logical relations in terms of v and v than in terms 
of = ° and =l= 0. But v and v have one disadvantage as against =, =l=, 
and c ,-they do not so readily suggest their mathematical analogues in 
other algebras. For better or for worse, symbolic logicians have not 
generally adopted v and v. 

Of the major contributions since Peirce, the first is that of Ernst Schroder. 
In his Operationskreis des Logikkalku18 (1877), Schroder pointed out that 
the logical relations expressed in Boole's calculus by subtraction and divi
sion were all otherwise expressible, 'as Peirce had already noted. The 
meaning of + given by Boole is abandoned in favor of that which it now 
has, first introduced by Jevons. And the "law of duality", which con
nects theorems which involve the relation +, or + and 1, with corresponding 
theorems in terms of the logical product x, or x and 0, is emphasized. 

169 See below, pp. 188 jJ. 
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(This parallelism of formulae had been noted by Peirce, in his first paper, 
but not emphasized or made use of.) 

The resulting system is the algebra of logic as "we know it today. This 
system is perfected and elaborated in r orlesungen iiber die Algebra der 
Logik (1890-95). Volume I of this ,york co\'ers the algebra of classes; 
Volume II the algebra of propositions; and Yolume III is devoted to the 
calculus of relations. 

The algebra of classes, or as we shall call it, the Boole-Schroder algebra, 
is the system developed in the next chapterYo 'Ve have somewhat elabo
rated the theory of functions, but in all essential respects, "we give the algebra 
as it appears in Schroder. There are two differences of some importance 
between Schroder's procedure and the one we haye adopted. Schroder's 
assumptions are in terms of the relation of subsumption, c, instead of the 
relations of logical product and =, which appear in our postulates. And, 
second, Schroder gives and discusses the various methods of his predecessors, 
as well as those characteristically his own. 

The calculus of propositions (A u88agenkalkul) is the extension of the 
Boole-Schroder algebra to propositions by a method which differs little 
from that adopted in Chapter IV, Section I, of this book. 

The discussion of relations is based upon the work of Peirce. But 
Peirce's methods are much more precisely formulated by Schroder, and 
the scope of the calculus is much extended. vYe summarize the funda
mental propositions which Schroder gives for the sake of comparison both 
with Peirce and with the procedure we shall adopt in Sections II and III 
of Chapter IV. 

1) A, B, C, D, E ... symbolize "elements" or indi\'iduals.l7l These 
are distinct from one another and from O. 

2) 11 = A + B + C + D + ... 

11 symbolizes the universe of individuals or the universe of discourse of 

the first order. 

3) i, j, k, l, rn, n, p, q represent anyone of the elements A, B, C, D, ... 
of 11. 

4) 11 = ~i i 
170 For an excellent summary by Schroder, see Abriss der Algebra der Lo(]ik,. ed. Dr. 

, Eugen Milller, 1909-1O. Parts I and il, covering VoIs. I and II of Schroder's Vorlesungen, 

have so far appeared .. 
171 The propositions here noted will be found in Vorlesungen uber die Algebra der LO{fik, 

III, 3--42. Many others, and much discussion of theory, have been omitted. 
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5)i : j represents any two elements, i and j, of 11 in a determined order. 

6) (i = j) = (i : j = j : i), (i =+ j) = (i : j =+ j : i) 

for every i and j. 

7) i : j =+ 0 

Pairs of elements of 11 may be arranged in a "block": 

8) 

A : A, A : B, A : 0, A : D, 

B : A, B : B, B : 0, B : D, 

o : A, 0: B, 0: 0, 0: D, 

D : A, D : B, D : 0, D : D, 

These are the" individual binary relatives". 

12= (A : A) + (A : B) + (A : 0) + ... 

9) 
+ (B : A) + (B : B) + (B : 0) + .. . 

+ (0 : A) + (0 : B) + (0 : 0) + .. . 

+ . 

. 12 represents the universe of binary relatives. 

10) 12 = l;i~i (i : j) = ~i~i (i : j) = ~ii (i : j) 

9) and 10) may be summarized in a simpler notation: 

11) 

1 = ~ii i : j = A: A + A : B + A : 0 + ... 

+B:A+B:B+B:O+ ... 

+O:A+.O:B+O:O+ ... 

+. 

12) i : j : h will symbolize an "individual ternary relative". 

13) 13 = l;h~i~i (i : j : h) = ~iih i : j : h 

Various types of ternary relatives are 

14) A : A : A, B: A : A, A: B : A, A: A : B, A: B : 0 

It is obvious that we may similarly define individual relatives of the 
fourth, fifth, ... or any thinkable order. 
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The general form of a binary relative, a, is 

a = "2ii aij (i :j) 

113 

where aii is a coefficient whose value is 1 for those (i : j) pairs in which 'i has 
the relation a to j, and is otherwise O. 

1 = "2 if i : j 

o = the null class of individual binary relatives. 

1= "2ii (i = j)(i :j) = ::Ei (i: i) 172 

N = "2~i (i =!= j)(i :j) 

The general laws which govern propositional functions, or A~188agen-' 

schemata, such as (a b)if' "2h aih bh'i> ITk (ail, + bhi), IIa aii, "2a aij, etc., are as 
follows: 

Au symbolizes any statement about u; IT"A" will have the ,·alue 1 in 
case, and only in case, Au = 1 for every u; ::EuA" will have the value 1 if 
there is at least one u such that Au = 1. That is to say, ITuA" means' 
" Au for every u", and "2uA" means "Au for some 'it" . . 

a) ITuA" C Av c "2"A", 

{3) IT"Au = AvIT"Au. 

(The subscript u, in a and (3, represents any value of the variable n.) 

8) If Au is independent of u, then IT"A" = A, and "2"A" = A. 

e) IIu(A cBu) = (A cIT"Bu), ITu(A" cB) = (::E"A" cB) 

t) IT". v or IT"IIv(A" c Bv) = (:Z"A" c ITvB.) 

1]) ::Eu(A" c B) = (IT"A" c B), ::E,,(A c B,,) = (A c: "2uB,,) 

0) 2:",. or "2,,2:.(Au c B.) = (IT"A" c: 2:.B.) 

{ 
IT"(A,, = 1) = (ITuAu = 1), 

~) 
"2.,(Au = 0) = (IT"Au = 0), 

IIu(A" = 0) = (2:"A" = 0) 

2:"(.1,, = 1) = (::E"Au = 1) 

172 We write 1_ whereS;U-0der has 1'; N where he has 0'; (a i b) for (aj b); (a t b) 
for (a j b); -a for a; ~a for a. 

!:J 
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(The reader should note that IIu(Au cBu) is "formal implication",-in 
Principia J.llathernatica, (x).~x :::> 1/Ix.) 

A + "BuBu = "Bu(A + Bu) 

~) (IIuAu) (IIvBv) = IIu, v Au Bv = II" Au Bu, 

"B"A" + "BvBv = "B", v (A" + Bv) = "Bu (Au + Bu) 

From these fundamental propositions, the whole theory of relations is 
developed. Though Schroder carries this much further than Peirce, the 
general outlines are those of Peirce's calculus. Perhaps the most inter· 
esting of the new items of Schroder's treatment are the use of "matrices" 
in the form of the two-dimensional array of individual binary relatives, 
and the application of the calculus of relatives to Dedekind's theory of 
" chains", as contained in Was sind und was sollen die Zahlen. 

Notable contributions to the Boole-Schroder algebra were made by 
Anton Poretsky in his three papers, Sept lois fondarnentales de la theorie 
des egalites logiques (1899), Quelques lois ulterieures de la theorie des ega lites 
logiques (1901), and Theorie des non-egalites logiques (1904). (With his 
earlier works, published in Russian, 1881-87, we are not familiar.) Poret
sky's Law of Forms, Law of Consequences; and Law of Causes will be 
given in Chapter II. As Couturat notes, Schroder had been influenced 
overmuch by the analogies of the algebra of logic to other algebras, and 
these papers by Poretsky outline an entirely different procedure which, 
though based on the same fundamental principles, is somewhat more 
"natural" to logic. Poretsky's method is the perfection of that type of 
procedure adopted by Jevons and characteristic of the use of the Venn 
diagrams. 

The work of Frege, though intrinsically important, has its historical 
interest largely through its influence upon Mr. Bertrand Russell. Although 
the Begriffsschrift (1879) and the Grundlagen der Arithrnetik (1884) both 
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precede Schroder's VorZesungen, Frege is hardly more than mentioned 
there; and his influence upon Peano and other contributors to the Formu
Zaire is surprisingly small when one considers how closely their task is re
lated to his. Frege is concerned explicitly with the logic of mathematics 
but, in thorough German fashion, he pursues his analyses more and more 
deeply until we have not only a development of arithmetic of unprecedented 
rigor but a more or less complete treatise of the logico-metaphysical problems 
concerning the nature of number, the objectiYit;y of concepts, the relations 
of concepts, symbols, and objects, and many other subtleties. In a sense, 
his fundamental problem is the Kantian one of the nature of the judgments 
involved in mathematical demonstration. Judgments are analytic, de
pending solely upon logical principles and definitions, or the~· are synthetic. 
His thesis, that mathematics can be developed wholly by analytic judg
ments from premises which are purel~' logical, is likewise the thesis of 
Russell's Principles of .Mathematics. And Frege's Grundgeset;Je der Arith
metik, like Principia ill athematica, undertakes to establish this thesis-for 
arithmetic-by producing the required development. 

Besides the precision of notation and analysis, Frege's work is important 
as being the first in which the nature of rigorous demonstration is suf
ficiently understood. His proofs proceed almost exclusively by substitu
tion for variables of values of those variables, and the substitution of defined 
equivalents. Frege's notation, it must be admitted is against him: it is 
almost diagrammatic, occupying unnecessary space and carrying the eye 
here and there in a way which militates against easy understanding. It is 
probably this forbidding character of his medium, combined with the 
unprecedent!ed demands upon the reader's logical subtlety, which accounts 
for the neglect which his writings so long suffered. But for this, the revival 
of logistic proper might have taken place ten years earlier, and dated from 
Frege's Grundlagen rather than Peano's Formulaire. 

The publication, beginning in 1894, of Peano's Formulaire de Mathe
matiques marks a new epoch in the history of symbolic logic. Heretofore, 
the investigation had generally been carried on from an interest in exact 
logic and its possibilities, until, as Schroder remarks, we had an elaborated 
instrument and nothing for it to do. With Peano and his collaborators, the 
situation is reversed: symbolic logic is investigated only as the instrument 
of mathematical proof. As Peano puts it: 173 

"The laws of logic contained in what follows have generally been found 

173 Formulaire, I (1901), 9. 
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by formulating, in the form of rules, the deductions which one comes upon 
in mathematical demonstrations." 

The immediate result of this altered point of view is a ~ew logic, no 
less elaborate than the old-destined, in fact, to become much more elabo
rate-but with its elaboration determined not from abstract logical con
siderations or by any mathematical prettiness, but solely by the criterion 
of application. De Morgan had said that algebraists and geometers live 
in "a higher realm of syllogism": it seems to have required the mathe
matical intent to complete the rescue of logic from its traditional inanities. 

The outstanding differences of the logic of Peano from that of Peirce 
and Schroder are somewhat as follows: 174 

(1) Careful enunciation of definitions and postulates, and of possible 
alternative postulates, marking an increased emphasis upon rigorous 
deductive procedure in the development of the system. 

(2) The prominence of a new relation, E, the relation of a member of a 
class to the class. 

(3) The prominence of the idea of a proposi tional function and of 
"formal implication" and "formal equivalence ", as against "material 
implication" and" material equivalence". 

(4) Recognition of the importance of "existence" and of the properties 
of classes, members of classes, and so on, with reference to their" existence". 

(5) The properties of relations in general are not studied, and" relative 
addition" does not appear at all, but various special relations, prominent 
in mathematics, are treated of. 

The disappearance of the idea of relation in general is a real loss) not a 
gam. 

(6) The increasing use of substitution (for a variable of some value in 
its range) as the operation which gives proof. 

We here recognize those characteristics of symbolic logic which have 
since been increasingly emphasized. 

The publication of P;'incipia Mathematica would seem to have deter
mined the direction of further investigation to follow that general direction 
indicated by the work of Frege and the Formulaire. The Principia is con
cerned with the same topics and from the same point of view. But we see 
here a recognition of difficulties not suggested in the Form~llaire, a deeper 
and more lengthy analysis of concepts and a corresponding complexity of 
procedure. There is also more attention to the details of a rigorous 
method of proof. 

m All these belong also to the Logica Mathematica of C. Burali Forti (Milan, 1894). 
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The method by which the mathematical logic of Principia JIathematica 
is developed \vill be discussed, so far as we can discuss it, in the concluding 
section of Chapter IV. We shall be especially concerned to point out the 
connection, sometimes lost sight of, between it and the older logic of Peirce 
and Schroder. And the use of this logic as an instrument of mathematical 
analysis will be a topic in the concluding chapter. 



CHAPTER II 

THE CLASSIC, OR BOOLE-SCHRODER, ALGEBRA OF LOGIC 

1. GENERAL CHARACTER OF THE ALGEBRA. THE POSTULATES AND 

THEIR INTERPRETATION 

The algebra of logic, in its generally accepted form, is hardly old enough 
to warrant the epithet "classic". It was founded by Boole and given its 
present form by Schroder, who incorporated into it certain emendations 
which Jevons had proposed and certain additions-particularly the relation 
"is contained in" or "implies "-which Peirce had made to Boole's system. 
It is due to Schroder's sound judgment that the result is still an algebra, 
simpler yet more powerful than Boole's calculus. Jevons, in simplifying 
Boole's system, destroyed its mathematical form; Peirce, retaining the 
mathematical form, complicated instead of simplifying the original calculus. 
Since the publication of Schroder's Vorles~mgen uber die Algebra der Logik 

certain additions and improved methods have been offered, the most notable 
of which are contained in the studies of Poretsky and in Whitehead's Uni-
versal Algebra.l . 

But if the term "classic" is inappropriate at present, still we may 
venture to use it by way of prophecy. As Whitehead has .pointed out, 
this system is a distinct species of the genus" algebra", differing from all 
other algebras so far discovered by its non-numerical character. It is 
certainly the simplest mathematical system. with any wide range of useful 
applications, and there are indications that it will serve as the parent stem 
from which other calculuses of an important type will grow. Already sev
eral such have appeared. The term" classic" will also serve to distinguish 
the Boole-Schroder Algebra from various other calculuses of logic. Some 
of these, like the system of Mrs. Ladd-Franklin, differ through the use 
of other relations than +, x, c, and =, and are otherwise equivalent-

1 For Poretsky's studies, sel:! Bibliography: also p. 114 above. See Whitehead's Uni
versal A.lgebra, Bk. II. Whitehead introduced a theory of "discriminants" and a treatment 
of existential propositions by means of umbral letters. This last, though most ingenious 
and interesting, seems to me rather too complicated for use; and I have not made use of 
"discriminants", preferring to accomplish similar results by a somewhat extended study of 
the coefficients in functions. 

118 
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that is to say, with a "dictionary" of equiyalent expressions, any theorem 
of these systems may be translated into a theorem of the Boole-Schroder 
Algebra, and yice versa. Others are mathematically equiyalent as far as 
they go, but partial. And some, like the calculus of classes in Principia. 
Mathematica, are logically but not mathematically equivalent. And, 
finally, there are systems such as that of Mr. l\facColl's Symbolic Logic 
which are neither mathematically nor logically equivalent. 

Postulates for the classic algebra haye been given by Huntington, 
by Schroder (in the Abriss), by Del Re, by Sheffer and by Bernstein.2 The 
set here adopted represents a modification of Huntington's third seU 
It has been chosen not so much for economy of assumption as for "natural
ness" and obviousness. 

Postulated: 

A class K of elements a, b, c, etc., and a relation x such that: 

1·1 If a and b are elements in K, then a xb is an element in K, uniquely 
determined by a and b. 

1·2 For any element a, a xa = a. 

1·3 For any elements a and b, a x b = b x a. 

1·4 For any elements a, b, and c, a x (b xc) = (a xb) xe. 

1· 5 There is a unique element, 0, in K such that a x 0 = ° for eyery ele
ment a. 

1· 6 For every element a, there is an element, -a, such that 

1·61 If x x-a = 0, then x xa = x, 

and 1·62 If yxa = y and yx-a = y, then y = O. 

The element 1 and the relations + and c do not appear in the above. 
These may be defined as follows: 

1·7 1 = -0 Def. 

1·8 

1·9 

a + b = -(-a x-b) Def. 

a c b is equivalent to a xb = a De£. 

It remains to be proved that -a is uniquely determined by 0, from 
which it will follow that 1 is unique and that a + b is uniquely determined 
by a and b. 

2 See Bibl. 
3 See "Sets of Independent Postulates for the Algebra of Logie", Trans. Amer. Math. 

Soc., v (1904), 288-309. Our set is got by replacing + in Huntington's set by x, and 
replacing the second half of a, which involves 1, by its analogue with O. Thus 1 can be 
defined, and postulates E and H omitted. Postulate J is not strictly necessary. 
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The sign of equality in the above has its usual mathematical meaning; 
i. e., [=} is a relation such that if x = y and \O(x) is an unambiguous 
function in the system, then \O(x) and \O(y) are equivalent expressions and 
interchangeable. It follows from this that if -.j;(x) is an arnbiguous function 
in the system, and x = y, every deterrnined value of if; (x) , expressible in 
terms of x, is similarly expressible in terms of y. Suppose, for example, 
that -a, "negative of a", is an ambiguous function of a. Still we may write 
-a to mean, not the function "negative of a" itself, but to mean some 
(any) determined value of that'function-any one of the negatives of a
and if -a = b, then \O(-a) and \O(b) will be equivalent and interchangeable. 
This principle is important in the early theorems which involve negatives. 

We shall develop the algebra as an abstract mathematical system: the 
terms, a, b, 0, etc., ma~ be any entities which have the postulated properties, 
and x, +, and c may be any relations consistent with the postulates. 
But for the reader's convenience, we give two possible applications: (1) to 
the system of all, continuous and discontinuous, regions in a plane, the 
null-region included, and (2) to the logic of classes.4 

(1) 

For the first interpretation, a x b will denote the region common to a 

and b (their overlapping portion or portions), and a + b will denote that 
which is either a or b or both. a c b will represent the proposition, "Region 
a is completely contained in region b (with or without remainder)". 0 will 
represent the null-region, contained in every region, and 1 the plane itself, 
or the "sum" {+ } of all the regions in the plane. For any region a, -a 
will be the plane except a, all that is not-a. The postulates will then hold 
as follows: 

1·1 If a and b are regions in the plane, the region common to a and b, 
a x b, is in the plane. If a and b do not overlap, then a x b is the null
region, O. 

1· 2 For any region a, the region common to a and a, a x a, is a itself. 

1 . 3 The region common to a and b is the region common to band a. 

1· 4 The region common to a and b x c is the region common to a x b 
and c-is the region common to all three. 

1· 5 The region common to any region a and the null-region, 0, is O. 

1· 6 For every region a, there is its negative, -a, the region outside or 

4 Both of these interpretations are more fully'discussed in the next chapter. 
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not contained in a, and this region is such that 

1· 61 If -a and any region x have only the null-region in 
common, then the region common to.1: and a is x itself, or x is contained in a; 

and 1· 62 If the region common to y and a is y, or y is contained 
in a, and the region common to y and -a is y, or y is contained in -a, then y 
must be the null-region ·which is contained in every region. 

That the definitions, 1· 7, 1· 8, and 1· 9, hold, wiII be evident. 

(2) 

For the second interpretation, a, b, c, etc., will be logical classes, taken 
in extension-that is, a = b ,vill mean that a and b are classes composed of 
identically the same members. a x b will represent the class of those 
things which are members of a and of b both; a + b, those things which 
are either members of a or members of b or both. a c b will be the proposi
tion that all members of a are al!?o members of b, or that a is contained in b 
(with or without remainder). 0 is the null-class or class of no members; 
and the convention is required that this class is contained in every class. 
1 is the" universe of discourse" or the class which contains every entity 
in the system. For any class a, -a represents the negatiw or a, or the class 
of all things which are not members of a. The postulates will hold as fol
lows: 

1·1 If a and b are logical classes, taken in extension, the members com
mon to a and b constitute a logical class. In case a and b have no members 
in common, this class is the null-class, O. 

1· 2 The members common to a and a constitute the class a itself. 

1· 3 The members common to a and b are the same as those common to 
band a. 

1·4 The members common to a, b, and c, all three, are the same, whether 
we first find the members common to band c and then those common to a 
and this class, or whether we first find the common members· of a and b 
and then those common to this class and c. 

1·5 The members common to any class a and the null-class are none, or 

the null-class. 

1· 6 For every class a, there is its negative, -a, constituted by all members 
of the" universe of discourse" not contained in a, and such that: 

1· 61 If -a and any class x have no members in common, 
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then all members of x are common to x and a, or x is contained in a; 

and 1· 62 If all members of any class yare common to y and a, 
and common also to y and -a, then y must be null. 

1·7 The "universe of discourse", "everything", is the negative of the 

null-class, "nothing". 

1· 8 That which is either a or b or both is identical with the negative of 
that which is both not-a and not-b. 

1· 9 That" a is contained in b" is equivalent to "The class a is identical 
with the common members of a and b". 

That the postulates are consistent is proved by these interpretations. 
In the form given, they are not independent, but they may easily be made 
so by certain alternations in the form of statement.S 

The following abbreviations and conventions will be used in the state
ment and proof of theorems: 

1. a xb will generally be abbreviated to a b or a·b, a x (b xc) to a (b c), 

ax-(bx-c) to a-(b-c) or a·-(b-c), etc. 

2. In proofs, we shall sometimes mark a lemma which has been established 
as (1), or (2), etc., and thereafter in that proof refer to the lemma by this 
number. Also, we shall sometimes write "Q.E.D." instead of repeating 
the theorem to be proved. 

3. The principles (postulates, definitions, or previous theorems) by which 
any step in proof is taken will usually be noted by a reference in square 
brackets, thus: If x = 0, then [1· 5] a x = 0. Reference to principles 
whose use is more or less obvious will gradually be omitted as we proceed. 
Theorems will be numbered decimally, for greater convenience in the 
insertion of theorems without alteration of other numbers. The non
decimal part of the number will indicate some major division of theorems, 
as 1· indicates a postulate or definition. Theorems which have this digit 
and the one immediately following the decimal point in common will be 
different forms of the same principle or otherwise closely related. 

II. ELEMENTARY THEOREMS 

2·1 If a = b, then a c = b c and c a = c b. 

This follows immediately from the meaning of 

2·2 a = b is equivalent to the pair, a c band be a. 

If a = b, then [1· 2] a b = a and b a = b. 

Ii On this point, compare with Huntington's set. 

and 1·1. 
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And if a b = a and b a = b, then [1·3] a = a b = b a = b. 

But [1·91 a b = a is equivalent to a eb and b a = b to b ca. 

Equality is, then, a reciprocal inclusion relation. 

2·3 a ca. 

a = a, hence [2·2] Q.E.D. 

Every element is "contained in" itself. 

2 . 4 a -a = 0 = -a a. 

[1·2] a a = a. 

Hence [2·1,1·4,1·3] a-a = (a a) -a = a (a-a) = (a-a) a. 

Also [1·2] -a -a = -a. Hence a -a = a (-a -a) = (a -a) -a. 

But [1·62] if (a-a) a = (a-a) -a = a-a, then a-a = O. 
And [1· 3] -a a = a -a. Hence also, -a a = O. 

Thus the product of any element into its negative is 0, and 0 is the 
modulus of the operation x. 

2·5 a -b = 0 is equivalent to a b = a and to a e b. 

If a b = a, then [1·4·5, 2·1·4] a -b = (a b) -b = a (b -b) 

= a·O= 0 (1) 
And [1· 611 if a -b = 0, then a b = a (2) 

By (1) and (2), a -b = 0 and a b = a are equivalent. 
And [1· 9] a b = a, is a e b. 

We shall derive other equivalents of a eb later. The above is required 
immediately. In this proof, we have written "1·4·5" and " 2·1 ·4" 
instead of "1·4, 1·5" and "2,1, 2·4". This kind of abbreviation in 
references will be continued. 

2·6 If aeD, then a = O. 

If a cO, then [1·9] a'O = a. But [1,5] a·O = O. 

2·7 If a e b, then a 0 e b 0, and cae 0 b. 

If aeb, then [1·9] ab = a and [2·1] (ab)c = ao (1) 

But [1·2·3·4] (a b) c=(ba) o=b (ac)=(ac) b=[a (cc) b]=[(ao) oj b 

= (a 0)(0 b) = (a c)(b 0) (2) 

Hence, by (1) and (2), if a e b, then (a o)(b c) = a c and [1·9] a 0 e b o. 

And [1· 3] 0 a = a 0 and c b = b c. Hence also cae c b. 

2·8 -(-a) = a. 

[2·4] -(-a.)·-a = O. Hence [2'5]-(-a) ea (1) 
By (1), -H-a)] e-a. Hence [2·7J a·-[-(-a)] ea -a. 
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But [2·4] a-a = O. Hence a·-[-(-a)] cO. 
Hence [2·6] a·-[-(-a)] = 0 and [2·5] a c-(-a) 
[2·2] (1) and (2) are equivalent to -(-a) = a. 

3·1 a c b is equivalent to -b c -a. 

[2·5] a c b is equivalent to a -b = o. 
And [2·8] a -b = -b a = -b -(-a). 

And -b-(-a) = 0 is equivalent to -b c-a. 

(2) 

The terms of any relation c may be transposed by negating both. 
If region a is contained in region b, then the portion of the plane not in b 
is contained in the portion of the plane not in a: if all a's are b's, all non-b's 
are non-a's. This theorem gives immediately, by 2·8, the two corollaries: 

3 ·12 a c -b is equival~nt to be-a; and 

3·13 -a c b is equivalent to -b ca. 

3·2 a = .b is equivalent to -a = -b. 

[2·2] a = b is equivalent to (acb and bca). 
[3 ·1] a c b is equivalent to -b c -a, and b c a to -a c -b. 
Hence a = b is equivalent to (-a c-b and -b c-a), which is equiva

lent to -a = -b. 

The negatives of equals are equals. By 2·8, we have also 

3 ·22 a = -b is equivalent to -a = b. 

Postulate 1· 6 does not require that the function "negative of" be 
unambiguous. There might be more than one element in the system having 
the properties postulated of -a. Hence in the preceding theorems, -a 
must be read" any negative of a ", -(-b) must be regarded as anyone of 
the negatives of any given negative of b, and soon. Thus what has been 
proved of -a, etc., has been proved to hold for every element related to a 
in the manner required by the postulate. But we can now demonstrate 
that for every element a there is one and only one element having the 
properties postulated of -a. 

3·3 -a is uniquely determined by a. 

By 1· 6, there is at least one element -a for every eiement a. 
Suppose there is more than one: let -al and -a2 represent any two 
such. 
Then [2·8] :"'(-al) = a = -(-a2)' Hence [3·2] -al = -a2. 

Since all functions in the algebra are expressible in terms of a, b, c, etc., 
the relation x, the negative, and 0, while 0 is unique and a x b is uniquely 
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determined by a and b, it follows from 3·3 that all functions in the algebra 
are unambiguously determined when the elements involved are specified. 
(This would not be true if the inverse operations of "subtraction" and 
"division" were admitted_) 

3 -33 The element 1 is unique. 

[1· 5] 0 is unique, hence [3·3] -0 is unique, and [1· 7J 1 = -0. 

3-34 -1 = O. 

[1-7] 1 = -0. Hence [3·2] Q.E.D. 

3 ·35 If a and b are elements in K, a + b is an element in K uniquely deter
mined by a and b. 

The theorem follows from 3.3, I-I, and I-S. 

3·37 If a:::;; b, then a+c = b+c and c+a = c+b. 

The theorem follows from 3·35 and the meaning of 

3·4 -(a+b) = -a-b. 

[1·8] a + b = -(-a -b). 
Hence [3·3, 2·8]-(a+b) = -I-(-a-b)] = -a-b. 

3·41 -(ab)=-a+-b. 

[1·8, 2·8] -a + -b = -[-(-a) ·-(-b)] = -(a b). 

3·4 and 3·41 together state De Morgan's Theorem: The negative of a 
sum is the product of the negatives of the summands; and the negative of a 
product is the sum of the negatives of its factors. The definition 1·8 is a 
form of this theorem. Still other forms follow at once from 3·4 and 3'41, 
by 2·8: 

3·42 -(-a+-b)=ab. 

3·43 -(a+-b) = -abo 

3·44 -(-a + b) = a-b. 

3-45 -(a-b) = -a+b. 

3·46 -(-ab) = a+-b. 

From De Morgan's Theorem, together with the principle, 3·2, "The 
negatives of equals are equals", the definition 1· 7, 1 = -0, and theorem 
3·34, -1 = 0, it follows that for every theorem in terms of x there is a 
corresponding theorem in terms of +. If in any theore:ql, each element be 
replaced by its negative, and x and + be interchanged, the result is a 
valid theorem. The negative terms can, of course, be replaced by positive, 
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since we can suppose ;1; = -a, Y = -b, etc. Thus for every valid theorem 
in the system there is another got by interchanging the negatives 0 and 1 
and the symbols x and +. This principle is called the Law of Duality. 
This law is to be illustrated immediately by deriving from the postulates 
their correlates in terms of +. The correlate of 1·1 is 3·35, already proved. 

4·2 a+a = a. 

[1·2] -a-a = -a. Hence [1·8, 3·2, 2·8J a+a = -(-a-a) = 
-(-a) = a. 

4·3 a+b = b+a. 

[1·3]-a-b = -b-a. Hence [3·2]-(-a-b) = -(-b-a). 
Hence [1·8] Q.E.D. 

4·4 a+(b+c) = (a+b)+c. 

[1·4]-a(-b-c) = (-a-b)-c. 
Hence [3·2J -[-a (-b -c)] = -[(-a -b) -c]. 

But [3·46, 1·8] -[-a (-b -c)] = a + -(-b -c) = a + (b + c). 
And [3·45, 1·8] -[(-a -b) -c] = -(-a -b) + c = (a + b) + c. 

4·5 a+1=1. 

[1·5] -a·O = O. Hence [3·2] -(-a·O) = -0. 

Hence [3·46J a + -0 = -0, and [1·7] a + 1 = 1. 

4·6~ If -x+a = 1, then x a = x. 

If -x + a = 1, then [3·2·34·44] x -a = -(-x + a) = -1 = O. 

And [2·5] x -a = ° is equivalent to x a = x. 

4·612 If -x+a = 1, then x+a = a. 

[4·61] If -a+x = 1, then ax = a, and [3·2]-a+-x = -a (1) 
By (1) and 2·8, if -x + a = 1, x + a = a. 

4·62 If y + a = y and y + -a = y, then y = 1. 

If y+a = y, [3·2] -y-a = -(y+a) = -yo 
And if y+-a = y, -ya = -(y+-a) = -yo 
But [1· 62] if -y a = -y and -y -a = -y, -y = 0 and y = -0 = 1. 

4·8 a + -a = 1 = -a + a. (Correlate of 2 ·4) 

[2·4J -a a = O. Hence [3·2J a + -a = -(-a a) = -0 = 1. 
Thus the modulus of the operation + is 1. 

4·9 -a + b = 1, a + b = b, a -b = 0, a b = a, and a c b are all equivalent. 

[2·5] a -b = 0, a b = a, and a c b are equivalent. 
[3·2]-a+b = 1 is equivalent to a-b = -(-a + b) = -1 = 0. 
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[4· 612] If -tL+ b = 1, a + b = b. 

And if a+b = b, [3·37]-a+b = -a+(a+b) = (-a+a)+b = l+h 
=1. 

Hence a + b = b is equivalent to -a + b = l. 

We turn next to further principles which concern the relation e. 

5·1 If a e band bee, then a e e. 

[1·9] aeb is equivalent to ab = a, and bee to be = b. 

If a b = a and be = b, a c = (a b) c = a (b c) = a b = a. 

But a c = a is equivalent to a e c. 

This law of the transitiyity of the relation e is called the Principle of 
the Syllogism. It is usually included in any set of postulates for the algebra 
which are expressed in terms of the relation e. 

5 ·2 abe a and abc b. 

(a b) a = a (a b) = (a a) b = a b. 
But (a b) a = a b is equi"mlent to a b ea. 

Similarly, (a b) b = a (b b) = a b, and abc b. 

5·21 a c a + band b e a + b. 

[5·2]-a-b e-a and -a-b e-b. 

Hence [3·12] ae-(-a-b) and bc-(-a-b). 
But -(-a-b) = (a+b). 

?\ote that 5·2 and 5·21 are correlates by the Law of Duality. In 
general, having now deduced the fundamental properties of both x and +, 

we shall give further theorems in such pairs. 
A corollary of 5·21 is: 

5·22 a b ea+b. 

[5·1·2·21] 

5·3 If a e band e c d, then ace b d. 

[1· 9] If a c band e cd, then a b = a and cd = c. 

Hence (ae)(bd) = (ab)(cd) = ae, and acebd. 

5·31 If a e band c e d, then a + c c b + d. 

If a c band c ed, [3·1] -b e-a and -d c-c. 
Hence [5·3]-b-de-a-c, and [3·1] -(-a-c) e-(-b-d). 

Hence [1·8J Q.E.D. 

By the laws, a a = a and a + a = a, 5·3 and 5·31 give the corollaries: 

5·32 If a e c and bee, then abc c. 



128 A Survey of Symbolic Logic 

5,33 If ace and b ce, then a+b ce. 

5,34 If acb and ace, then acbe. 

5·35 If acb and ace, then acb+e. 

5·37 If acb, then a+ecb+e. (Correlate of 2·7) 
[2·3] ece. Hence [5·31] Q.E.D. 

5·4 a+ a b = a. 

[5·21] aca+ab (1) 

[2·3] aca, and [5·2] abca. Hence [5·33] a+abca (2) 

[2·2] If (1) and (2), then Q.E.D. 

5·41 a (a+b) = a. 

[5·4]-a+-a-b = -a. Hence [3·2]-(-a+-a-b) = -(-a) = a. 

But [3·4J -(-a+-a-b) = a·-(-a-b) = a (a+b). 

5·4 and 5·41 are the two forms of the Law of Absorption. We have 
next to prove the Distributive Law, which requires several lemmas. 

5·5 a(b+e) = ab+ae. 

Lemma 1: a b + a e c a (b + c). 

[5·2J abc a and a e ca. Hence [5· 33J a b + a e 'c a (1) 

[5·2J a b cb and ae ce. But [5·21] b cb+e and e cb+c. 

Hence [5·1] abcb+candaccb+c. 

Hence [5·33] a b + a c c b + c (2) 
[5·34] If (1) and (2), then ab+aeca (b+c). 

Lemma 2: If p c q is false, then there is an element x, =l= 0, such that 
x c p and x c -q. 

p -q is such an element, for [5·2] p -q c p and p -q c -q; and 
[4·9] if p -q = 0, then p c q, hence if p c q is false, then p -q =l= 0. 

(This lemma is introduced in order to simplify the proof of Lemma 3.) 

Lemma 3: a(b+e) cb+ac. 

Suppose this false. Then, by lemma 2, there is an element x, 
=l= 0, such that 

x c a (b + c) (1) 

and xc-(b+ae) 

(2) 

(3) 
and also, since a(b+ae) cb+c, xcb+c (4) 

[5·1J If (2), then since [5·21] b cb+ae, b c-x and [3·12J x c-b (5) 
Also [5·1] if (2), then since [5·21] a c c b + a e, a e c-x and [3·12] 

But [3·12J if x c-(b+ae), then b+ac c-x 

[5·1] If (1), then since [5·2J a (b + a c) c a, x c a 

xc-Cae) (6) 
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From (6) and (3), it follows that ;rcc must be false; for if .l·CC 

and (3) x ca, then [3·34] ,r c a c. But if ,r ca c and (6) x c-(a c), 

then [1· 62] x = 0, which contradicts the hypothesis x + 0. 

But if x c c be false, then b~' lemma 2, there is an element y, + 0, 
such that 

y c;r (7) 

and y c -c, or [3 ·12] c c -.11 (8) 

[5 ·1] If (7) and (5), then y c -b and [3 ·12] b c -.11. (9) 

If (8) and (9), then [3·33] b+cc-y and [:3·12] Jjc-(b+c) (10) 
If (7) and (4), then [5·1] ycb+c (11) 

[1·9] If (11), then y (b+c) = y, and if (10), y·-(b+e) = y (12) 

But if (12), then [1· 62] .11 = 0, which contradicts the condition, 
y + 0. 

Hence the supposition-that a(b + c) c b + a c be false-is a false 
supposition, and the lemma is established. 

Lemma 4: a (b + c) cab + a c. 

By lemma 3, a (b+c) cb+ac. 

Hence [2·7] a[a(b+c)]ca(b+ac). 

But a [a (b+c)] = (aa)(b+c) = a (b+c). 

And a(b+ac) = a(ac+b). Hencea(b+c)ca(ac+b). 

But by lemma 3, a (a c + b) c a c + a b. 
And a c + a b = a b + a c. Hence a (b + c) cab + a c. 

Proof of the theorem: [2·2J Lemma 1 and lemma 4 are together equi\'a
lent toa (b + c) = a b + a c. 

This method of proving the Distributive La,'\' is taken from Huntington, 
"Sets of Independent Postulates for the Algebra of Logic ". The proof of 
the long and difficult lemma 3 is due to Peirce, who worked it out for his 
paper of 1880 but mislaid the sheets, and it was printed for the first time in 
Huntington's paper.6 

5·51 (a+b)(c+d) = (ac+bc)+(ad+bd). 

[5·5J (a+b)(c+d) = (a+b)c+(a+b)d = (ac+bc)+(ad+bd). 

5·52 a+bc = (a+b)(a+c). (Correlate of 5·5) 
[5·51J (a+b)(a+c) = (aa+ba)+(ac+bc) 

= [(a+ab)+acJ+bc. 

But [5·4] (a + a b) + a c = a + a c = a. Hence Q.E.D. 
Further theorems which are often useful in working the algebra and 

which follow readily from the preceding are as follows: 

6 See" Sets of Independent Postulates, etc.", loe. cit., p. 300, footnote. 

10 
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5 ·6 a' 1 = a = 1· a. 

[1·5] a'O = O. Hence a·-l = O. 
But [1·61] if a·-l = 0, then a·l = a. 

5·61 ac1. 

[1· 9] Since a·1 = a, a c 1. 

5 . 62 a + 0 = a = 0 + a. 

-a·-O = -a·l = -a. Hence[3·2]a+0 = -(-a·-O) = -(-a) = a. 

5·63 ° ca. 
O·a = a·O = O. Hence [1·9] Q.E.D. 

5·64 1 c a is equivalent to a = 1. 

[2·2] a = 1 is equivalent to the pair, a eland 1 ca. 
But [.5·61] a c 1 holds always. Hence Q.E.D. 

5·65 a cO is equi\'alent to a = O. 

[2·2] a = ° is equivalent to the pair, a cO and ° ca. 

But [5,63] 0 ca holds always. Hence Q.E.D. 

5·7 If a + b = x and a = 0, then b = x. 
If a = 0, a + b = 0 + b = b. 

5·71 If a b = x and a = 1, then b = :1::. 

If a = 1, a b = 1· b = b. 

5·72 a + b = ° is equivalent to the t\VO equations, a = 0 and b = 0. 

If a = ° and b = 0, then a + b = 0 + 0 = O. 
And if a + b = 0, -a -b = -(a + b) = -0 = 1. 
But if -a-b = 1, a = a·l = a(-a-b) = (a-a) -b = O·-b = 0. 

And [5·7] if a+b = ° and a = 0, then b = O. 

5·73 a b = 1 is equivalent to the two equations, a = 1 and b = 1. 

If a = 1 and b = 1, then a b = 1· 1 = 1. 
And if ab = 1, -a+-b = -(a b) = -1 = O. Hence [5·72} -a = 0 

and -b = 0. 
But [3· 2} if -a = 0, a = 1, and if -b = 0, b = 1. 

5·7 and 5·72 are important theorems of the algebra. 5·7," Any null 
term of a sum may be dropped", would hold in almost any system; but 
5·72, "If a sum is null, each of its summands is null", is a special law 
characteristic of this algebra. It is due to the fact that the system con
tains no inverses with respect to + and 0. a and -a are inverses with 
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respect to x and 0 and with respect to + and 1. .)·71 and 5·7:3 .. the 
correlates of 5·7 and 5·12, are less useful. 

5·8 a (b + -b) = a b + a -b = a. 

[5·5] a(b+ -b) = ab+a-b. 

And [4·8] b+-b = 1. Hence a (b+-b) = a·l = a. 

5·85 a + b = a + -a b. 

[5·8] b = ab+-ab. 

Hence a + b = a + (a b + -a b) = (a + a b) + a -b. 

But [5 ·4] a + a b = a. Hence Q.E.D. 

It will be com"enient to haye certain principles, already proved for two 
terms or three, in the more general form which they can be given by the 
use of mathematical induction. 'Yhere the method of such extension is 
obvious, proof wiII be omitted or indicated only. Since both x and + 
are associative, we can dispense with parentheses by the definitions: 

5 ·901 a + b + c = (a + b) + C Def. 

5·902 abc = (ab) c Def. 

5·91 a = a (b+-b)(c+-c)(d+-d) ... 

[5·8J 

5·92 1 = (a+-a)(b+-b)(c+-c) ... 

[4· 8J 

5 . 93 a = a + a b + a c + a d + ... 

[5 ·4J 

5 . 931 a = a (a + b) (a + c) (a + d) ... 

[5·41J 

5·94 a (b+c+d+ ... ) = ab+ac+ad+ ... 

[5·5] 

5·941 a+bcd, .. = (a+b)(a+c)(a+d) ... 

[5·52J 

5 . 95 - (a + b + c + ... ) = -a -b -0 ... 

If the theorem hold for n terms, so that 

-Cal + az + ... + an) = -al -az ... -an 

then it will hold for n + 1 terms, for by 3·4, 

-[Cal + a2 + ... + an) + an+d = -Cal + a2 + ... + a,,) ·-antl 

And [3· 4J the theorem holds for two terms. Hence it holds for an)~ 

number of terms. 



1:3:2 A SIlI'"L'CY of Symbolic Logic 

5·951 -(abed ... ) = -a+-b+-c+-d+ ... 

Similar proof, using :3·41. 

5 . 96 1 = (l + b + c + . . . + -(I -b -c ... 
[-1·8, 5·951] 

5 ·97 a + b + c + ... = 0 is equivalent to the set, a = 0, b = 0, c = 0, 

[;j·72J 

5·971 abc d ... = 1 is equinl1ent to the set, a = 1, b = 1, c = 1, ... 
[;j·73] 

5·98 a· b cd. .. = a b· a c· ad . .. 

[1·2] (/ a a a . .. = a. 

5·981 a+(lJ+c+d+ ... ) = (a+b)+(a+c)+(a+d)+ ... 

[-1·2] a+a+a+ ... = a. 

The extension of De ::\Iorgan's Theorem by 5·95 and 5·951 is especially 
important. 5·91, 5·92, and 5·93 are different forms of the principle by 
which any function may be expanded into a sum and any elements, not 
originally inyolYed in the function introduced into it. Thus any expression 
whatever may be regarded as a function of any given elements, eYen though 
they do not appear in the expression,-a peculiarity of the algebra. 5·92, 
the expression of the unh-erse of discourse in any desired terms, or expansion 

OT 1, is the basis of many important procedures. 
The theorems 5·91-5·9S1 are yalid only if the number of elements 

im'olved be finite, since proof depends upon the principle of mathematical 

induction. 

III. GEKERAL PROPERTIES OF F"G)<CTIONS 

"\Ve may use f(·I:) , q,(;t, y), etc., to denote any expression which involves 
only members of the class K and the relations x and +. The further 
requirement that the expression represented by f(.l·) should involve x or 
its negath'e, -;/:, that q,(.l', y) should im'oh-e x or -.1' and y or -y, is unnecessary, 
for if x and -x do not appear in a given expression, there is an equivalent 
expression in which they do appear. By 5·91, 

a = a (x + -.r) = a x + a -x = (a x + a -x) (y + -y) 

= a x y + a, x -y + a -x y + a -x -y, etc. 

a x + a -x may be called the expansion, or development, of, a with reference 
to x. And any or all terms of a function may be expanded with reference 
to ;0, the result expanded with reference to y, and so on for any elements 
and any number of elements. Hence any expression involving only ele-
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ments in I\. and the relations x and + ma;,; be treated as a function of 
any elements whateyer. 

If -we speak of any a such that.j; = a as the "yaIue of;(" ", then a yalue 
of ,1~ being given, the yaIue of any function of ,r is determined, in this algebra 
as in any other. But functions of ,1' in this system are of two t~'pes: 
those whose value remains constant, howe\"er the yalue of .r may ,-ary, and 
(2) those such that any yaIue of the junction being assigned, the ,-alne of ;/: 
is thereb~' determined, within limits or completely. An:: function which 
is symmetrical with respect to x and -,r will belong to the first of these 
classes; in general, a function which is not completely symmetrical with 
respect to x and -,r will belong to the second. But it must be remembered, . 
in this connection, that a symmetrical function may not lool: s~'mmetrical 
unless it be completely expanded with reference to each of the elements. 
involved. For example, 

a + -a b +-b 

is symmetrical with respect to a and -a and with respect to band -b Ex
panding the first and last terms, we haye 

cdb+-b)+-ab+(a+-a)-b = ab+a-b+-ab+-a-b = 1 

whatever the value or a or of b. AllY function in which an element, .r, 
does not appear, but into which it is introduced by expanding, will be 
symmetrical with respect to x and -.l'. 

The decision what elements a gi,'en expression shaH be considered a 
function of is, in this algebra, quite arbitrary except so far as it is deter
mined by the form of result desired. The distinction between coefficients 
and "variables" or "unknowns" is not fundamental. In fact, we shall 
frequently find it convenient to treat a given expression first as a fU!1ctioll
say-of x and y, then as a function of z, or of .1' alone. In general, coef
ficients will be designated by capitai letters. 

The Normal Form of a Function.-Any function of one \'ariable, f(.r), 

can be given the form 
A x +B-,l; 

where A and B are independent of x. This is the normal form of functions 
of one variable. 
6·1 Any function of one variable,j(x), is such that, for some A and some B 
which are independent of x, 

f(a:) = A x + B -.1: 
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_-lny expression which im'oln's only elements in the class E. and 
the relation::, x and + will consist either of a single term-a single 
element, or elements related by x-or of a sum of such terms. Only 
four kind, of such terms are possible: (1) those iyhich im'oln ;e, 

(~) those which inyolye -.r, (3) those which inyoln both, and (4) 

those which im'olY(~ neither.7 
Since the Distributiye Law, 5·5, allows us to collect the coefficients 
of ,t', of -.1' and of (:r -.r), the most general form of such an expres-

SlOn IS 

P ,1: + q -.1' + r (.l' -x) + 8 

where p, q, r, and 8 are independent of x and -;t:. 

But [2·4] r (:r -x) = 1'·0 = O. 
And [5·9]8 = 8X+8-X. 

Hence p .1' + q -x + r (:r -x) + 8 =: (p + 8) .r + (q + 8) -x. 
Therefore, A = p + 8, B = q + s, giyes the required reduction. 

The normal form of a function or n + 1 variables, 

may be defined as the expansion by the Distributiye Law of 

where f and f! are each some function of the 11 yariables, Xl, X2, •.. :l'n, and 
in the normal form. This is a "step by step" definition; the normal form 
of a function of two yariables is defined in terms of the normal form of 
functions of one yariable; the normal form of a function of three variables 
in terms of the normal form for two, and so on. 8 Thus the normal form 
of a function of two yuriables, <f>(a.', y), will be found by expanding 

(A ;T + B -;t') y + (C:r + D -x) -y 

It will be, A x y + B -:1' Y + ex -y + D -x -y 

The normal form of a function of three 'mriables, 'lr(x, y, z), will be 

A x y it. + B -a: y z + C x -y z + D -a: -y z + E a.' y -z + F -.1: y -z 

+Gx-y-z+H-x-y-z 

And so on. ~-\ny function in the normal form will be fully deyeloped with 

7 By a term which "involves" x is meant a term which either is x or has x "as a 
factor". But "factor" seems inappropriate in an algebra in which h x is always contained 
in x, h x ex. 

S This definition alters somewhat the usual order of terms in the normal form of func
tions. But it enables us to apply mathematical induction and thus prove theorems of a 
generality not otherwise to be attained. 
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reference to each of the variables iU"'mlYed-that is, each Yariable, or its 
negative, will appear in every term. 

6· 11 _\ny function may be given the normal form. 

(a) By (i. I. any function of one variable may be gn'en the 
normal form. 

(b) If functions of n yariables can be given the normal form, 
then functions of n + 1 yariables can be gi"l;en the normal form, for, 

Let <I>(Xb X2, ... X,,, .1~n-i-l) be any function of n + 1 variables. 
Br definition, its normal form will be equivalent to 

w1.ere f and f' are functions of .1:1> x~, ... x" and in the normal 
form. 

By the definition of a function, <I>(:t'h X2, .•.• r", Xn+l) may be re
garded as a function of ~l:'n+l' Hence, by 6·1, for some A and some 
B which are independent of .rn-ll 

.. .<\lso, by the definition of a function, for some J and some j , 

A = f(.r1, X2, .,. Xn) 

and B = j '(Xl, X2, ..• x,,) 

Hence, for some j and J ' which are independent or .1:',,+, 

Cf>(·'l::b X2, •.• • 1:'n, .1:',,+1) = J(.l:'!! X2, •.• • 1:'n) ',1::,,+1 

+f'(.1'1> ~1::2, ••• X,,)·-.1:"+1 

Therefore, if the functions of 12 yariables, f and f', can be given the 
normal form, then Cf>(Xl' X2, ••• Xn .• :1:,,+1) can be given the normal form. 

(c) Since functions of one yariable can be giwn the normal form, 
and since if functions of n variables can be givE'n the normal form, 
functions of n + 1 variables can be given the normal form, therefore 
functions of any number of variables can be giwn the normal form. 

The second step, (b), in the above proof may seem arbitrary. That it 
is vaJid, is due to the nature of functions in this algebra. 

6 ·12 For a function of n variables, Cf>(Xl, Xz, ... x,,), the norma! form will 
be a sum of 21'1 terms, representing all the combinations of XI, positive or 
negative, with :1:2, positive or negative, with ... with x", positive or 
negative, each term having its coefficient. 
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A normal form function of one yariable has two terms, and 

definition of the normal form of fUllctions of 11 + 1 ,-ariables, if 
fnBetion" of It nlriables han' 2 ' .. terms, a function of k + 1 variables 
will han> 2;: + ::i:, or 2':'7;, terms .. 

. -l normal form fUlletion of one ,"ariable has the further 

character described in the theorem; and if normal form fUllctions 

ur I: nuiables haye this character, then functions of k + 1 yariables 

will haw it, sinee, b:: definition, the normal form of a fUllction of 

k + 1 yariables will consist of the combinations of the (lc, + l)st 

variable, positiye or negatiYe, with each of the combinations repre

~ented in functions df 1, ,"ariables. 

Since any coefficient may be 0, the normal form of a function may con

tain terms which are null. \'I;here no coefficient for a term appears, the 

coefficient is, of course, 1. The order of terms in the normal form of a 

function will Yar:: as the order of the variables in the argument of the 

function is yaried. For example, the normal form of <l)(;(', y) is, by defini

tion, 

A x y + B -,1: Y + C x -y + D -.r -y 

and the normal form of 'I!(y, .r) is 

P y .1' + Q -y .1' + R Y -x + S -y -x 

Except for the coefficients, these differ only in the order of the terms and 

order of the elements in the terms. And since + and x are both associa
tive and commutative, such a difference is not material. 

6·15 Any two functions of the same variables can differ materially only 
in the coefficients of the terms. 

The theorem follo'ws immediately from 6·12. 

In consequence of () ·15, we can, without loss of generalit~~, assume 

that, for any two normal form functions of the same yariables with which 

we may be concerned, the order of terms and the order of yariables in the 

argument;; of the functions is the same. And also, in any function of 

n + 1 yariables, q,(.t'lJ .1'~, .. , X," ;t'n+l), which is equated to 

.r1l+l may be any chosen one of the n + 1 yariabJes. The convention that 

it is always the last is consistent with complete generality of the proofs. 

6 -17 The product of any two terms of a function in the normal form is 
nulL 
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By 6 . I:?, for all~' two t~'rnb of a fum·tion in tlw I1m'mal 

there 'will be some \'ariablt" .r" :,ut:h that .("" i", positin· in one of 

them and negatiye in the other: since' othel"'\yise the two terms 

v,ould represent the same combination of .1':, positiye or llegatiYe, 

·with ,("2, positi\'e or negatin:, etc. Consequently, the produ('t of 

any t\yO terms will im'olYe IT factor of form ,1' /, -,1',. and will 
therefore be null. 

rnless otherwise specified, it will be presumed hereafter that any fUllc

tion mentioned is in the normal form. 

The Coefficients in a Function.-The coefficients in any function can be 

expressed in terms of the function itself. 

6·21 If /(:1') = A ,1' + B -.1', then f(1) = .1. 

For /(1) = A· 1 + B . -1 = A + B· () = .-1. 

6·22 If /(.r) = A.r + B -.c', then /(0) = B. 

For/(O) = A·O+B·-O = thE·l = B. 

6-23 /(:1') = /(I)·x + flO) '-J.', 

The theorem follows immediately from U·1, li·:?l and (\ -22. 

These laws, first stated by Boole, are wry useful in reducing compli

cated expressions to normal form. For example, if 

\[1(.1') = a c (d ;1' + -d -x) + (c + ;)') d 

r~duction by any other method would be tedious. But we h,we 

\[1(1) = ac(d·1+-d·0)+(c+l)d = (lcd+cri+d = d 

and \[1(0) = ae (d·O+-d·l) + (e+O) d = ac-d+('d 

Hence the normal form of w(.r) is given by 

w(a:) = d.r + (a c -d + c d) -.r 

Laws analogous to 6·23, also stated by Boole, may be giyen for functions 

of more than one variable. For example, 

f(x, y) = f(l, 1) -.r y + /(0, 1) '-,r .II + /(1, O)·.r -.II + f(O" 0) '-,1'-.11 

and <t>(;l', y, z) = <t>(1, 1, 1) ';1' y z + <t>(O, 1, 1) '-,l'lI z + <t>(1. 0, 1) ·:r -.II z 

+ <t>(O, 0, 1) ·-.r -y z + <t>(l. 1,0)·x y -z + <t>(0, 1,0) '-.1' y-z 

+ <t>(l, O,O)·x -.II -z + <t>(O, 0, 0) '-.1' -y-z 

We can prove that this method or determining the coefficients extends to 

runctions or any nUIl1ber of yariables. 
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r t' l' I' l' -: 
6.24 If C i '1 ,~ .;:... ." r be an:; term of '1'(.1:1> X2, a's, ... xn), then 

l -.1'1 -,l'~ -·1'3 ' .. -,(',,) 

,- 1. 1, 1. , ., l' 'II b h ffi' t C' 'II ... :- WI e t e coe Clen, ' 
_ 0, n, 0, ... ° ~ 

(a) By (j,2:3, the theorem holds for functions of one variable, 
~b) If the theorem hold for functions of k variables, it will hold 

for functions of /, + 1 variables, for, 
B~- 6,11, an~- function of k + 1 variables, <I>(x!, X2, ,., a.'k, X"'+l), 

is such that, for some f and some f " 
<I>(Xl, .re, ... :rb X'1:+l) = f(xl, X2, ." :Ck) , .1:"+1 + f I (,rr, X2, •• , XIc)' -X1:+1 

H '1,1, ... 1, I f{I,I, ... Ilj 1 f,{I,I, ... I} ° ence <I>"'; 1 JI,. = ' + ' 
lO, 0, ... 0, 0, 0, ... ° 0, 0, ... ° 

= f { 1, 1, ... I} (1) 
0,0, , .. ° 

And <I> ~ 1, 1, ... 1, O} = f { 1, 1, ... 1 l. 0+ f'{ 1, 1, . ,. I}, 1 
l 0, 0, ... 0, 0, 0, ... 0 J 0, 0, ... ° 

= f' { 1, 1, ... ' 1 ~ (2) 
0,0, .. , 0) 

Therefore, if ever~' term of f be of the form 

f { 1, 1. . -' 1 ~ ,{ Xl a.'2·,· Xl; } 

0, 0, ... ° J -.1'1 -.l'2 ... -."Cl; 

then every term of <I> in which .1'/:+1 is posith-e will be of the form 

f { I, 1. . .. 1 l { Xl X2... a.'k:. . 
f ' , ',1'k+1 

0, 0, ... 0) -a.'l -;1'2 .•• -a.',,) 

and the coefficient of any such term will be f fl 01, 01, ... I}, which, , " .. ° 
b~' (1), is <I> { 1, 1, .. - 1, 1 } . 

0,0, ." 0, 

And similarly, if every term of f I be of the form 

f' { 1, 1, ... 1 t ,{ Xl a'2.·· Xk ~ 
0, 0, .. , ° J -J:1 -a:2 ... -.7:" ) 

then e\'ery term of <I> in which .),'k+1 is negative will be of the form 

f ' { 1, 1, ... 1 j' {Xl ~'l:2'" X''} 
, '-Xk+1 

0, 0, ' .. ° -Xl -,1'2 • , . -,'I:" 
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and the coefficient of anv such term will be f! { 1, ], ... 1 '" , which, 
• .' l 0,0, ... 0_ 

b . (?) . '" r 1, 1, . .. 1, 0 l J -", IS '±' ~ (. 
L 0, 0, ... 0, J 

Hence every term of cP will be of the form 

{ I"' { , "" ,1, ... 1, 1 :. .1'1 .r~... :rj: .1'1:+1 , 
'±' ( • (" 

0, 0, '" 0, ° J -.1'1 -,['2 ••• -.r!; -.1'/:-;"1 j 

(c) Since the theorem holds for functions of one \>ariable, and 
since if it hold for functions of k variables, it will hold for functions 
of k + 1 variables, therefore it holds for functions of any number of 
varia bIes, 

For functions of one variable, further law:> of the Sllme type as G· :23-
but less useful-have been gh'en by Peirce and Schroder. 

Iff(x) = Ax+B-:i:: 

6·25 f(l) = f(A. + B) = fe-A +-B). 

6,26 f(O) = f(A·B) = f(-A·-B). 

6·27 f(A) = A + B = fe-B) = fCA ·-B) = f(A +-B) 
= f(l) + f(O) = fe.r) +/(-:'1:). 

6·28 /CB) = A·B = fe-A) = fe-A ·B) = fe-A + B) 
= j\l) 'f(O) = f(:r) ·f(-·r). 

The proofs of these im'olve no difficulties and may be omitted. 

In theorems to be given later, it will be convenient to denote the coef
ficients in functions of the form cp(a'J, ;1'2, ,., ;['n) by AI. A. 2, A. a, " . .1. 2", 

or by C\, O2, Ca, ... , etc. This notation is perfectly definite, since the 
order of terms in the normal form of a function is fixed. If the argument 
of an,\> function be (;('1, a'2, ." xn ), then anyone of the variables, :tk, will 
be positive in the term of which em is the coefficient in case 

p.2k- 1 < 1n:::::; (p + 1)·2k-l 

where p = any even integer (including 0). Otherwise "Ic 'will be negatiye 
in the term. Thus it may be determined, for each of the yariables in the 
function, whether it is positive or negative in the term of which em is the 
coefficient, and the term is thus completely specified. 'Ye make no use 
of this law, except that it validates the proposed notation. 

Occasionally it will be convenient to distinguish the coefficients of those 
terms in a function in which some one of the variables, say .tlc, is positive 
from the coefficients of terms in which :ric is negative. ,\Ye shall do this 
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h~- u"ing diifE'rent letter::;. a::l Pl. p~. Ps, ..• , for coefficients of terms in 
which .r,; is positive, and Q:. Q~, Q3 • ... for coefficients of terms in which :Ck 

is lleguth·e. This notation is perfectly definite, since the number of terms, 
for a function of n yariables, i::i always :2", the number of those in which Xk 

is posith-e is alwa~-s equal to the number of those in which it is negative, 
and the distribution of the terms in which .1'1; is positive, or is negative. is 
cletermined by the law ~h-ell abo\"{'. 

Tht' sum of the coefficients, Al + ..12 + As + ... , will frequently be indi
eated by L--1 or 2:.-11.; the product, .-:h· ..1 2 ' As' . .. by II A or II A h • 

h h 

::;ince the number of coefficients im-oh"ed will always be £..\:ed by the func
tion which is in question. it will be unnecessary to indicate numerically the 
range of the operators 2: and II. 

The Limits of a Function.-The lower limit of any function is the prod
uct of the coefficients in the function, and the upper limit is the sum of 
the coefficients. 

6·3 ABe A .1' + B -.r e A + B. 

(.d. B)(A.1' + B -x) = A B.1: + A B -x = A B . 
Hence [1·9J A B eA.1:' +B -x. 
And (A x + B -.1:') (A + B) = A .1: + A B -x + A B .r + B -.r 

= (A B + .-1) x + (.-1 B + B) -x. 
But [5·4] A B+.-1 = A, and A B+B = B. 
Hence (A.r + B -.1') (A + B) = .-1 x + B -.t, and [1· 9] A;t + B -.1:' 

eA+B. 

6·31 f(B) ef(.r) ef(A). 
[6·;3 and 6·:20, 6·27] 

6 ·32 If the coefficients in any function, F(.rl' X2 • ••• xn ), be 01, c~, C3, ..• , 

then 

II 0 e F(Xl, X2, ••• xn) e 2:0-
(a) By 6·;3, the theorem holds for functions of one variable. 
(b) Let <PCXl, :1'2, '" Xk, Xk+!) be any function of k + 1 variables. 

By 6·11, for somef and somef', -

<p(.rIo X2, ... :1'k. Xk+l) = f(:r.lo '-1'2, ••• XI;) 'Xk+! 

+ f I (XlJ .1:'2, ••• Xk)' -Xk+l (1) 

Since this last expression may be regarded as a function of Xk+l in 
which the coefficients are the functions f and f I, [6·3] 

f(x1, X2, •.. Xk) Xf'(Xl, X2, ... Xk) e <l>(Xl, X2, '" Xk, Xk+l) 
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Let AdcI>}, A·~tcI>l, .L~<I>L etc., be here the coefficients in <I>; ~l! 
, r fl .1 'fl . t th ffi . . > 1 1 (,. I l' ,. 1\ 1 r ., l 

.:1. 2 t,I,·":1;>I l.ec., ecoe .clentsm}; anet.-li] ,':2:J ),'-:;!11 , 

etc., the coefficients inf '. 

If ll.-tlfl ef and ILllJ'1 ef f , then [0·3] 

IIAlfl x IIA[f'l efxf' 

and, b;; (1), ll.-1{fl x ITA U 'j e cI>. 

But since (1) holds, any coefficient in if) will be either a coefficient 
in f or a coefficient in f', and hence 

II.lln x IIAU'l = IT,'n<'Pl 
Hence if the theorem hold for function" of l: yariables, so that 

ITA Ifl ef(:rl, .l'2, ... ird and ITA:r cf .1'2. '" :fIJ. 

then ITA I <'PI eq,(xl, X2, ... Xk. Xk+l)' 
Similarly, since (1) holds, [0·2:3J cI> cf +f'. 

Hence if f e LA lfl and f' c LA U '}, then [5, 31] 

cI> c LA. If} + LA if 'I 
But since any coefficient in <P is either a coefficient in f. or a coef
ficient in f f, LA Ifl + LA If '} = LA I cpJ. 

Hence cp C LA ( cI>). 
Thus if the theorem hold for functions of lLvariables, it will 

hold for functions of ,,: + 1 variables. 
(c) Since the theorem holds for functions of one variable, and 

since if it hold for functions of k yariables .. it "'ill hold for functions 
of k + 1 variables, therefore it holds generally. 

As we shall see, these theorems concerning the limits of functions are 
the basis of the method by which eliminations are made. 

Functions of Functions.-Since all functions of the same yariables may 
be given the same normal form, the operations of the algebra ma~' frequently 
be performed simply by operating upon the coefficients. 

6·4 Hf(x) = Ax+B-x, then -[f(x)J = -A.1'+-B-.t. 

[3·4J -(A x + B -x) = -(A x) ·-(B -x) 

= (-A+-x)(-B+.,·) =-A-B+-Ax+-B-x 

= (-A -B +-A);l: + (-A -B +-B) -x 

But [5·4J -A -B + -A = -A and -A -B + -B = -B. 
Hence -(A.l:+B-x) = -Ax+-B-x. 
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6.41 The negath'e or any runction, in the normal rorm, is round by re
placing each of the coefficients in the function by its negatiye. 

(0) B~' G· -1, the theorem is true for runctions of one variable. 
If the theorem hold for functions or h variables, then it will 

hold for functions of k + 1 Yariables. 
Let Ft,.I'j, .l·~, .. , ;1:", .l'l:+l) be any function of Ii: + 1 yariables. 

Then b~' I). 11 and 3·2, for some f and some! I, 

-[F(Xl .• • 1:~, .... 1';" Xk+l)] = -[ !(XI, X2, .•• Xk)' X/:+1 

+ f I (Xl, X2, ••• XIc)' -.1'/:+d 

But f(X1, X2, .... r/:) ';1'1:+1 + f '(x!, X2, ... XI:) '-X"+l may be regarded 
as a function of .l'k+l· 

Hence, by 6·4, 

-[ /(.1'11 1'2, ... XI:)' Xk+l + ! '(Xl, X2, ••• Xk)' -;l'k+1] 

= -[f(XI, X2, ... Xk)]'Xk+l +-[f'(xl, X2, ••• Xk)]'-,l'k+l 

Hence if the theorem be true for functions or k variables, so that 
the negative of f is found by replacing each or the coefficients in f by 
its negatiye and the negative of f' is round by replacing each of the 
coefficients in !' by its negative, then the negative of F will be 
found by replacing each of the coefficients in F by its negative, for, 
as has just been shown, any term of 

-[F(.l'r, X2, .,. a.'k, Xk+1)] 

in which :1.'k+1 is positiye is such that its coefficient is a coefficient in 

and any term of 

in which Xk+l is negatiye is such that its coefficient is a coefficient in 

-[f '(.1:r, X2, ...• l',,) J 

(c) Since (a) and (b) hold, therefore the theorem holds generall;y. 

Since a difference in the order of terms is not material, 6·41 holds not 
only for functions in the normal form but for any function which is com
pletely expanded so that every element involved appears, either positive 
or negative, in each of the terms. It should be remembered that if any 
term of an expanded function is missing, its coefficient is 0, and in the 
negative of the function that term will appeal' 'with the coefficient 1. 
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6·42 The sum of any two functions of the same yariahles, q,(.l'l, ,l'~, ... ,1',,) 

and 'lr(x1, ·1'2., ••• ;r,,), is another function of these same yuriables, 

such that the coefficient of any term in F is the sum of the coefficients of 
the corresponding terms in <P and 'lr. 

By G ·15, <p(;l'1, X2, , .. ;l'") and 'lr(l'lo ;r~, ... 

except in the coefficients of the terms, 
cannot differ 

Let .,:h, A 2, As, etc., be the coefficients in <P; B 1 , B 2 , B 3 , etc" the 
coefficients of the corresponding terms in '¥. For an~: two such cor-

• ( Xl ;1:0 •• , Xn ~ r ,rl ;1'0... ,1'" I 
respondmg terms, Ak l-.l.'l -.1': ... -.1.'n ~'.. anrl B/: L -.1:'1 -.1': ' .. -.r, J' 

/ { Xl ;r2... .1'r. 1 B ( ,1.'1' ,1.'2 . " ,1'" 1 .. 
--J.l;; r + k 1 ?" 

-·1:1 -.1:2 ..• -.1.'n J l -.1'1 -.r~ ... -.r" J 

'1 B' f ·1:'1 .1'2... .1'" ,_ 
I.' i: + ;,-J . _. _, _ • 

l .1.1 .1.2... .1 r. " 

And since addition is associatiye and commutath-e, the sum of the 
two functions is equimlent to the sum of the sums of sueh corre
sponding terms, pair by pair. 

6,43 The product of two functions of the same yariables, <P(Xb ;1'2' •..• rr.) 

and 'lr(Xl, X2, , .. x n ), is another function oT these same I'ariables, 

F(X1, .1'2, ••• ;1,',,), 

such that the coefficient of any term in F is the product of the coeffi~ 
cients of the corresponding terms in <P and \If. 

L A { Xl X2... .In 1 d B { Xl X:l •• , .en l b ' et k r an !; ! e any two 
-Xl -.1:2 •.. -Xn j -.'1:1 -.1:2 •.. -.1:" J 

corresponding tenns in <P and \If_ 

By 6 ·15, <P and 'lr do not differ except in the coefficients, and by 

6·17, whatever the coefficients in the normal Torm of a function, the 
product of any two terms is null. Hence aU the cro88-products of 
terms in if> and 'lr will be null, and the product of the functions will 
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he equindent to the sum of the products of their corresponding terms, 

pair by pair. 

Since in this algebra two functions in which the yariables are not the 
::inme may be so expanded as to become functions of the same yariables, 
these theorems concerning functions of functions are yery useful. 

IY. FrxD.uIEXTAL L.-\.WS OF THE THEORY OF EQ"C"ATIOKS 

lYe l111\·e now to consider the methods by which any gil'en element 
may be eliminated from an equation, and the methods by which the yaIue 
of an "unknown" may be deriyed from a given equation or equations. The 
mO.3t conwnient form of equation for eliminations and solutions is the 
equation with one member 0. 

Equivalent Equations of Different Forms.-If an equation be not in the 
form in which one member is 0, it may be giwn that form by multiplying 
each side into the negatiye of the other and adding these t\yO products. 

7 ,I a = b is equiyalent to a -b + -(I b = O. 

[2·2J a = b is equiyalent to the pair, a c band be a. 

r-!·~)l a cb is equiyulent to a -b = o. and b ca to -a b = O. 
And [5, T:?] a -b = ° and -a b = 0 are together equiyalent to a-b 

+ -a b = 0. 

The transformation of an equation ,,·ith one member 1 is obvious: 

7, 12 a = 1 is equivalent to -a = O. 
[:3· :?] 

By 6, 41, an~· equation of the form f(.1"l, .1'2, ... Xn) = 1 is reduced to the 

form in which one member is ° simpl~· by replacing each of the coefficients 
inf b~' its neg-atiw. 

Of especial interest is the transformation of equations in which both 
members are functions of the same variables. 

7,13 If cI>(a'l' J.'2, .•• ;t'n) and W(:fl' X2, ... Xn) be any h\'o functions of the 
same \'ariables, then 

is equiyalent to FC.fl, ,1'2, •.. ;l"n) = 0, where F is a function such that 
if Ab .b As, etc., be the coefficients in cI>, and B1, B2, B3, etc., be the coef
ficients or the corresponding terms in w, then the coefficients of the corre
sponding terms in F will be (AI -B1 + -.·h B 1), (..12 -B2 + -A.2 B2), (As -Bs 
+ -..lsBs), etc. 
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By 7·1. 1> = '¥ is equiyalent to (1) x -\fIj + !:-1> x'1') = n. 
B~' 6·41, -1> and -'IF are functions of the same yuriables as 1> and 'l!. 

Hence, by 6·4:3, 1> X-'¥ and -1> x'¥ will each be functions of these 
same nriables, and by lj·42, (1) x-'li) + (-<P x \ji) will al:30 be a 
function of these same variable:;. 

Hence 1>, 'l!, -1>, -'l!, <P x-'l!, -ip x \fI, and ($ x-'l!) + (-$ x 'l!; are aU 
functions of the same yariables and, by Ii· Hi, will not differ except 
in the coefficients of the terms. 

If .-h be any coefficient in 1>, and Bic the corresponding coefficient 
in 'IF, then b~' 6·-11, the corresponding coefficient in -q, will be -.4~ 
and the corresponding coefficient in -\fI will be -B". 
Hence, b~· 6·4:3, the co'rre;lponding coefficient in q, x -w ,,,ill be 

A" -Bk' and the corresponding coefficient in -1> x \fI ,vill be -AkBI;. 
Hence, by (3. -12, the corresponding coefficient in (1) x -'IF) + (-1> x'lF) 

will be -"h -Bk + -AkB/:. 
Thus (q, x -"\fI) + (-q, x"\fl) is the function F, as described above, and 
the theorem holds. 

By 7 ·1, for eyery equation in the algebra there is an equi"alent equation 
in the form in which one member is 0, and b~' 7 ·13 the reduction can u'3ually 
be made by inspection. 

One of the most important additions to the general method:; of the 
algebra which has become current since the publication of Scbroder's work 
is Poretsky's Law of Forms. 9 By this law, given an~' equation, an equh'a
lent equation of which one member may be chosen at will can be derived. 

7·15 a = 0 is equivalent to t = a-t+-a t. 

If a = 0, a-t+-a t = O'-i+ l·t = t. 
And if t = a -t + -a t, then [7 ·1] 

(a -t + -a t) -t + (a t + -a -t) t = 0 = a -t + a t = a 

Since t may here be any fUllction in the algebra, this proyes that every 
equation has an unlimited number of equivalents. The more general form 

of the law is: 

7 ·16 a = b is equivalent to t = (a b + -a -b) t + (a -b + -a b) -to 

[7 ·1] a = b is equivalent to a -b + -a b = 0. 

And [6,4] -(a-b+-ab) = ab+-a-b. 

Hence [7 'I5} Q.E.D. 

The number of equations equivalent to a given equation and expressible 
9 See Sept lois jondamentales de la th€~rie des e{]alites lcgiques, Chap. 1. 

11 
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in term~ of n elements will be half the number of distinct functions which 

ean be formed from n element" and their negati';es. that is, 2"n/'2. 
The :->ixteen di::;tinct function::: expressible in terms of two elements, 

o and b. are: 

a, -(I, b, -h, n (i. e., a -a, b -h, etc.), 1 (i. e., 0 + -0, b + -b, etc.), a b, 

a -b, -0 IJ, -(I -b, a + b, (I + -b. -a + b, -a + -b, (I b + -(I -b, and a -b + -a b. 

In terms of these, the eight equh'alent forms of the equation a = bare: 

a = b; -(I = -b; 0 = a -b + -0 b; 1 = (I b + -a -b; a b = (I + b ; a-b 
= -(I b; -a -I; = -(1 + -b: and (I + -b = -a + b. 

Each of the sixteen functions here appears on one ,or the other side of an 

equation, and none appears tn·ice. 
For an~' equation, there is such a set of equh'alents in terms of the 

elements which appear in the giYE'n equation. And ewry such set has 

what may be called its" zero member" (in the aboye, 0 = a -b + -([ b) 
and its "whole member" (in the aboye, 1 = ob+-a-b). If we obserye 

the form of 7·lG, we shall note that the functions in the "zero member" 

and "whole member" are the functions in terms of which the arbitrarily 

chosen t is determined. Any t = the t which con~ains the function {= O} 

and is contained in the function : = 11. The yalidit~· of the law depends 

simply upon the fact that, for any t, 0 e tel, i. e., t = 1· t + O· -to It is 

rather surprising that a principle so simple can ~'ield a la,,' so powerful. 

Solution of Equations in One Unknown.-Every equation 'which is pos

sible according to the laws of the system has a solution for each of the un

knowns inyolwd. This is a peculiarit~· of the algebra. \Ye turn first to 

equations in one unknown. EYery equation in .r, if it be possible in the 

algebra, has a solution in terms of the relation e. 

7·2 A.r + B -J' = 0 is equivalent to B e.r e-A. 

[.5· 72] ~l.r + B -.1: = 0 is equiYalent to the pair, A x = 0 'and 
B -x = o. 
[4·9] B -;2' = 0 is equivalent to B e.1'. 

_-\nd A .t' = 0 is equivalent to x -(-A) = 0, hence to x e-A. 

7·21 A solution in the form He:r e K is indeterminate whenever the equa

tion which gin's the solution is symmetrical \vith respect to :r and -x. 

First, if the equation be of the form A .1: + A -;;1: = O. 
The solution then is, A ex e-A. 
But if Ax + A -x = 0, then A = A (x + -x) = A x + A -.1: = 0, and 
-A = 1. 
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Hence the solution is equivalent to 0 c.1' C 1. which [.j. n 1· IS 

satisfied b~' every ,'aIue of .r. 

In general, any equation symmetrical with respect to .r and -.1,' 

which gives the solution, Ii c.r c E. will gin' also II c -." c I'::. 
But if H C.r and H c -.r, then [4· Dj II .r = II and II -.t = II. 
Hence [1, G2] II = O. 

And if xcI\. and -.rcE, then [3·3:3] .t+-.1;cE, and [4·8,5·(;:3] 
K=1. 
Hence H C.1: C I\. will be equivalent to I] c: x c 1. 

It follo\vs directly from 'i. 21 that if neither .r nor -.l' appear in an equa

tion, then although they may be introduced by expan:;ion of the functions 

,involved, the equation remains indeterminate ,yith respect to .r. 

7·22 An equation of the form A .i" + B -.r = (I determines .,. IlIIi'jllely when
ever A = -B, B = -A. 

[3·22] A = -B and -.-1 = Bare equinllent; henee either of 

these eonditions is equiyalent to both. 
[7,2] A ;1; + B -.r = 0 is equi mlent to B c.r c: -.1. 

Hence if B = -A, it is equiyalent to B C:.l~ c:B and to -A C.<' c-A, 
and hence [2· 2J to ;1' = B = -A. 

In general, an equation of the form .1.1' + B -.r = 0 determines .r be

tween the limits B and -A. Obviow:;l~', the solution is unique if, and only 

if, these limits coincide; and the solution is wholl~' indeterminate only 

when they are respectively 0 and 1, the li~iting yaines of yariable::; generaU::. 

7·221 The condition that an equation of the form A .r + B -.1' = 0 be pos

sible in the algebra, and hence that its solution be possible, is .1 B = O. 

By 6·3, ABc: A;c + B -.r:. Hence [')'()5j if A .1' + B -.1.' = 0, then 

AB = O. 
Hence if A B =!= 0, then A .r + B -.1' = 0 must be false for all yalues 

of x. 
And A x + B -.1' = 0 and the solution B c: x c: -.A are equi yalent. 

A B = 0 is called the" equation of condition ,. of A .1' + B -x = 0: it is 

a necessary, not a sufficient condition. To call it the condition that A x 

+ B -.r, = 0 have a solution seems inappropriate: the solution B C.l' c-A 
is equivalent to A :r + B -.1' = 0, whether A :1: + B -.1' = 0 be true, false, or 

impossible. The sense in which A B = 0 conditions other forms of the 

solution of A. ;1: + B -x = 0 will be made clear in what follows. 

The equation of condition is frequently useful in simplifying the solution. 



14S A Sum:y of Symbolic Logic 

(In this connection, it shonld be borne in mind that A B = ° follows from 
A .I.' + B -.r = 0.) For example, if 

a b.r + (a + b) -.j; = 0 

then (a + b) e.r e -(a b), But the equation of condition is 

a b (a + b) '= a b = 0, or, -(a b) = 1 

Hence the second half of the solution is indeterminate, and the complete 

solution may be written 
a+bex 

However, this simplified form of the solution is eq-uivalent to the original 
equation only on the assumption that the equation of condition is satisfied 

and a b = O. 

Again suppose a x + b -.1' + c = 0 

Expanding c with reference to x, and collecting coefficients, we have 

(a + c) x + (b + c) -x = ° 
and the equation of condition is 

(a+c)(b+c) = a b+ac+bc+c = ab+c = ° 
The sol ution is b+cexe-a-c 

But, b;: 5·72, the equation of condition gives c = 0, and hence -c = 1. 
Hence the complete solution may be written 

b ex e-a 

But here again, the solution b ex e-a is equiralent to the original equation 
onl~' on the assumption, contained in the equation of condition, that c = O. 

This example may also serve to illustrate the fact that in any equation 
one member of which is 0, any terms which do not involve x or -x may be 
dropped without affecting the solution for x: Ifax + b -x + C = 0, then 
br 5·72, a x + b -x = 0, and any addition to the solution by retaining c will 
be indeterminate. All terms which involve neither the Unknown nor its 
negative belong to the "symmetrical constituent" of the equation-to be 
explained shortly. 

Poretsky's Law of Forms gives immediately a determination of x which 
is equh-alent to the given equation, whether that equation involve x or ~ot. 

7·23 Ax+B-x = Ois equivalent to x = -Ax+B-x. 

[7 -15J A x + B -x = 0 is equivalent to 

x = (A.x+B-x)-x+(-Ax+-B-x)x = B-x+-Ax 
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This form of solution is also the one giyen b~' the method of .JC\"OU"."i) 

Although it is mathematicall~· objectionable that the expres~ion which 
giyes the yaIue of x should inYol"e ,(, and -.r, this is in reality a useful and 

logically simple form of the solution. It follows from ;-·2 and ;-·2:3 that 

x = ---1 x + B -x is equivalent to Bc.r c-.L 
::\Iany writers on the subject have preferred the form of solution in 

which the value of the unknown is giyen in terms of the coefficients and an 

undetermined (arbitrar;~;) parameter. This is the most .. mathematical" 
form. 

7·24 If A B = 0, as the equation A.r + B -:t: = 0 reqUIres, then A:I.: 
+ B -;r = ° is satisfied by x = B -Il + -.-1. 11, or J: = B + /I -.:1., where 11 is 
arbitrary. And this solution is complete because, for any .1' such that 

A ,c + B -x = ° there is some yalue of 1l such that .l: = B -II + -A Il = B 
+ u-A. 

(a) By 6·4, if .r = B -ll + -A. u, then -.1: = -B -ll + A 1l. 

Hence if x = B -ll + -A II, then 

A x + B -.1' = A (B -ll + -B u) + B (-B -ll + Au) 
= A B -u + A B Il = A B 

Hence if A B = 0 and :r = B -11 + -A 11, then whatever the value 

of II, A ,l' + B -.r = O. 
(b) Suppose:r known and such that A ,r + B -.r = O. 

Then if ;r = B -ll + -..:1 U, we have, by 7 -I, 

(B -ll + -A 11) -:1: + (-B -ll + A u) x 

= (A.r+-A -,1') ll+(B-,('+-B;r)-u = 0 

The condition that this equation hold for some value of 1l is, by 7·221, 

(Ax+-A-:r)(B-.I:+-Bx) = A-Bx+-AB-.r = 0 

This condition is satisfied if Ax + B -.1' = 0, for then 

A (B + -B) x + (A + -A) B -:e = A B + A -B x -I- -A B -.1' = il 

and by 5·72, A-Bx+-AB-.r = 0. 
(c) nAB = 0, thenB-n+-A 11 = B+u-A, for: 

If A B = 0, then ABu. = O. 
Hence B -11+-.4 'u = B -ll-l--A (B +-B) 1l+ A B It 

= B-u+(A+-A) Bu+-A-Bu = B (-u+u)+-A-Bn 

But [5·85J B+-A-Bu = B+u-A.. 
lO See above, p. 77. 

= B+-A -B ll. 
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the simpler form of this solution, .1' = B + II ---1, wiII be used hereafter. 

The above :::oIution ('an also be yerified b~' substituting the value given 
for .1' in the original equation. 'Ye then haye 

A (lJ -It + -A u) + B (-B -Il + A /I) = A B -li + ABu = A B 

And if A B = 0, the solution is verified for every value ofu. 

That the solution, ,l' = B -11 + -A u = B + '1/ -A, means the same as 
Bc.r c -A. will be clear if we reflect that the significance of the arbitrary 
parameter. II, is to determine the limits of the expression. 

If 11= 0, B-u+-A 1l = B+u-A = B. 
If Ii = 1. B -u + -A 1l = -A and B + u -A = B + -A. But when 

A B = 0,. B+-A = -A B+-A = -A. 

Hence x = B -II + -A u = B + '/I -A simply expresses the fact, otherwise 
stated by B C.l: c-..1, that the limits of.r are B and -A. 

The equation of condition and the solution for equations of the form 
C.r + D -x = 1, and of the form A x + B -x = C;1: + D -x, follow readily 
from the above. 

7 ·25 The equation of condition that C:l,~ + D -x = 1 is C + D = 1, and the 
solution of ex + D -:1: = 1 is -D c;r c C. 

(a) BJ'f)·3, C:r+D-:ccC+D. 
Hence if there be any value of x for which ex + D -x = 1, then 
necessarily C + D = 1. 

(b) If C.l"+D-."C = 1, then [6·4] -Ol:+-D-;.r; = 0, and [7·2] 
-D c.tcC'. 

7 ·26 If 0 + D = 1, then the equation ex + D -x = 1 is satisfied by 
x = -D + 11 C, where II is arbitrary. 

Since [6·4] O.r + D -x = 1 is equivalent to -0 x +-D -x = 0, 
and C + D = 1 is equivalent to -C -D = 0, the theorem follows 
from 7 ·24. 

• 
7·27 If A :x + B -x = C x + D -x, the equation of condition is 

(A -C+-A C)(B-D+-B D) = 0 

and the solution is B -D + -B Dc:x c.A C + -.A -0, or 

.J; = B -D + -B D + 1( (A 0 + -A -0), where 7L is arbitrary. 

By 7 '13, A x + B -,J; = C;1.' + D -x is equivalent to 

(A -(1 + -.:1 C) ;r + (B -D + -B if) -x = o. 
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Hence, b~' ";·221, the equation of condition is as ginm above. 
And h~' '7,2 and";· 24, the :lolution is 

B-D+-BDc,rc-(A-C+-AC), or 
.r = B -D + -B D + lI·-(A -C + -A C), 'Ivhere 11 is arbitrar;;. 

And [(j·4]-(A -C+-A C) = A (,+-A -C. 

ViI 

The subject of simultaneous equations is Yery simple, although the 
clearest notation we haw been able to devise is somewhat cumbersome. 

7·3 The condition that 11 equations in one unknown, A 1.1' + Bl -.r = 0, 

A2,<, + B2 -.1' = 0, ... A".,' + B" -:t' = 0, may be regarded as simultaneous, is 
the condition that 

L (Ail Ek) = ° 
II, k 

And the solution which they giw, on that condition, is 

L Ek ca: c II -.-l k 

k k 

or x = L Bk + u· II -Ak, where II is arbitrary. 
k k 

By 6·42 and 5· 72, ~·:j1.1· + Bl -;1; = 0, A 2x + B2 -X' = 0, ", 

A ".1: + En -x = 0, are together equivalent to 

(AI + A2 + ... + A n):c + (Bl + B2 + _ .. + Bn) -x = ° 
or LA k X + L Bk -.r = 0 

k k 

B~' i . 23, the equation of condition here is 

L.·P x L Bk = 0 
k k 

But LAkXLBk = (Al+A2+ ... +An)(Bl+B2+ ... +B") 
k k 

= AIBl+AlB2+ ... +AIBn+A2Bl+A2B2+ ... +A2B" 
+ A3 Bl + i:/.3 B2 + . _ . + ..13 Bn + ... + An Bl + .. , + An Bn 

= L (Ah Bk). 
h, k 

And by i . 2 and 7·24, the solution here is 

L Bk ex e-{ LAkl 
k k 

or 

And by 5·95, -{ L Ak} = II _Ak. 
k k 

It may be noted that from the solution in this equation, n2 partial solu-
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tion;;; of the form Bh c .1' C -_1.' can be derh"ed, for 

and II -AI: c-.1i. 
k 

Similarly, 2~:' - 1 partial solutions can be derived by taking selections of 

members of L Bk and II -.F. 
{; k 

Symmetrical and Unsymmetrical Constituents of Equations.-Some of 
the most important properties of equations of the form A x + B -x = 0 are 
made clear h;<-" dividing the equation into two constituents-the most 
comprehensive constituent which is symmetrical with respect to .1: and -x, 
and a compJetel~" unsymmetrical constituent. For bre,"ity, these may 
be called simply the "s~'mmetrical constituent" and the" unsymmetrical 
constituent ". In order to get the s~'mmetrical constituent complete, it 
is necessaQ' to expand each term with reference to every element in the 
function, coefficients included. Thus in _1 :t. + B -.l: = 0 it is necessary to 
expand the first term with respect to B, and the second \"ith respect to A. 

A (B + -B) x + (A + -A) B -;r = A B ;r + A B -.1' + A -B x + -A B -.1' = 0 

By 5·72, thi,s is equi';alent to the two equations, 

.1 B (.r + -.r) = A B = 0 and A -B.r + -A B -.1: = 0 

The first of these is the symmetrical constituent; the second is the unsym
metrical constituent. The symmetrical constituent will al'ways be the equa
tion of condition, while the uns~'mmetrical constituent will gi\"e the solution. 
But the form of the solution will most frequentl~~ be simplified by con
sidering the s:,:mmetrical constituent also. The unsymmetrical constituent 
will always be such that its equation of condition is satisfied a priori. Thus 
the equation of condition of 

A -B :1: + -.-1 B -.r = 0 

is (A -B) (-A B) = 0, which is an identity. 
By this method of considering symmetrical and unsymmetrical con

stituents, equations which are indeterminate reyeal that fact by haying 
no unsymmetrical constituent for the solution. Also, the method enables 
us to treat e,'en complicated equations by inspection. Remembering that 
any term in which neither .1' nor -x appears belongs to the symmetrical 
constituent, as does also the product of the coefficients of :r and -.r, the 
separation can be made directly. For example, 

(c + ;l') d + -c -d + (-a + -x) b = 0 
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will ha,'e as its equation of condition 

c d + -c -d + -<1 b + b d = I) 

and the solution will be 
b c,r c-rl 

,-\.lso, as we shall see shortly, the symmetrical constituent is always the 
complete resultant or the elimination of .r. 

The method does not readily appl;,' to equations 'which do not hu,'e 
Olle member O. But these can always be reduced to that form. How it 
extends to equations in more than one unknown will be dear from the 
treatment of such equations. 

EIiminations.-The problem of elimination is the problem. ",hat equa
tions not inyolving x or -.1:: can be derived from a given equation, or equa
tions, which do inyoh'e ;r and -.,'. In most algebras, one term can, under 
fa,'orable circumstances, be eliminated from hyo equations, two terms 
from three, n terms from n + 1 equations. But in this algebra an~' number 
of terms (and their negatives) can be eliminated from a single equation; 
and the terms to be eliminated may be chosen at 'will. The principles 
whereby such eliminations are performed have already been provided in 
theorems concerning the equation of condition. 

7·4 A B = 0 contains all the equations not im·oh'ing .r or -.1' which can 
he deri,'ed from A;1: + B -.t' = O. 

By -;·24, the complete solution of A ,1; + B -.1' = 0 is 

.l' = B -11 + -A 11 

Substituting this yalue of x in the equation, we have 

A (B -u of. -A 71) + B (-B -ll + A 11) = A B -u + A B'll = A B = 0 

Hence A B = 0 is the complete resultant of the elimination of .r. 

It is at once clear that the resultant of the elimination of .r coincides 
'with the equation of condition for solution and ,,'ith the symmetrical con
stituent of the equation. 

7 ·41 If n elements, .1:1, .'C2, :1'3, •. , .r", be eliminated from any equation, 
F(;rl" ;('2, xs, .. , ;;en) = 0, the complete resultant is the equation to 0 of the 
product of the coefficients in F(Xl, X2, .l3, .. , Xn), 

(a) By 6·1 and 7·4, the theorem is true for the elimination of 
one element, x, from any equation, f(x) = O. 

(b) If the theorem hold for the elimination or k elements, :1'1, X2, 
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:r;,. from any equation, <I> (.?:1, .1'2, ... ;I'k) = 0, then it will hold 
for the elimination of I .. + 1 elements, .1'1, .l'2, ... ;1'1.., Xk+l, from any 
equation. '1'~.1'1' .l'~, ... J.'k, J.'k+l) = 0, for: 

B~' t.i ,II. '1'(.("1 •• 1'2 •. ,. '?:k, .1'k+l) = f(·1'I, ·l'2 •. ,. ;I.'A-)' Xk+l 

+ f '(.1'1, .1'2, ." ;I.'k)· -;l'k+1' 

And the coefficients in '1' will be the coefficients in f and f', By 
i . 4. the complete resultant of eliminating .l'k+l from 

f(.1'1. .1'2, ... Xk) 'Xk+l + f '(.1'1~ :1'2, •. , ;l'k) '-;l'k+l = ° 
is 

And by 6·4:3, f(Xh .1.'2, .,' Xk) Xf'(.?:I, ;1'2, '" ;l'k) = ° is equivalent 
to <I>(;1'!, X2, ••• ;1'k) = 0, where <P is a function such that if the 
coefficients in f be PI, P2 , Pa, etc" and the corresponding coefficients 
in f' be Qh Q2, Qa, etc., then the corresponding coefficients in <I> will 
be P1Qr. P2Q2, PaQa, etc. Hence if the theorem hold for the elimina
tion of k elements, Xl> X2, .,. ;1.'k, from <PC.l'h X2, ••• :1'k) = 0, this 
elimination will giye 

(PIQl)(P2Q2)(PaQa) ... = (P1P2Pa ... QIQ2Qa ... ) = 0, 

where P1P2Pa., . QIQ2Qa. " is the product of the coefficients in <I>, 

or in f and f '-i. e., the product of the coefficients in '1'. 

Hence if the theorem hold for the elimination of k elements, Xl, X2, 

••.• Tko from <I> (x 11 :r2, ••. Xk) = 0, it will hold for the elimination of 
J.: + 1 elements, Xl> ,1'2, .,. Xb :1'k+l, from 'l!(Xl> :1:2, .. , Xk, Xk+l) = 0, 
proyided .1'k+l be the :first eliminated, 

But since the order of terms in a function is immaterial, and for 
any order of elements in the argument of a function, there is a 
normal form of the function, Xk+l in the above ma~· be any of the 
/., + 1 elements in 'l!, and the order of elimination is immaterial. 

(c) Since (a) and (b) hold, therefore the theorem holds for the 
elimination of any number of elements from the equation to ° of 
any function of these elements. 

By this theorem, it is possible to eliminate simultaneously any number of 
elements from an~' equation, by the following procedure: (1) Reduce the 
equation to the form in which one member is 0, unless it already have that 
form; (2) Deyelop the other member of the equation as a normal-form 
function of the elements to be eliminated; (3) Equate to ° the product of 
the coefficients in this function. This will be the complete elimination 
resultant. 
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Occasionall~' it is conwnient to ha\-e the elimination resultant in the 
form of an equation \'i'ith one member 1, especiaH~' if the equation which 
gh-es the resultant haye that form. 

7·42 The complete resultant of eliminating n elements, '('I •• 1'2. ..• .r n, 
from any equation, FC.i:I, ,['2, '" ,i:n ) = 1, is the equation to 1 of the sum 
of the coefficients in F(,l"I, :1:2, •..• r,,). 

Let ..11, A 2, A 3, etc., be the coefficients in F(.l·l • . l·2, ... '('n)' 

F(xr, ;1'2, " • Xn) = 1 is equi\-alent to -[F(.t·J, .1'2 ••••• r,.)] = O. And 
by 6·41, -[F(Xl' ;1'2, .•.• [.,.)] is a function, ip(.rl< .1'2 •..• J',,) , such 
that if any coefficient in P be A k , the corresponding coefficient in ip 
will be -Ak • 

Hence, by 7 ·-11, the complete resultant of eliminating .rl, X2, ... .-en, 
from F(xr, X2, ... Xn) = 1 is 

II-A = 0, or -[ II-A) 1 

But [5·95] -( II -Al = LA. Hence Q.E.D. 

For purposes of application of the algebra to ordinary reasoning, elimina
tion is a process more important than solution, siuce most processes of 
reasoning take place through the elimination of "middle" terms. For 
example: 

If all b is ;'1:, b ex, b -.1' = ° 
and no a is x, a x = 0, 
then a J' + b -x = O. \Yhence, by elimination, a b = 0, or no a is b. 

Solution of Equations in more than one Unknown.-The complete solu
tion of any equation in more than one unknown ma~' be accomplished by 
eliminating all the unknowns except one and solving for that one. repeating 
the process for each of the unknowns. Such solution ,,·ill be complete 
because the elimination, in each case, will gi-.:e the complete resultant which 
is independent of the unknowns eliminated, and each solution will be a 
solution for one unknown, and complete, by previous theorems. How
eyer, general formulae of the solution of any equation in n unknowns, for 
each of the unknowns, can be proved. 

7·5 The equation of condition of any equation in Jl unknowns is identical 
with the resultant of the elimination of all the unknowns; and this resultant 
is the condition of the solution with respect to each of the unknowns sepa
rately. 

(a) If the equation in n unkno'wns be of the form 

F(Xl, .1'2, •• , 'l'n) = 0: 



Let the 
by !;,:t~, 

I 
.1 

II A = n is a condition or the possibility of 

,,'2, • . . = 0 

II A = 0 i" the resultant of the elimination of .r!, .1."2, 

.;'", Ft..l'l, x", ... :1.',,) = O. 
If the equation in 11 unknowns have some other form than 

T.t" .,.~ ... , :r,,) = 0, then by 7' ·1, it has an equivalent which is 
of that form, and its equation of condition and its elimination 
resultant are the equivalents of the equation of condition and 
elimination resultant of its equh-alent which has the form 

F(:r.l, x~, ., .. 1.'") = 0 

The result of the elimination of all the unknowns is the 
equation o£ condition 'with respect to anyone of them, say :rk, 

because: 
The equation to be soh-ed for ;1'k will be the result of eliminat

ing all the unknowns but .1'1; from the original equation; and 
;:2) The condition that this equation, in which Xk is the only 

unknown. have a solution lor .1'" is, by (a) and (b), the same as the 
result of eliminating ,r/: from it. 
Hence the equation of condition with respect to x" is the same as 
the result of eliminating, from the original equation, first all the 
other unknowns and then Xk· 

A.nd by 7', 41 and the result of eliminating the unknowns is 
independent of the order in which they are eliminated. 

Since this theorem holds, it will be unnecessary to inwstigate separately 
the equation of condition for the .. arious forms of equations; they are 
already giwn in the theorems concerning elimination. 

7·51 _-\ny equation in n unknowns, of the form F(::t'J, X2., ' .• x,,) = 0, 
provided its equation of condition be satisfied, giws a solution for each 
of the unknowns as foHows: Let XI,; be anyone of the unknowns; let Ph Pz, 

Ps, etc., be the coefficients of those terms in F(.rll X2, •.• :rn) in which Xl; 

is positive, and Qb Q2, Qa, etc., the coefficients or those terms in which Xk 
is negative. The solution then is 

IT Q c ,rk C L.: -P, or .f!,; = II Q + U· L.: -P, where u is arbitrary. 
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(a) ily 1,·11. for some f and S0111f: / '. l\.c:. .l'", " " .. 1'" i = () is 
equivalent to r:.r-. .. 1'::. ".. ",1",. ;1';. ,r::, "". ·-,r,. = O. 

Let the coefficients in f be 1\, P~. P S1 {'tc., in f! be q~, (13, etc. 

Then P l , P 2• P 3 • etc .. will be the coefficients of those terms in F 

in which .1'k is positin', OJ. ({:;, Q3. the coefficients or terms in F in 
which .r" is negatiyc. 

If f(;I:1, ;]'2, ."" '.1'11 be regarded as a function of the yariahles, 
Xl, ;"2, ...• 1',,_10 its coefficients will be P1.l',., P:;.r;, etc. 

And if J \1'), ;]'::. " ... l',_l)· -.[', be regarded as a function of .l'll .1.'2, 

.. " ;{',,-b its coefficients will be OJ -.rr.. Q:: -,r". Q:; -.1', .. etc. 
Hence, b~- G·-:1:::. 

·-.r" = 0 

is equivalent to \lI('!'l' .1'::, ..•• ('n-l) = O. where '¥ i" a function in 
which the coefficients are (Pj.('n + Ql-'l:',.'l. I))".l'r.+(h-,);,.). I.P3:rn 
,. Q3 -,J:n), etc. 

And \lI(Xll .t·2, ... ,1'n-1) = 0 is equinllent to F' .. J:; • • 1'", ." .. 1',:) = o. 
By 7·41, the complete resultant of the elimination of .1'1, ;('~, •.. '('"_1 

from w(:t·l, X2, ••. ,tr.-J = 0 will be the equation to (I of the product 
of its coefficients,-

r 

But any expression of the form P "{',, + Q .. -.r" is a normal form func~ 
tion of x". Hence, by G· 43, 

·II(P,..1'n+Qr-.l'n) = II P.j.Tn+ IIQr-.l'" 
r r r 

By 7, 2 and 7·2-:1:, the solution of II P,.:t'" + II Q, -.1'" = 0 i" 
i' 

II Q C;1'" c-{II PI, or :l', = II Q + lI·-(II PI 

And [5·951] -fil Pl = I: -P, 
(b) Since the order of terms in a function is immaterial, and 

for any order or the variables in the argument of a function there is a 

normal form of the function, x" in the above may be an,\' one of the 

variables in F(Xh X2, •.. x n), and f(Xl, :r2, .". ;1',,-1) and f '(;);1, X2, 

... :t'n-l) each some function of the remaining n - 1 variables, 
Therefore, the theorem holds for anyone of the ,-ariables, Xk, 

That a single equation gh-es a solution for any number of unknowns 

is another peculiarity of the algebra, due to the fact that from a single 

equation any number of unknowns may be eliminated. 
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As an examplt' of the last theorem, ,H' giw the solution of the exemplar 

in two unknowll';, firs! dirt'ctly from the theorem, then by elimina

tion and :"olutioll for each unknown 8eparately. 
,1; .1 ./' .'I + B -.1' ,II + (' .1.' -y + D -.r -y = 0 has the equation of condition, 

.4. B C J) = () 

Pro\'ided this be satisfied. the solutions for .r and yare 

B J) C ,r e -A + -C, 

CDc!I e -A + -B, 

or 

01' 

:1: = B D + u (-A +-C) 

Y = C D + n (-A + -B) 

,:2) A ,1' ,II + B -,l' Y + C .i' -y + D -;r -y = 0 is equh~alent to 

(A .1" + B -.r) y + (C'.r + D -.1") -y = 0 

and to (,b) (A y + C -V) ;t + (B y + D -.11) -.l: = 0 

Eliminating y from (a), ,~~e haye 

(A .1' + B -.1') \ C .r + D -.r) = A C ;1' + B D -.r = 0 

The equation of condition with respect to :1.: is, then, 

(.-1 (')(B D) = ABC]) = 0 

And the solution for .1' is 

B D C.t' c-(.1 C), or ;r = B D + ll·-(A C). And -(.-1 C) = -A +-0 

Eliminating ,r from (b), we have 

(Ay+C-y)(By+D-y) = ABy+CD-y = 0 

The equation of condition with respect to y is, then, ABC D = O. And 

the solution for y is 

C]) ey c-(A B), or !! = CD + 1'._(.:1 B). And -(A B) = -A +-B 

Another method of solution for equations in two unknowns, x and y, 

'would be to solyc for II and for -y in terms of the coefficients, with x and 'u 

as undetermined parameters, then eliminate .11 by substituting this yalue 

of it in the original equation, and soln for .r. By a similar substitution, 

:r may then be eliminated and the resulting equation solved for y. This 

method may inspire more confidence on the part of those unfamiliar 'with 

this algebra, since it is a general algebraic method, except that in other 

algebras more than one equation is required. 

The solution of A x y + B -:r y + ex -y + D -x -y = 0 for y is 

y= (C:r+])-.r)+u·-(AJ:+B-x) = (O+U-A).1;+(D+u-B)-;l: 
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The solution for -y is 

-y = (A,i'+B-.l')+L"-IC.r+D-/) = U+I'-C).;,+;'B+l'-D)-.l' 

Suhstituting these \'alue;; for 1I and -11 in tht> original equation. 

.,' + B -.1')[(' + 11 -A) .r + + 11 -B) -.1'J 

Hence 

+ ie.r +]) -,l'JILi +,' -C') ,r + tTl + /' -lJ) -.r] 

= A (C + II -.1) .r + B tV + 11 -Bl-.l: + (' Vi + I' -C) .r + D I,B + I' -D) -.t: 

= .1 (' ;t' + B D -,,' = o. 
B j) c ,(' c -.1 +-C'. 

Tll(;'oreticall~'. this methud can be extended to equation;; in any number of 
unknowns: practicall~', it is too cumber:::iume anJ tedious to be used at all, 

7,52 Any equation in II unknown,;. of the form 

giH:s a solution for each of the unknowns a::: follow~: Let .t'i; bE" anyone 
of the unknmms; let Pl. P~. P3 • ••• q:, q~. Q, . .. , be the coeffieient-; in F, 
and Jl1• Jl~. J13 •... Xl • .Y~ .• '.'3 •..• the eoefficientti of the eorre:::.ponding 
terms in J. so that PI' and .III' are ('oeffieients of terms in ,yhich .r;, is positi\'c. 

and Qr and XI' are coefficients of term,; in which .1'1: is l1egatiw. The solu
tion for .1'/; then is 

II (Qr-Sr+-Q,·X1.) C.l'"C L (PrJI,.+-Pr-JI,.) 
I' 

or .rk =II (Q,.-Sr+-Q"Sr)+U,L(PrJL+-Pr-JIJ 

B~' i ,1:3. F(.rI .. l.'~, ...• r r) = f(.1'l • • l'~. .. . is equinllent to 
¢(.t'I, :{'~, ., . . rn) = 0, where q, is a function such that if and Br 
be coefficients of an~' two corresponding term:; in F and J. then the 

coefficient of the corresponding term in q, will be .11' - B r + -A r B f' 
Hence, by i ,51, the solution will be 

II (Qr -'Yr + -Qr XI') c .r/; C L -(PI' -.111' + -Po" JO 

or ;l'k = II (Qr -.Yr + -Qr XI') + 11' L -(P r -JL + -p, . .II,.) 

7·53 The condition that 1ll equations in n unknowns, each of the form 

F(Xl, :r~, .. , ~l'") = 0, may be regarded as simultaneous, is as follows: 

Let the coefficients of the terms in F\ in the equation P(J'l, :1:'2, .,. J'n) = 0, 
be PIt, P21, Pst, '" Qll, Q21, Q.t, ... ; let the coefficients of the corre-



1(;0 

term~ in F~. in the equation 
o·~ f1,.," " " .; the coefficients of the corresponding terms in .. ~ ., 1t' .. , . ~ 

in the equation F"· .' ,i'~, . " = 0, be PI"', P 2"', P3 "", •• , QI'", Q~m, 
The condition then is 

II [2: P/'] x II[2: Qr"] = 0 
It r II 

Or if C ,. be an;" coefficient, whether P or Q, in Fh, the condition is 

II [2: C,/,] = 0 
h 

.\nd the solution which n such equations gh'e, on this condition, for an;: 
one of the unknowns, XI:, is as follows: Let P 1h, P 2h, Pl, , .. be the coef
ficiel]t" or those terms, in anyone of the equations Fh = 0, in which :t']: is 
positiYe, and let Q/', Q2\ Qi, ." be the coefficients of those terms, In 

P = 0, in which a'/: is negatiyc, The solution then is 

II [2: Q/'J CXk C 2: [II -P/'] 
r h r It 

or J.'I; = II [2: Q,h] + 11' L [II -P,i'j 
r k h 

By 13·4:2, in equations in n unknowns, each of the form F(:c1' X2, 

· , . J',:) = 0, are together equivalent to the single equation <1>(,1'1, ~1'~, 

• , , ,1.',;) = 0, where each of the coefficients in <1> is the sum of the 
corresponding coefficients in P, P, P, ... Fm, -That is, if PrI, Pr~, 
· .. Prm be the coefficients of corresponding terms in F\ F~, 
then the coefficient of the corresponding term in <1> ,rill be 

or 

17m ... ..( , 

and if Qrl, Qt~, ... Q,.m be the coefficients of corresponding terms in 
P, P, pm, then the coefficient of the corresponding term in iP 

,vill be 

Q,.I + Q,.~ + . , . + Qrm, or 

The equation of condition for <1> = 0, and hence the condition that 
F = 0, F~ = 0, '" Fm = 0 may be regarded as simultaneous, is 
the equation to 0 of the product of the coefficients in <1>; that is, 

I: P/' x I: Pi' x L Pi x, .. xL Ql" X L Q/' x 2: Q3h x.,, = 0 
h h II h" It 

or II [2: PrhJ X II[L Qrh] = 0 
" r It 

And by /,51, the solution of <1>(:1.'1, :t2, ." x,,) = 0 for XIc is 

II [L Qrh] CXk C L -[L PrhJ ,. ',r h 
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or 

And by 5·95, -(2::: P,h] = II -PI'. 
" h 

7·54 The condition that rn equations in n unknowns, each of the form 

may be regarded as simultaneous, is as follows: Let the coefficients in Fl .• 
in the equation Fl = f 1, be PIt, P~l, P31, •. 0 Ql, Q}, Q}, .00' and let the 
coefficients of the corresponding terms in f 1, in the equation Fl = r, be 
JIll, Jl~l, J131, 00' XII, ~Y21, Xi, 0.0; let the coefficients of the corresponding 
terms in F2, in the equation F~ = f2, be P12, P22, pol, 00, Q12, Q2~' Q,2, .. 0' 

and let the coefficients of the corresponding terms in J 2 be J112, .1122, J132, 
. o. ].;12, J.Y22, X32, ••• ; let the coefficients of the corresponding terms in Fro, 
in the equation F'" = f m, be Plm, P2m, Pam, .. 0 Q1m, Q2"', Q3m, . 0', and 
let the coefficients of the corresponding terms in j TTl be J11m , ~1l2"" 313"', 

J.Y1m, X 2m, X 3m, .... The condition then is 

II [2:: (Prh -J1/' + -P/' J1/')] x II [2:: (Q,k -S/' + _Q,h ~Y = 0 
r II II 

or if Ark represent any coefficient in Fh, \yhether P or Q, and B/' represent 
the corresponding coefficient in f ", whether Jl or S, the condition is 

II [2:: (A/' _B,h + _Arh B/)1 = 0 
It 

And the solution 'whichrn such equations gh'e, on this condition, for an~
one of the unknowns, Xb is as follows: Let PI' and JI/ be the coefficients 
of those terms, in anyone of the equations F" = f h, in which Xk is positive, 
and let Q I' and S /, be the coefficients of the terms, in P = f h, in which Xk 

is negati,-e. The solution then is 

II [2:: (Q/' -lYrh + -QrhNrh)] C ·1'k C 2:: [II (Prh J1/' + -Pi' -J1/')] 
.. h r h 

or Xk = II [2:: (Qrh -N/' + -Qrh NTh)] + u· 2:: [II (Prh JITh + -PTh -.:.1//'-)] 

12 

r It k 

By 7 ·13, Fh(');l, X2, ••• Xn) = f h(X'!> X2, ••• Xn) is equivalent to 
"W(Xl, X2, 0 •• Xn) = 0, where "W is a function such that if Qrh and Srh 

be coefficients of corresponding terms in Fh and f \ the coefficient 
of the corresponding term in \]! will be Q/' -.i.Yrh + _Qrh A'rh, and if 
P Th and JJ/' be coefficients of corresponding terms in P and f \ the 
coefficient ofthe corresponding term in "W will be P rh - J[ /' + - P Th .V /'. 
And -(P/'-JO+-PrhllO) = P/'.J.VI'+-P/'-Jl,.h. 
Hence the theorem follows from 7· 53. 
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F,',l';, ,t'~. = .I: ,1'1, ,l'~, . . . i:; a perfectly general equation, since 

F and f nUl~' be any exprE'3sions in the algebra, de\'eloped as functions of 
the Y:1l'iables in qut':3tiol!. 7· .)± giW5, then, the condition and the solution 
of any number of simultaneous equations. in any number of unknowns, for 
E'2-ch of the unknmmi'. This algebra particularly lends itself to generaliza
tion. and this is its most general theorem. It is the most general theorem 
concerning solutions in the whole of mathematics. 

Boole's General Problem.-Boole proposed the following as the general 

problem of the algebra of logic.u 
Gh'en any equation connecting the symbols :r, y, ... 'If, Z, •..• Re

quired to determine the logical expression of any class expressed in an~' 
way by the symbols .1:, y, ... in terms of the remaining symbols Ie, Z, 

lYe may express this: Giwn t = f(;1:, Jj, ... ) and 4?(x, Jj, ... ) = PCIC, Z, 

... ); to determine t in terms of U', z, .... This is perfectly general, since 
if .1', p . .. _ and Ii', Z, '" are connected by any number of equations, there 
is, by i -I and .3·72, a single equation equivalent to them alL The rule 
for solution may be stated: Reduce both t = fex, y, ... ) and 4?(a:, y, ... ) 

= pCtt', z, ... ) to the form of equations with one member 0, combine them 
by addition into a single equation, eliminate ;C', y, ... , and solye for t. By 

7 ·1, the form of equation with one member ° is equh'alent to the other 
form. And by;)· 72, the sum of two equations with one member 0 is 
equi,'alent to the equations added. Hence the single equation resulting 
from the process prescribed b;.; our rule will contain all the data. The 
result of eliminating will be the complete resultant 'which is independent 
of these, and the solution for t will thus be the most complete determination 
of t in terms of ll.', z, .. , afforded by the data. 

Consequences of Equations in General.-A word of caution with refer
ence to the manipulation of equations in this algebra may not be out of 
place. As compared with other algebras, the algebra of logic gives more 
room for choice in this matter. Further, in the most useful applications 
of the algebra, there are frequently problems of procedure which are not 
resolved simply by eliminating this and solving for that. The choice of 
method must, then, be determined with reference to the end in "iew. But 
the following general rules are of service: 

(1) Get the completest possible expression = 0, or the least inclusive 
possible expression = 1. 

a + b + c + . .. = 0 gIVes a = 0, b = 0, c = 0, ... , a + b = 0, a + c = 0, 
l:Lau:s of Thought, p. 140. 
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etc. But a = 0 will not generally giye a + b = 0, etc. Abo, ([ = 1 giYeS 

a + b = 1, a + ... = 1, but a + b = 1 will not generally gin:, a = 1. 

(2) Reduce any number of equations, with whieh it i:3 nec(';;sal'~' to deal, 

to a single equit'alent equation. by first reducing each to the form in which 

one member is 0 and then adding. The yuriou:> constituent equations 

can always be recovered if that be desirable. and the single equation gives 

other derivatives also, besides being easier to manipulate. Do not forget 

that it is possible so to combine equations that the result is less general 

than the data. If we ha\'e a = 0 and b = 0, we haye also a = b, or a b = 0, 

or a + b = 0, according to the mode of combination. But a + b = 0 i::; 
equivalent to the data, while the other h.-o are less comprehensive. 

A general method b~' which consequences of a given equation, in any 
desired terms, may be derived, was formulated by Poretsky,l~ and is, in 
fact, a corollary of his Law of Forms. given aboYt'. '\Ye haw seen that 

this law may be formulated as the principle that if a· = b, and therefore 

a -b + -a b = ° and a b + -a -b = 1, then any t is such that (I -b + -a bet 
and tea b + -a -b, or an~" t = the t which contains the "zero member" 

of the set of equations equivalent to a = b, and is contained in the "whole 

member" of this set. ~ow if .1: c t, Il.r c t, for any 11 whatever, and thus the 

"zero member" of the Law of Forms may be multiplied by an~' arbitrarily 

chosen 1l which we choose to introduce. Similarly, if t c y, then t C,ll + r, 
and the "whole member" in the Law of Fotms may be increased by the 

addition of any arbitrarily chosen 1'. This gives the Law of Consequences. 

7·6 If a = b, then t = (a b + -a -b + u) t + l' (a -b + -a b) -t, where u and l' 

are arbitrary. 

[7 ·1·12j If a = b, then (! -b + -a b = 0 and a b + -a -b = 1. 

Hence Ca b + -a -b + Zl) t + v (a -b + -a· b) -t = (1 + ll) t +v,O· -i -..: t. 

This law includes all the possibJe consequences of the given equation. 

First, let us see that it is more general than the previous formulae of elimina

tion and solution. Given the equation A .:r + B -.t = 0, and choosing A B 
for t. we should get the elimination resultant. 

If Ax + B -x = 0, then A B = (-A x + -B -,'I; + u) A B 
+ 1.' (A.;r + B -.1.')(-.1 + -B) 

= u A. B + v (A. -B .1: + -A B -x). 

Since u and v are both arbitrary and may assume the value 0, there

fore A B = O. 

12 S~pt lois, etc., Chap. XII. 
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But this is only one of the unlimited expressions for A B which the law 

gives. Letting 11 = 0 .. and /.' = 1, we have 

A B = A - B :r + -A B -,1: 

Letting 1l = A and ~. = B, we h3.\'e 

A B = A B + -A B -x 

And ,,0 on. But it will be found that eyery one of the equivalents of A B 
which the law gin"s will be null. 

Choosing x lor our t, we should get the solution. 

If .:1 ;t + B -a; = 0, then x = (-A x + -B -x + 7./) X + v (A x + B -x) -x 
= (-A + 1/) x + v B -x. 

Since u and v may both assume the value 0, 

x = -A x, or a, c-A 

And since u and v may both assume the yalue 1, 

x = x +B -.t, or B-xcx 

But if B -x c x, then B -x = (B -:1') x = 0, or B ex 
Hence, (1) and (2), Be xc-A. 

(1) 

(2) 

\Yhen u = 0 and I' = 1, the Law of Consequences becomes simply the Law 
of Forms. For these values in the above, 

x = -Ax+B-x 

which is the form ,yhich Poretsky gives the solution for x. 
The introduction of the arbitraries, u and 1', in the Law of Consequences 

extends the principle stated by the Law of Forms so that it covers not 
only aU equivalents of the giwn equation but also all the non-equivalent 
inferences. As the explanation which precedes the proof suggests, this is 
accomplished b~- allowing the limits of the function equated to t to be 
expressed in all possible ways. If a = b, and therefore, by the Law of 
Forms, 

t = (ab+-a-b)t+(a-b+-ab)-t 

the lower limit of t, 0, is expressed as a -b + -a b, and the upper limit of t, 
1, is expressed as a b + -a -b. In the Law of Consequences, the lower 
limit, 0, is expressed as v (a -b + -a b), that is, in all possible ways which 
can be derh'ed from its expression as a -b + -a bi and the upper limit, 1, is 
expressed as a b + -a -b + 'I.l, that is, in all possible "ways which can be derived 
from its expression as a b + -a -b. Since an expression of the form 

t = (a b + -a -b) t + (a -b + -a b) -t 
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or of the form t = (ab+-a-b+u)t+da-b+-ab)-t 

determines t only in the sense of thus expressing its limits, and the Law of 
Consequences coyers all possible ways of expressing these limits, it COWl'S 

all possible inferences from the giYen equation. The number of such 
inferences is, of course, unlimited. The number expressible in terms of n 

elements will be the number of derimti\'es from an equation with one 
member 0 and the other member expanded with reference to n elements. 
The number of constituent terms of this expanded member will be 2", 
and the number of combinations formed from them will be 2~". Therefore, 

since Pi + P2 + P3 + ... = 0 gi\'es Pl = 0, P2 = 0, ps = 0, etc., this is the 
number of consequences of a gi\'en equation which are expressible in terms 
of n elements. 

As one illustration of this law, Poretsky gj-.,·es the si:\.'ieen determinations 
of a in terms of the three elements, a, b .. and c, which can be deri\'ed from 
the premises of the s~,nogism in Barbara: 13 

If all a is b, 

and all b is c, 

a -b = 0, 

b -c = 0, 

then a -b + b -c = 0, and hence, 

a = a (b+-c) = a(b+c) = a (-b+c) = a+b-c = ab = a (bc+-b-c) 

= b -c + a (b c + -b -c) = a c = b -c + a c = a (-b + c) + -a b -c = abc 

= b -c + abc = a (b c + -b -c) + -a b -c = a c + -a b -c = abc + -a b -c 

The Inverse Problem of Consequences.-Just as the Law of Conse-
quences expresses any inference from a = b by taking advantage of the fact 
that if a -b + -a b = 0, then (a -b + -a b) 'v = 0, and if a b + -a -b = 1, 
then a b + -a -b + 1l = 1; so the formula for any equation which ",ill give 
the inference a = b can be expressed by taking adyantage of the fact that if 
v (ab+-a-b) = 1, then ab+-a-b = 1, and if a-b+-ab+u = 0, then 
a -b + -a b = O. We thus get Poretsky's Law of Causes, or as it would 

be better translated, the Law of Sufficient Conditions.14 

7·7 If for some value of u and some value of v 

t = v (a b + -a -b) t + (a -b + -a b +ll) -t, 
then a = b. 

If t = v(ab+-a-b)t+(a-b+-ab+u)-t, then [7'1,5·72] 

[v (a b + -a -b) t + (a -b + -a b + u) -tJ -t = 0 

1a Ibid., pp. 98 Jf. 
l'lbid., Chap. XXIII. 

= (a-b+-ab+ u) -t = (a -b +-ab) -t+ u-t = 0 
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Hence (a -b + -(1 b) -t = 0 (1) 

Hence abo :5·7; t = (' (a b+-a -b) t, and [4·9] 

t'-[r(alJ+-a-b)] = 0 = t(-l'+a-b+-ab) = t-v+(a-b+-ab)t 

Hence [.j. T~; '{! -b + -a b) t = 0 (2) 

By and I:!), ((1-b+-a b)(t+-t) = 0 = a-b+-ab. 

Hence [T ·1: a = b. 

Both the Lu\y or Consequences and the Law of Sufficient Conditions 
are morc general than the Law of Forms, 'which may be derived from either. 

Important as are these contributions of Poretsky, the student must not 
be mi:;led into supposing that by their use any desired consequence or 
sUIDeient ('ondition of a giY€'n equation can be found automatically. The 
onl~' sense in which these laws giye results automatically is the sense in 
which they make it possible to exhaust the list of consequences or conditions 
expressible in terms of a giyen set of elements. And since this process is 
oruinarily too lengthy for practical purposes, these laws are of assistance 
principaU~' for testing results suggested b~' some subsidiary method or by 
"intuition". One has to discoYer for himself what values of the arbitraries 
'1/ and L' will give the desired result, 

Y. Fr:\"DA:'\IE:\"T.n Lo\. ws OF THE THEORY OF INEQUATIONS 

In this algebra, the assertory or copulatiye relations are = and c. 

The denial of a = b may conveniently be s~'mbolized in the customary way: 

8·01 a =l= b is equiyalent to "a = b is false". Def. 

We might use a symbol also for" a c b is false ". But since a c b is equiya
lent to a b = a and to a -b = 0, its negatiw may be represented by a b =l= a 
or by a -b =l= O. It is less necessary to haye a separate symbolism for 
" a c b is false", since "a is not contained in b" is seldom met with in logic 
except where a and b are mutually exclusi\'c,,-in which case a b = O. 

For eyery proposition of the form" If P is true, then Q is true", there is 
another, "If Q is false, then P is false ". This is the principle of the reductio 
ad abSllrduln,-or the simplest form of it. In terms of the relations 
and =l=, the more important forms of this principle are: 

(1) "If a = b, then c = d", gives also, "If c =l= d, then a =l= b". 

(2) "If a = b, then c = d and lz = 1.:", giyes also, "If c =l= d, then a =l= b", 
and "If lz =l= I.; then a =l= b". 

(~3) "If a = band c = d, then h = k", giyes also, "If a = band h =l= k, 
then c =l= d", and" If c = d and h =l= 1.:, then a =l= b". 
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(4) "a = b is equi .-alent to c = d", giyes also, "a 'i= U IS 

to c =l= d". 
(5) "a = b is equi.-alent to the set, c = d, II = 7,', glWS <11:::0, 

"a =l= b is equivalent to 'Either c =l= d or lz =!= k, or .... ". 15 

The general forms of these principles are themselws theoremo,; of the 
"calculus of propositions "-the application of this algebra to propo~ition::;. 
But the calculus of propositions, as an applied logic, cannot dNhed 
from this algebra 'without a circle in the proof, for the reasoning in demon
stration or the theorems presupposes the logical laws of propositions at 
every step. ,\Ye must, then, regard these la,,"::; of the reductio ad absllnlum, 

like the principles of proof pre\'iously used, as gi\'en us b~' ordinarr logic, 
which mathematics generally presupposes. In later chapters,!" we shall 
discuss another mode of developing mathematical logic-the logistic 
method-which ayoids the paradox of assuming the principles of logic in 
order to pro,'e them. For the present. our procedure ma;: be yiewed simply 
as an application of the reductio ad absurdum in ways in which any mathe
matician feels free to make use of that principle. 

Since the propositions concerning inequations follow immediatel~', for 
the most part, from those concerning equations, proof \yill ordinarily be 
unnecessary. 

Elementary Theorems.-The more important of the elemeIltar~' propo
sitions are as follows: 

8·1 If ac =!= b c, then a =l= b. 
[2·1J 

8 ·12 If a + c =l= b + c, then a =!= b. 

[3·37J 
8 ·13 a =!= b is equiyalent to -a =!= -b. 

[3·2J 
8·14 a + b =l= b, a b =!= a, -Ct + b =l= 1, and a -b =l= 0 are all equivalent. 

[4·9J 
8· 15 If a + b = x and b =l= x, then a =l= 0 

[5· 7] 

8 ·151 If a = 0 and b =!= x, then a + b =l= x. 

[5·7] 
8·16 If a b = ;<: and b =!= ;'C, then a =l= 1. 

[5·71] 

]5 "Either ... or ... " is here to be interpreted as not excluding the possibility that 
both should be true. 

15 Chap. lV, Se<lt. VI, and Chap. v. 
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8·161 If a = 1 and b 9= :1:, then a b 9= .c. 

[5·il] 

8·17 If a + b 9= 0 and a = 0, then b 9= o. 
[5·72J 

8 ·18 If a b =l= 1 and a = 1, then b 9= 1. 
[5, 7~3] 

S ·17 allows us to drop null terms from any sum 9= o. In this, it gives 
a rule by which an equation and an inequation may be combined. Suppose, 

for example, a + b =l= 0 and x = O. 

a+b = (a + b) (.l· +-.1:) = ax+ba~+a-x+b-x. 

Hence a x + b a' + a -x + b -x 9= o. 
But if x = O~ then a x = 0 and b x = O. 
Hence [8 ·17] a .-x + b -x 9= 0. 

8·2 If (L 9= 0, then a+b =l= 0. 

[5·i2] 

8·21 If a 9= 1, then a b =l= 1. 
[5·73] 

8·22 If a b =l= 0, then a =l= 0 and b 9= O. 
[1·5] 

8·23 If a+b 9= 1, then (L 9= 1 and b 9= 1. 

[4·5] 
8·24 If a b 9= x and a = x, then b 9= x. 

[1·21 
8·25 If a 9= 0 and a c b, then b =l= 0. 

[1· 91 If a c b, then a b = a. 

Hence if a 9= 0 and a c b, then a b 9= o. 
Hence [8· 22J b =l= O. 

8·26 a + b =l= 0 is equivalent to "Either a =l= 0 or b 9= 0". 
[5·72J 

8·261 al + a2 + as + . " 9= 0 is equivalent to "Either al =l= 0 or a2 9= 0 or 
a3 =l= 0, or ... ". 
8·27 a b 9= 1 is equivalent to "Either a 9= 1 or b 9= 1". 

[5·i3] 

8·271 al a~ a. . .. 9= i is equivalent to "Either al =l= 1 or a2 9= 1 or 
aa 9= 1 or ... ", 

The difference between 8·26 and 8·27 and their analogues for equa
tions-a·72 a + b = 0 is equivalent to the pair, a = 0 and b = 0, and 
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5·73 a b = 1 is equi\'alent to the pair, a = 1 and b = l-points to H n('('('s
sary difference between the treatment of equations and the treatment of 
inequations. Two or more equations may always be combined into an 
equiyalent equation; two or more inequations cannot be combined into 
an equh'alent inequation. But, by 8·2, a + b =f 0 is a consequence of the 

pair, a =f ° and b =f 0. 

Equivalent Inequations of Different Forms.-The laws of the equi\'a
lence of inequations follow immediately from their analogues ror equations. 

8·3 a =f b is equh'alent to a -b + -(I b =f O. 
[7 ·1] 

8·31 a =f 1 is equivalent to -a =f O. 
[7 ·12] 

8·32 If <I>(Xl' X2, •.. Xn) and 'lr(:rb .r2, ...• r,,) be any two functions of 
the same variables, then 

is equiyalent to F(Xl, X2, ••. Xn) =f 0, v,'here F is a function of these same 
variables and such that, if AI, .-:b A.a, etc., be the coefficients in <I> Hnd 
BJ, B 2, Ba, etc., be the coefficients of the corresponding terms in 'lr, then 
the coefficients of the corresponding terms in F will be Al -Bl + -..11 Bt, 
.4.2 -B2 + -.12 B2, Aa -Ba + -A3 Ba, etc. 

[7 ·13J 

Poretsky's Law of Forms for inequations will be: 

8·33 a =f ° is equivalent to t =f a -t + -a t. 
[7 ·15] 

Or in more general form: 

8·34 a =f b is equivalent to t =f (a b + -a -b) t+ (a -b + -a b) -to 
[7 ·16) 

Elimination.-The laws governing the elimination of elements from an 
inequation are not related to the corresponding laws governing equations 
by the reductio ad absurdum. But these laws follow from the same theorems 
concerning the limits of functions. 

8·4 IfAx+B-x =f 0, thenA+B =1= O. 

[6·31 Ax+B-xc.A+B. Hence [8·251 Q.E.D. 

8·41 If the coefficients in any flIDction of n variables, F(Xh X2, ••• x,,), 
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~ O. then 

L C =F 0 

e C. Hence (S·2,j] Q.E.D. 

Thus, to eliminate any number of elements from an inequation with 
one member 0, reduce the other member to the form of a normal function 
of the dements to be eliminated. The elimination is then secured by 
putting =i= 0 the sum of the coefficients. The form of elimination resultants 
for inequations of other types folIo-ws immediately from the above. It is 
ohiou" that they will be analogous to the elimination resultants of equa
tion,; as fonows: To get the elimination resultant of any inequation, take 
the elimination resultant of the corresponding equation and replace = by =F, 
and x by + . 

. \. uni\'er"al proposition in logic is represented by an equation: "All 
a is b" by a -b = 0, ":\'o a is [;" b~' a b = O. Since a particular proposition 
is alwa~'s the contradictory of some uni ,'ersat any particular proposition 
may be represented by an inequation: "Some a is b" by a b =F 0, "Some 
a is not b" by a -b =F O. The elimination of the "middle" term from an 
equation which represents the combination of two uniyersal premises 
giYes the equation which represents the uni,'ersaI conclusion. But elimina
tion of term" from if/equations does not represent an analogous logical 
process. Two particulars gi,'e no conclusion: a particular conclusion 
requires one universal premise. The drawing of a particular conclusion is 
represented by a process which combines an equation with an inequation, 
b:" S·17, and then simplifies the result, by S·22. For example, 

All a is b, a -b = O. 

Some a is c, a c =F O. 

Some b is c. 

a -b c = O. 

(l b c + a -b c =l= O. 

abc =1= O. 

be =F O. 

[8·17J 

[8·22] 

"Solution" of an Inequation.-An inequation may be said to have a 
solution in the sense that for any inequation involving x an equiyalent 
in equation one member of which is x can always be found. 

8·5 A x + B -.1: =F 0 is equivalent to x =F -A x + B -x. 

[7 ·23J 

8·51 Ax+B-x =F 0 is equivalent to "Either B-x =F 0 or Ax =F 0",

i. e., to "Either B ex is false or x e-A is false". 
[7·21 
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X either of these .. solutions" determines :r even within "B c.r 
is false" does not mean" B is excluded from ,1''': it meallS only" B is not 
wholly within .1' ". ., Either B c.r is false or .1' c -.1 is fabe" does not 
determine either an upper or a lower limit of .1': and ;c onl~' by ex
cluding B + 1l -A from the range of its possible yalues. Thus" solutions" 
of inequations are of small significance. 

Consequences and Sufficient Conditions of an Inequation.-By Poret
sk~"s method, the formula for any e01l8NjUOI('C of a gin:n follows 
from the Law of Sufficient Conditions for cquations.17 If for some value 
of 11 and some yalue of I', 

t = I' (a lJ+ -a -b) t + (a -0 + -a b + u) -t 

then a = b. Consequentl~', we haye by the reductio ad absurdum: 

8·52 If a =F b, then t =F 1.' (a b + -a -b) t+ (a -0+ -a "6+ 1/) -i, where u 
and 'v are arbitrary. 

[7 ·7] 

The formula for the sufficient conditiuJls of aninequation similarly fol
lows from the Law of Consequences for equations. If a = b, then 

t = (ab+-a-b+u)t+v(a-b+-ab)-t 

where u and z' are arbitrary. Consequently, by the reductio ad absurdum: 

8·53 If for some nlue of 'll and some nlue of t, 

t =F (a b + -a -b + u) t + v (a -0 + -a b) -t 

then a =F b. 

[7 ·6] 

System of an Equation and an Inequation.-If we haye an equation in 
one unknown, x, and an inequation which im'oIves ;'I:., these may be combined 
in either of two ways: (1) each may be reduced to the form in which one 
member is 0 and expanded with reference to all the elements im'olved in 
either. Then an the terms 'which are common to the two may, by S ·17, 
be dropped from the inequation; (2) the equation may be soh-ed for :r, 
and this value substituted for x in the inequation. 

8·6 IfAx+B -x = 0 and C x +D -;1: =F 0, then -A C .1:+-B D -.r =F 0. 
[5,8] If C x + D -x =F 0, then 

A Cx+-A Cx+B D-x+-BD-x =F 0 

17 See Poretsky, Thewie des non-egalit€8 logiques, Chaps. 71, 76. 
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[5· i2J If A .r + B -x = 0, then A..1: = 0 and B -.); = 0, and hence 
A C.1: = 0 and B D -.r = O. 
Hence [8 ·li] -A C .r + -B D -x =!= O. 

The result here is not equivalent to the data, since-for one reason
the equation A ex + B D -x = ° is not equivalent to A x + B -x = 0. 
Xevertheless this mode of combination is the one most frequently useful. 

8·61 The condition that the equation A. x + B -.r = 0 and the inequation 
ex + D -;r. =!= ° may be regarded as simultaneous is, A B = 0 and -A 0 
+ -B D =!= 0, and the determination of x which the~; give is 

x =!= (-A -0 + A -D) x + (B 0 + -B D) -x 

[i ·23J A x + B -x = 0 is equivalent to x = -A x + B -x. Substi
tuting this \'alue of x in the inequation, 

o (-A x + B -x) + D (A x + -B -x) =!= 0 

or (-A C + A. D) x + (B C + -B D) -x =!= o. 
[8·4] A condition of this inequation is 

(-.4 C + A D) + (B C + -B D) =!= 0, 

or (-A + B) C + (A + -B) D =!= 0. 
But the equation A ;r. + B -.1: = ° requires that A B = 0, and hence 
that -A + B = -A and -B + A = -B. 
Hence if the equation be possible and A B = 0, the condition of the 
inequation reduces to -A C + -B D =!= 0. 
[8·4] If the original inequation be possible, then 0 + D =!= o. But 
this condition is alreadr present in -A C + -B D =!= 0, since -A 0 c 0 
and hence (8·25] if -A C =!= 0, then 0 =!= 0, and -B D cD and 
hence if -B D =!= 0, then D =!= 0, while [8· 26J 0 + D =!= ° is equivalent 
to "Either 0 =!= 0 or D =!= ° ", and -A C + -B D =f: ° is equivalent to 
"Either -A. 0 =!= 0 or -B D =!= 0". 
Hence the entire condition of the system is expressed by 

A B = ° and -A 0 + -B D =!= ° 
And [8·51 the solution of the inequation, 

(-AC+AD)x+(BO+-BD)-x=!=O, IS 

x =f: (-A. -0 +.A. -D) x + (B 0 + -B D) -x 

This method gives the most complete determination of x, in the form of 
an inequation, afforded by the data. 
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YI. );"OTE ox THE IXYERSE OPERATIOXS, "SrBTRACTIOX" AXD 
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It is possible to define "subtraction" {-l and "diyision" l : ; in the 
algebra. Let a - b be x such that b + x = a. And let a : b be y such 
that by = a. Howeyer, these inyerse operations are more trouble than 
they are worth, and should not be admitted to the system. 

In the first place, it is not possible to give these relations a general 
meaning. vVe cannot haye in the algebra: (1) If a and b are elements 
in K, then a : b is an element in K; nor (:2) If a and b are elements in K, 
then a - b is an element in K. If a : b is an element, y, then for some y 

it must be true that by = a. But if by = a, then, by 2·2, achy and, 
by 5·2, a c b. Thus if a and b be so chosen that a c b is false, then a : b 
cannot be any element in K. To giye a : b a general meaning, it would 
be required that eyerJ' element be contained in eYery element-that is, 
that all elements in K be identical. Similarl~', if a - b be an element, 
x, in K, then for some x, it must be true that b + x = a. But if b + x = a, 
then, by 2·2, b + x c a and, by 5 ·21, be a. Thus if a and b be so chosen 
that b c a is false, then a - b cannot be any element in K. 

Again, a - b and a : b are ambiguous. It might be expected that, 
since ([ + -a = 1, the value of 1 - a would be unambiguously -a. But 
1 - a = x is satisfied by any x such that -a c x. For 1 - a = .2' is equiva
lent to x + a = 1, which is equivalent to 

-(x + a) = -1 = 0 = -a-x 

And -a -x = 0 is equh'alent to -a ex. Similarl;r, it might be e).'Pected 
that, since a -a = 0, the value of 0 : a would be unambiguously -a. But 
o : a = y, or a y = 0, is satisfied by any y such that y c-a. a y = 0 and 
y c -a are equivalent. 

Finally, these relations can always be otherwise expressed. The value 
of a : b is the yalue of y in the equation, by = a. by = a is equival,.t to 

-a b y + a -b + a -y = 0 

The equation of condition here is a -b = O. And the solution, on this 
condition, is 

y = a + U (0 + -b) = a b + 'u -a -b, where u is undetermined. 

The yalue of a - b is the value of x in the equation, b + x = a. b + x = a 

is equivalent to 
-ab+-ax+a-b-x = 0 
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equation of condition here 1S, -a b = O. And the solution, on this 
condition, is 

.i: = a -b + 1.' a = a -b + 1: a b, where v is undetermined. 

In each case, the equation of condition giws the limitation of the meaning 
of the expre:ision. and the solution expresses the range of its possible values. 



CHAPTER III 

APPLIC.~TIOXS OF THE BOOLE-SCHRODER .-\'LGEBR.\ 

There are four applications of the classic algebra of logic which are 
commonly considered: (1) to spatial entities, to the logical relations 
of classes, (:3) to the logical relations of propositions, to the logic of 
relation:::. 

The application to spatial entities mtly be made to continuous and 
discontinuous segments of a line, or to continuous and discontinuous regions 
in a plane, or to continuous and discontinuous regions space of any 
dimensions. Segments of a line and regions in a plane ba ye both been 
used as diagrams for the relations of classes and of propositions, but the 
application to regions in a plane giycs the more workable diagrams, for 
obvious reasons. And since it is only for diagrammatic purposes that 
the application of the algebra to spatial entities has any importance, we 
shall confine our attention to regions in a plane. 

I. DUGRA:\IS FOR THE LOGICAL REL..-I..TIOXS OF CUSSES 

For diagrammatic purposes, the elements of the algebra, (1, h., c, etc., 
will denote continuous or discontinuous regions in a given plane, or in a 
circumscribed portion of a plane. 1 represents the plane (or circumscribed 
portion) itself. 0 is the null-region which is supposed to be contained in 
eyer;y regIOn. For any given region, a, -a denotes the plane exclush-e of 
a,-i. e., not-a. The" product", a x b or a b, is that region which is com
mon to a and b. If a and b do not" oyerlap ", then a b is the null-region, O. 
The" sum ", a + b, denotes the region which is either a or b (or both). In 
determining a + b, the common region, a b, is not, of course, counted twice 
over. 

(1 + b = a -b + a b + -a b. 

This is a difference between + in the Boole-Schroder Algebra and the + 
of arithmetic. The equation, a = b, signifies that a and b denote the same 
region. a c b signifies that a lies wholly within b, that a is included or 
contained in b. It should be noted that whenever a = h, (1 C band b ca. 
Also, a c a holds always. Thus the relation c is analogous not to < in 
arithmetic but to ::::s. 

175 
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'Yhile the laws of this algebra hold for regions, thus denoted, however 
those regions ma~" be distributed in the plane, not eyery supposition about 
their distribution is equally conyenient as a diagram for the relations of 
classes. All will be familiar with Euler's diagrams, invented a century 
earlier than Boole's algebra. "All a is b" is represented by a circle a 

wholly within a circle b; "Xo a is b" by two circles, a and b, which nowhere 
intersect; "Some a is b" and "Some a is not b" by intersecting circles, 
sometimes with an asterisk to indicate that dh"ision of the diagram which 
represents the proposition. The defects of this st~'le of diagram are obvious: 

Q)OO®® 
Allaisb No a is b Some a is b Some a is not b 

FIG. 1 

the representation goes beyond the relation of classes indicated by the propo
sition. In the case of "All a is b", the circle a falls within b in such wise • 
as to suggest that we may infer "Some b is not a", but this inference is 
not valid. The representation of "No a is b" similarly suggests "Some 
things are neither a nor b", which also is unwarranted. With these dia
grams, there is no way of indicating whether a giyen region is null. But 
the general assumption that no region of the diagram is null leads to the 
misinterpretations mentioned, and to others which are similar. Yet 
Euler's diagrams were in general use until the invention of Venn, and are 
still doing service in some quarters. 

The "renn diagrams were invented specifically to represent the relations 
of logical classes as treated in the Boole-Schroder ... <\lgebra.1 The principle 
of these diagrams is that classes be represented by regions in such relation 
to one another that all the possible logical relations of these classes can be 
indicated in the same diagram. That is, the diagram initially leaves room 
for any possible relation of the classes, and the actual or given relation can 
then be specified by indicating that some particular region is null or is not
null. Initially the diagram represents simply the" universe of discourse ", 
or 1. For one element, a, 1 = a + -a.2 For two elements, a and b, 

1 = (a+-a)(b+-b) = ab+a-b+-ab+-a-b 

1 See Venn, Symbolic Logic, Chap. v. The first edition of this book appeared before 
Schri>der's Algebra dar Logik, but Venn adopts the most important alteration of Boole's 
original algebra-the non-exclusive interpretation of a + b. 

J See above, Chap. il, propositions 4·8 and 5·92. 
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For three elements, a, b, and c, 

1 = (a+-a)(b+-b)(c+-c) = abc+ab-c+a-bc+-abc+ll-b-c 

+ -a b -c + -a -b c + -a -b -c 

Thus the "uniyerse of discourse" for any number of elements, 11, must 
correspond to a diagram of 2" divisions, each representing a term in the 
expansion of 1. If the area within the square in the diagram represent 

1 1 

o 
-C/ -a-v 

FIG. 2 

the universe, and the area ,vithin the circle represent the element a, then 
the remainder of the square ,yill represent its negative, -a. If another 
element, b, is to be introduced into the same universe, then b may be repre
sented by another circle whose periphery cuts the first. The divisions, 
(1) into a and -a, (2) into band -b, ,,,ill thus be cross-diyisions in the uni
wrse. If a and b be classes, this arrangement represents aU the possible 
subclasses in .the uniYerse;-a b, those things which are both a and b; 
a -b., those things which are a but not b; -a b, those things which are b 
but not a; -a -b, those things which are neither a nor b. The area which 
represents the product, a b, will readily be located. 'Ye have enclosed 
by a broken line, in figure 2, the area which represents a + b. 

The negative of any entity is always the plane exclush'e of that entity. 
For example, -(a b + -a -b), in the above, will be the sum of the other 
two dh-isions of the diagram, a -b + -a b. 

If it be desired to introduce a third element, c, into the universe, it is 
necessary to cut each one of the previous subdivisions into two-one 
part \vhich shall be in c and one part which shall be outside c. This can be 
be accomplished by introducing a third circle, thus 

. It is not really necessary to draw the square, 1, since the area given to the 
figure, or the whole page, may as well he taken to represent the universe. 
But when the square is omitted, it must be remembered that the unenclosed 

13 
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." 

area outside all the lines of the figure is a subdiyision of the uniYerse-
~ .; 

entity -a, or -(I -b .. or -a -b -c, etc., according to the number~of elements 
inyolyed. 

~-------------1---------------. 

-a-b-c c 

FIG. 3 

If a fourth element, d, be introduced, it is no longer possible to repre
sent each element by a circle, since a fourth circle could not be introduced 
in figure :3 so as to cut each preyious subdiyision into two parts-one part 
in d and one part outside d. But this can be done 'with ellipses.. Each 

FIG. 4 

3 We have deformed the ellipses slightly and have indicated the two points of junction. 
This helps somewhat in drawing the diagram, which is most easily done as follows: First, 
draw the upright ellipse, a. Mark a point at the base of it and one on the left. Next, 
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one of the subdivisions in figure :1: can be .. named" b~- noting whether it 
is in or outside of each of the ellipses in turn. Thus the area iwlicaH"1i 
G is abc -d, and the area indicated by 1:2 is -a -b (' d. \Yith a diagram of 
four elements, it requires care, at first, to specify such regions a8 a + e, 
a c + b d, b + -d. These can always be determined with certainty by 
developing each term of the expression 
ments.4 Thus 

refer{'nce to the missing ele-

a c + b d = a c (b + -b) (d + -d) + b d (a + -a) (c + -c) 

= abc d + abc -d + a -b c d + a -b c -d + a b -c d + -a bed + -Q b -c d 

The terms of this sum, in the order given, are represented in figure -1 by the 
divisions numbered 10, 6, 9, 5, 14, 11, 1.5. Hence a c + b d is the region 
,,,-hich combines these. \Yith a little practice, one may identify such 
regions without this tedious procedure. Such an area as b + -d is more 
easily identified by inspection: it comprises 2, ;3, ll, 7, 10, 11, H. 15, and 
1,4, 5, 8. 

Into this diagram for four elements, it is possible to introduce a fifth, 
e, if we let e be the region between the broken lines in figure 5. The principle 
of the "square diagram" (figure 6) is the same as Yenn's: it represents all 

r---------- ----- --------. ,e 
I ' 

FIG. 5 

draw the horizontal ellipse, d, from one of these points to the other, so that the line con
necting the two points is common to a and d. Then, draw ellipse b from and reiuming to 
the base point, and ellipse c from and returning to the point on the left. If not done in 
this way, the first attempts are likely to give twelve or fourteen subdivisions instead of 
the required sb.oteen. 

4 See Chap. II, 5·91. 
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the subclasses in a uniwrse of the specified number of elements. No 
diagram is really conyenient for more than four elements, but such are 

-a -a 

b -a b 

-b a-a -a -b 

FIG. 6 

frequently needed. The most convenient are those made by modifying 
slightly the square diagram of four terms, at the right in figure 6.5 Figure 7 

-ct 

b / / // / 
/ / / / 
/ / / / 

-b 

/ / / / 
cl 

q, 

b + + + 
+ -b 

h~ 
-h j .... , 

FIG. 7 

-a 

+ + + + + + + + + 
+ + + 

d 

gives, by this method, the diagrams for five and for six elements. We give 
aI,so the diagram for seven (figure 8) since this is frequently useful and 
not easy to make in any other way. 

The manner in which any function in the algebra may be specified in a 
diagram of the proper number of divisions, has already been explained. 
lYe must now consider how any asserted relation of elements-any indu

s See Lewis Carroll, Symbolic Logic, for the particular form of the square diagram which 
we adopt. Mr. Dodgson is able, by this method, to give diagrams for as many as 10 terms, 
1024 subdivisions (p. 176). 
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sian, a e b, or any equation, a = b, or inequation, a * v-may be repre
sented. Any such relation, or any set of such relations, cun be completel;.' 
specified in these diagrams by taking adyantage of the fact that they 
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FIG. 8 

can alwa:rs be reduced either to the form of an expression = 0 or to the 
form of an expression 9= O. Any inclusion, a e b, is equiyalent to an equa

tion, a -b = 0.6 And eyery equation of the form a = b is equivalent to 
one of the form a -b + -a b = 0.7 Thus any inclusion or equation can be 
represented by some expression = O. Similarly, any inequation or the 

form a 9= b is equivalent to one of the form a -b + -a b 9= 0. 8 Thus any 
asserted relation whatever can be specified by indicating that some region 
(continuous or discontinuous) either is nun, {= OJ, or is not-null, I=l= OJ. 

,,\Ve can illustrate this, and at the same time indicate the manner in 

which such diagrams are useful, by applying the method to a few syllogisms. 

Given: All a is b, 
and All b is c,! 

6 See Chap. II, 4·9. 
1 See Chap. II, 6·4. 
8 See Chap. II, 7·1. 

a cb, 
bee, 

a -b = O. 
b-c = O. 
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We haw here indicated (figure 9) that a -b-the a which is not b-is null 
by striking it out (with horizontal lines). Similarly, we have indicated 
that all l; is (" by striking out b -c (\yjth yerticallines). Together, the two 
operations haH' eliminated the whole or a -c, thus indicating that a -c = 0, 
or .. _\.ll a i::; c ". 

FIG. 9 FIG. 10 

For purposes of comparison, we may derh'e this same conclusion by 

aIge braic processes. 9 

Since a -b = 0 = a -b (c + -c) = a -b c + a -b -c, 

and b -c = ° = b -c (a + -a) = a b -c + -a b -a, 
therefore, a -b c + a -b -c + a b -c + -a b -c = 0, 

and [,j·i2] a b-c+a-b-c = 0= a-a (b+-b) = a-c. 

The equation in the third line, which combines the two premises, states 
exactly the same facts \\'hich are represented in the diagram. The last 
equation giyes the conclusion, which results from eliminating the middle 
term, b. Since a diagram will not perform an elimination, we must there 
"look for" the cond usion. 

One more illustration of this kind: 

Giyen: All a is b, 
and Xo b is c, 

a -b = O. 
b a = O. 

The first premise is indicated (figure 10) by striking out the area a -b (with 
horizontal lines), the second by striking out b c (>lith yerticallines). To
gether, these operations haye struck out the "\vhole of a a, giving the con
clusion a c = 0, or "Xo a is c". 

9 Throughout this chapter, references in square brackets give the number of the the
orem in Chap. II by which any unobvious step in proof is taken. 
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In a giwn diagram where all the 
yerse are initially represented, as 

cla~,;('~ 01' 

this nwthod of 
we cannot presume that a gin:'n subdi,-ision is null or j:-: 

lS3 

In 1JrU-

actual state of affairs may require that some regions be or that snme 
be not-null, or that some be null others not. Con,;equelltl~·, eH'n 
when we haye struck out the regions which are null, we eunnot pre~ume 
that all the regions not struck out are not-null. This be going be~'ond 
the premises. All we can say, \\"hen we hU\'e struck out the 
is that, so far as the premises represented are concerned, an~' region not 
struck out may be not-null. If. then, we wL.,h to represent the fact that a 
giwn region is definitely not-null-that a gh"en class has members, that 
there is some expression =!= O-we must indicate this by some distincth-e 
mark in the diagram. For this purpose, it is conn-niE-nt to U5e asterisks. 
That a b =!= 0, may be indicated b,\" an asterisk in the region ([ b. But here 
a further difficulty arises. If the diagram invoh-e more than two elements, 
say, (L, b, and c, the region a b will be dh-ided into two parts, a b u and 
a b -c. ::\ow the inequation, a b =!= 0, does not tell us that a b (" =!= 0, and 
it does not tell us that a b -c =!= o. It tells us only that abc + a b -(" =!= O. 
If, then, we wish to indicate a b =!= ° by an asterisk in the region a b, we 
shall not be warranted in putting it either inside the circle c or outside c. 
It belongs in one or the other or both-that is all we know. Hence it is 
conyenient to indicate a b =!= 0 by placing an asterisk in each of the divisions 
of a b and connecting them by a broken line, to signify that at least one of 

these regions is not-null (figure 11). 

ab'-\=O 

FIG. 11 

"\Ye shall show later that a particular proposition is best interpreted by 
an inequation; "Some a is b", the class a b has members, by a b =!= O. 
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Suppose, then, we haw: 

Giwn: All a is b, a -b = O. 

and Some a is c, a c =!= O. 

The conclusion, "Some b is 0", is indicated (figure 12) by the fact that 
one of the two connected asterisks must remain-the whole region abc 
+ a -b c cannot be null. But one of them, in a -b 0, is struck out in indi
cating the other premise, a -b = O. Thus abo =!= 0, and hence a 0 =!= O. 

FIG. 12 

The entire state of affairs in a uniYerse of discourse may be represented 
by striking out certain regions, indicating by asterisks that certain regions 
are not-null, and remembering that any region which is neither struck 
out nor occupied by an asterisk is in doubt. Also, the separate subdivisions 
of a region occupied by connected asterisks are in doubt unless all but one 
of these connected asterisks occupy regions which are struck out. And 
any regions which are left in doubt by a given set of premises might, of 
course, be made specifically null or not-null by an additional premise. 

In complicated problems, the use of the diagram is often simpler and 
more illuminating than the use of transformations, eliminations, and solu
tions in the algebra. All the information to be derived from such opera
tions, the diagram giyes (for one who can" see" it) at a glance. Further 
illustrations will be unnecessary here, since we shall give diagrams in con
Ilection with the problems of the ne~-t section. 

II. THE ApPLICATION TO CLASSES 

The interpretation of the algebra for logical classes has already been 
explained.1o a, b, 0, etc., are to denote classes taken in extension; that is 

10 Chap. II, pp. 121-22. 
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to say, c signifies, not a class-concept, but the aggregate of all the objeet5 
denoted by some class-concept. Thus if a = &, the concept of the cla~s (l 

may not be a synonym for the concept of the class b, the classes Il Hnd b 
must consist of the same mE'mbers, 11a n: the "a me extension. (1 c b ,;ig
nifies that e,"eQ" member of the class (/ i::l abo a member of the clu::l:l b. 
The ., product", a b, denotes the cla::;s of those things which are both mem
bers of a and members of b. The" sum ", a + b, denotes the class of those 
things which are either members of (I or members of b (or members of both). 
o denotes the null-class, or class without members. Yarious concepts may 
denote an empt~" class-" immortal men", "feathered inYertebrate::: ", 
"Julius Caesar's twin," etc.-hut all suc-h terms haY(~ the same e:ll.'tension; 
they denote nothing existent. Thus, since classes are taken in e:ll.'tensioll, 
there is but one null-class, O. Since it is a law of the algebra that, for 
every ;r, 0 C ;t:, ,ve must accept, in this connection, the com'ention that 
the null-class is contained in eyery class. _-\]1 the immortal men are meIll
bel's of any class, since there are no such. 1 represents the ela::;s "eyery
thing ", the" uniYerse of discourse ", or simply the" uniwrse ". This term 
is pretty well understood. But it may be defined as follows: if an be an;,. 
member of the class a, and X represent the class-concept of the class .1', 

then the" universe of discourse" is the class of all the classes., x, such that 
"an is an X" is either true or false. If" The fixed stars are blind" is 
neither true nor false, then "fixed stars" and the class "blind ,. do not 

belong to the same uni\'erse of discourse. 
The negatiye of a, -(I, is a class such that a and -a have no member:; in 

common, and a and -(I between them comprise eyerything in the unin'rse 
of discourse: a -a = 0, "Xothing is both a and not-a", and a + -a = 1, 

"EverJ'thing is either a or -a ". 
Since inclusions, a c b, equations, a = b, and inequations, a =l= b, repre

sent relations which are asserted to hold between classes, they are capable 
of being interpreted as logical propositions. And the operations of the 
algebra-transformations, eliminations, and solutions-are capable of 
interpretation as processes of reasoning. It would hardly be correct to 
say that the operations of the algebra represent the processes of reasoning 
from given premises to conclusions: they do indeed represent processes 
of reasoning, but they seldom attain the result by just those operations 
which are supposed to characterize the customary processes of thinking. 
In fact, it is the greater generality of the s~mbolic operations which makes 

their application to reasoning valuable. 
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The representation of propositions by inclusions, equations, and in
equations, and the interpretation of inclusions, equations, and inequations 
in the algebra as propositions, offers certain difficulties, due to the fact 
that the algebra represents relations of e)..-tension only, while ordinar~' logical 
propositions quite frequentIJ" concern relations of intension. In discussing 
the representation of the four typical propositions, we shall be obliged to 
consider some of these problems of interpretation. 

The universal affirmatiYe, "All a is b", has been yariously represented as, 

0) a = a b, 
(2) a c b, 
(3) a = v b, where v is undetermined, 
(4) a-b = O. 

All of these are equiyalent.n The only possible doubt concerns (3) a = v b, 

where ~, is undetermined. But its equiyalence to the others may be demon

strated as follows: 

[7 ·IJ a = v b is equivalent to a·-(v b) + -a v b = O. 
But a·-(vb)+-avb = a(-v+-b)+-avb = a-v+a-b+-avb. 

Hence [5·72] if a = 1: b, then a -b = O. 
And if a = a b, then for some yalue of v (i. e., v = a), a = v b. 

These equivalents of "All a is b" would most naturally be read: 

(1) The a's are identical with those things which are a's and b's both. 
(2) a is contained in b: ever;y member of a is also a member of b. 
(3) The class a is identical with some (undetermined) portion of the 

class b. 
(4) The class of those things which are members of a but not members 

of b is null. 

If we examine an~" one of these symbolic expressions of "All a is b", 
we shall discover that not only may it hold when a = 0, but it always 
holds when a = O. 0 = 0· b, 0 c b, and O· -b = 0, will be true for every 
element b. And "0 = v b for some value of v" is always true-for v = O. 
Since a = 0 means that a has no members, it is thus clear that the algebra 
requires that "All a is b" be true whenever no members of a exist. The 
actual use of language is ambiguous on this point. We should hardly say 
that" All sea serpents have red wings, because there aren't any sea ser
pents "; yet we understand the hero of the noyeI who asserts "Whoever 

11 See Chap. II, 4·9. 
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enters here must pass oYer mr dead body". Thi,; 11('1'0 dot-;; llot mean to 
assert that anyone will enter the defended portal on:r hi" . his 
is that the class of those who enter shall be null. The ditl'erem'(" (If 

two eases is this: the COIlcept ., :3ea serpent" does not m·ces::iarily inyolY!.' the 
concept "haying red 'wings", while the concept of "tho;;e who enter the 
portal "-a;; conceh'cel by the hero-does inyoh'e the concept of pa~sing 
oyer his body. lYe readily accept and understand the inc:lu:iion of an 
empty class in some other when the concept of the one illyolYes 
of the other-when the relation is one of illieli.S·iul<. But in thi:3 sense, an 
empty class is not contained in any and ever~' elass, but in some only. In 
ordcr to understand this 1m,. of the algebra, '"For e,'ery .1',0 ex", we must 
bear in mind two things: (1) that the algebra treats of relation:; in extension 
only, and (2) that ordinary language frequently concerns r€'lations of 
intension, and is usually confined to relations of inten:::ion where a null 
class is involved. The law does not accord with the ordinary use of language. 
This is, howeyer, no obserYation upon its truth, for it is a necessary law 
of the relation of classes in extension. It is an immediate consequence of 
the principle, "For eYeQ' y, y e 1", that is., H _-Vllllembers of an~' cIa"s, y., 
are also members of the class of all things ". One cannot accept this last 
without accepting, by implication, the principle that, in e:.\.iension, the nuIl
class is contained in eyery class. 

The interpretation of propositions in which no nuH-clas::l is involved is 
not subject to an~' corresponding difficulty, both because in such cases the 
relations predicated are frequently thought of in extension and because 
the relation of classes in extension is entirely analogous to their relation in 
intension except where the class 0 or the class 1 is im'oh'ed. But the 
interpretation of the algebra must, in all cases, be confined to extension. 
In brief: "All a is b" must always be interpreted in the algebra as stating 
a relation of classes in e),.-tension, not of class-concepts, and this requires 
that, whenever a is an empty class., " .. -VI a is b" should be true. 

The proposition, "Xo a is b", is represented by a b = 0-" Xothing is 
both a and b", or "Those things which are members of a and of b both, 
do not exist". Since "l\o a is b" is equi .... alent to" All a is not-b", it may 
also be represented by a -b = -b, a e-b, be-a, or a = i' -b, where r is 
undetermined. In the case of this proposition, there is no discrepancy 
between the algebra and the ordinary use of language. 

The representation of particular propositions has been a problem to 
s;ymbolic logicians, partly because they ha .... e not clearl~' conceived the 
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relations of classes and haye tried to stretch the algebra to cover traditional 
relations which hold in intension only. If" Some a is b" be so interpreted 
that it is false when the dass a has no members, then" Some a is b" will 
not follow from" All a is b ", for" .-\11 a is b" is true whenever a = O. But 

) 

on the other hand, if "Some a is b" be true when a = 0, ,ve have two diffi-
culties: (1) this does not accord with ordinary usage, and (2) "Some a is b" 
will not, in that case, contradict '"Xo a is b". For whenever there are no 
members of a (when a = 0), H ~o a is b" (a b = 0) ,,,ill be true. Hence if 
,. Some a is b" can be true when a = 0, then" Some a is b" and "No a is b" 
can both be true at once. The solution of the difficulty lies in observing 
that" Some a is b" as a relation of extension requires that there be some a
that at least one member of the class a exist. Hence, when propositions 
are interpreted in extension, "Some a is b" does not follow from "All a 
is b ", precisely because whenever a = 0, "All a is b" will be true. But 
"Some a is b" does follow from ".-\11 a is b, and members of a exist". 

To interpret properly "Some a is b", we need only remember that it 
is the contradictory of "X 0 a is b". Since"?\ 0 a is b" is interpreted by 
a b = 0, "Some a is b" will be a b =1= 0, that is, "The class of things which 

are members of a and of b both is not-null". 
It is surprising what blunders have been committed in the representation 

of particular propositions. "Some x is y" has been symbolized by x y = v, 

where t' is undetermined., and by 1l X = V y, where u and v are undetermined. 
,,,Both of these are incorrect, and for the same reason: An "undetermined" 

element may haye the value 0 or the value 1 or any other value. Conse
quently, both these equations assert precisely nothing at all. They are 
both of them true a priori, true of every x and y and in all cases. For 
them to be significant, u and v must not admit the yalue O. But in that 

case they are equivalent to x y =1= 0, which is much simpler and obeys well
defined laws which are consonant with its meaning. 

Since we are to symbolize" All a is b" by a -b = 0, it is clear that its 
contradictory, "Some a is not b ", will be a -b =1= O. 

To sum up, then: the four typical propositions will be symbolized as 
follows: 

A. All a is b, 

E. No a is b, 
I. Some a is b, 

a-b = O. 
ab = 0. 

a b =1= O. 
O. Some a is not b, a-b 9= o. 

Each of these four has various equivalents: 12 

12 See Chap. II, 4· 9 and 8 -14. 
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A. a -b = 0, a = a b, -a + b = 1, -0 + -b = -a" (/ e b, 
all equi\~alent. 

-7.; e-(L are 

E. (tb = 0, a = a-b, -a+-b = 1, -a+b = -a, (le-b, and be-a are 
all equiyalent. 

1. a b =!= 0, a =!= a -b, -0 + -b =!= 1, and -a + b =i= -a are all equivalent. 
0. a -b =!= 0, a =!= a b, -a + b =!= 1, and -0 + -b =l= -(l aI'€' aU equiyulent. 

The reader will easily translate these equivalent for himself. 
,Yith these symbolic representations of A, E, I and 0, let us im'cstigate 

the relation of propositions traditionally referred to under the topics, 
"The Square of Opposition ", and "Immediate Inference". 

That the traditional relation of the two pairs of contradictories holds, 
is at once obvious. If a -b = 0 is true, then a -0 =l= n is fal"e; if a -b = 0 
is false, then a -b =!= 0 is true. Similarly for the pair, a b = (I and a b =!= O. 

The relation of contraries is defined: Two proposition:; such that both 
may be false but both cannot be true are "contraries"'. This relation is 
traditionally asserted to hold between A and E. It doe" not hold in ex~ 
tension: it fails to hold in the algebra precisely whenever the subject of 
the two propositions is a null-class. If a = 0, then a -b = 0 and a b = 0.13 

That is to say, if no members or a exist, then from the point of view of 
ex-tension, " All a is b" and" l\o a is b" are both true. But if it be assumed 
or stated that the class a has members (a =l= 0), then the relation holds. 

a = a (b+-b) = ab+a-b. 

Hence if a =!= 0, then a b + a -b =!= 0. 
[8 . 171 If a b + a -b =!= 0 and a -b = 0, then a b =l= O. 
And if a b + a -b =l= 0 and a b = 0, then a -b =l= O. 

'We may read the last two lines: 

(1) 
(2) 

(1) If there are members of the class a and all a is b, then "Xo a is b" 

is false. 
(2) If there are members of the class a and no a is b, then "AU a is b" 

is false. 

By tradition, the particular affirmative should follow from the universal 
affirmative, the particular negative from the unh'ers~ll negative. As has 
been pointed out, this relation fails to hold when a = O. But it holds when
ever a =!= O. We can read a b =!= 0, in (1) above, as "Some a is b" instead 
of '" No a is b' is false", and a -b =!= 0, in (2), as "Some a is not b " insteap 
of '" All a is b' is false". 'Ve then ha ye : 

13 See Chap. IT, 1· 5. 
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;1) If there are members of a, and all a is b, then some a is b. 
! 2) If there are members of a, and no a is b, then some a is not b . 
.. ::!uhcontraries" are propositions such that both cannot be false but 

both may be true. Traditionally" Some a is b" and "Some a is not b" 
are subcontraries. But whenever a = 0, a b =l= 0 and a -b =l= 0 are both 
false, and the relation fails to hold. 'Yhen a =l= 0, it holds. Since a b = 0 
is •.. Some a is b' is false ", and a -b = ° is "'Some a is not b' is false ", we 

can read (1) and (2) abo,'e: 

',I) If there are members of a, and" Some a is b" is false, then some a 

is not b. 
(2) If there are members of a and "Some a is not b" is false, then some 

a is b. 

To sum up, then: the traditional relations of the" square of opposition" 
hold in the algebra whenever the subject of the four propositions denotes a 
class which has members. 'Vhen the subject denotes a null-class, only 
the relation of the contradictories holds. The two universal propositions 
are, in that case, both true, and the two particular propositions both false. 

The subject of immediate inference is not so ,,'ell crystallized by tradi
tion, and for the good reason that it runs against this very difficulty of the 
class without members. For instance, the following principles would all 
be accepted by some logicians: 

"Xo a is b" 
"Xo b is a" 
• , All b is not-a" 
., Some b is not-a" 

Hence" Xo a is b" 

gives 
gives 
gIves 
gives 
gIves 

"~o b is a". 
., All b is not-a". 

"Some b is not-a" . 
"Some not-a is b". 
"Some not-a is b". 

"Xo cows (a) are inflexed gasteropods (b)" implies "Some non-cows are 
inflexed gasteropods": "Xo mathematician (a) has squared the circle (b)" 

implies "Some non-mathematicians have squared the circle". These infer
ences are invalid precisely because the class b-inflexed gasteropods, suc
cessful circle-squarers-is an empty class; and because it was presumed 
that" All b is not-a" gives "Some b is not-a". Those who consider the 
algebraic treatment of null-classes to be arbitrary will do well to consider 
the logical situation just outlined with some care. The inference of any 
particular proposition from the corresponding universal requires the 
assumption that either the class denoted b~· the subject of the, particular 
proposition or the class denoted by its predicate (" not-b" regarded as the 
predicate of "Some a is not b") is a class which has members. 
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The ., cOllYersion " of the uniwr~al negatiYe and or the particular affirmn
tiye is \'alidated b~' the law a b = b a, "'::\0 a is b ", (/ b = 0, giw:5 b a = ll, 

"::\0 b is a". .\nd "Some a is b ", (l b =F 0, gives b a =F 0, "Some J) i:c:: /I", 

Also, ., Some a is not b", a -b =F 0, gives -0 a =F 0, ,. Some not-b i" a", 

The "conyerse" of the uniwrsal affirmatiYe is simply the ., com-er:lc" 
of the corresponding particular, the inference of which from the uni\-ersal 
has already been discu:;~ed. 

'Yhat are called "obwr:ses "-i. e., two equh-alent propositions with 
the same imbjeet and such that the predicate of one i::i the negatiw of the 
predicate of the other--are mere1,:; alternati\'c of the same equation, 
or upon the law, -( = (/14. Since .1' lJ = 0 is "::\0 .t' is y", a -b = 0, 

which is " .\ll a is b ", is aho "::\0 II is not-b ". And since a b = 0 is equi,'a
lent to (l -( -b) = 0, ".\'o a is /J" is equivalent to ., .:\.11 II is not-b" . 

. \ conYeuient diagram for immediate inferences can he made by putting 
S (subject) and P (predicate) in the center of the circles H:5signed to them, 
-S between the two divisions of -8. and -P between its two com:tituent 
dh·isions. The eight arrows indicate the nHious ,\yay" in which the diu-

---Cont'ei'se 

FIG. 13 

gram ma~- be read, and thus suggest all the immediate inferences which 
are valid. For example, the arrow marked" COllyerSe ., indicates the two 
terms which wiII appear in the converse of the given proposition and the 
order in ".hich they occur. In this diagram, we must specify the null and 

14 See Chap. II, 2·8. 
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not-null regions indicated by the gi\"cn proposition. And we may-if we 
wi~h-add the qualification that the classes, Sand P, have members. 

If ";\0 S is P", and Sand P haye members: 

1:-. -----;)0;.0. 

8. :> 

SP = 0, 

s-p 

*' 

-

2. 

, y 

I 
I. 

S 9= 0, 

-s-p 

FIG. 14 

3. 

y 

r 
6, 

-s p 

* 
""I<~--""'4. 

. < 5 . 

Reading the diagram of figure 14 in the yarious possible ways, we ha \'e: 
1. Ko S is P, and 1. Some S is not P. (According as we read what 

is indicated by the fact that S P is mill, or what is indicated by the fact 
that S -P is not-null.) 

2. All S is not-P, and 2. Some S is not-Po 
3. All Pis not-S, and 3. Some P is not-So 
4. ;\0 P is S, and 4. Some Pis not-So 
5. ·Wanting. 

n. Some not-S is P. 
7. Some not-P is S. 
8. 'Vanting. 
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Similarly, if " All S is P", and Sand P haye members: 

s -P = 0, S 9= 0, P+O 

1:-. ---;..) -s p 

* 
8. ,. -3 

#: 
0( 5. 

I 
-s-p 

t r. .6l 

FIG. 15 

Reading from the diagram (figure 15), we have: 

1. All Sis P, and 1. Some Sis P. 
2. No S is not-Po 
3. Wanting. 
4. Some P is S. 
5. Some not-S is not-Po 
6. Wanting. 
7. No not-P is S. 
8. All not-P is not-5, and 8. Some not-P is not-So 

The whole subject of immediate inference is so simple as to be almost 
tri vial. Yet in the clearing of certain difficulties concerning null-classes 
the algebra has done a real service here. 

The algebraic processes which give the results of syllogistic reasoning 
have already been illustrated. But in those examples we carried out the 

14 
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operations at unnecessary lengths in order to illustrate their connection 
'With the diagrams. The premises of any syllogism give information which 
concerns, altogether, three classes. The object is to draw a conclusion 
'Which gh-es as much of this information as can be stated independently of 
the "middle" term. This is exactly the kind of result which elimination 
gives in the algebra. And elimination is very simple. The result of 
eliminating.1: from A x + B -x = 0 is A B = 0.15 Whenever the conclusion 
of a syllogism is universal, it may be obtained by combining the premises 
in a single equation one member of 'Which is 0, and eliminating the" middle" 

term. For example: 
Ko x is y, 

All z is x, 

xy = o. 
z-x = o. 

Combining these, x y + z -x = o. 
Eliminating x, yz = o .• 

Hence the valid conclusion is "~o y is z", or "Xo z is y". 

Any syllogism 'With a universal conclusion may also be symbolized so 
that the conclusion follows from the law, "If a c band b c c, then ace". 
By this method, the la'Ws, -(-a) = a and "If a cb, then -b c-a", are some
times required also.1s For example: 

Xo x is y, 

All z is x, 

xc-yo 

:z ex. 

Hence Z c-y, or "Xo z is y", and y c-z, or "i\o y is z". 

There is no need to treat further examples of syllogisms with universal 
conclusions: they are all alike, as far as the algebra is concerned. Of course, 
there are other wa~·s of representing the premises and of getting the con
clusion, but the above are the simplest. 

'When a s;yllogism has a particular premise, and therefore a particular 
conclusion, the process is somewhat different. Here we have given one 
equation {= O} and one inequation {=l= O}. We proceed as follows: 
(1) expand the inequation by introducing the third element; (2) multiply 
the equation b;<.- the element not appearing in it; (3) make use of the prin
ciple, "If a + b =l= 0 and a = 0, then b =l= 0", to obtain an inequation with 
only one term in the literal member; (4) eliminate the element representing 
the "middle term" from this inequation. Take, for example, A I I in 

15 See Chap. II, 7 ·4. 
16 See Chap. II, 2·8 and 3·1. 
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the third figure: 
.l'-;:; = o. 

Some .1: is ,if, :1.' y =F O . 

. r y = .r y (z + -z) = ;l: y Z + .r y -z. Hence,.l: y .::: + x y -;:; =F O. 
[1· 5J Since x -z = 0, .r y -z = 0. 

19,5 

[8· 17] Since x y Z + .r y -z =F 0 and .l~ y -.r = 0, therefore .r y z =F O. 
Hence [8·221 yz =F 0, or "Some y is z" . 

• -ill exactly similar process gives the conclusion for ever~' syllogism with a: 
particular premise. 

'Ye have omitted, so far, any consideration or s~'llogisms with both 
premises universal and a particular conclusion-those with "weakened" 
conclusions, and A A I and E A 0 in the third and fourth figures. These 
are all invalid as general forms of reasoning. They involve the difficulty 
which is now familiar: a unh'ersal does not give a particular without an 
added assumption that some class has members. If we add to the premises 
of such syllogisms the assumption that the class denoted by the middle 
term is a class with members, this makes the conclusion valid. Take, for 
ex-'l,mple, A A I in the third figure: 

All ;c is y, 

All x is z, 

x-y = 0, 

x -z = 0. 

and x has members, x =!= 0. 

Since x =F 0, x y + x -y 9= 0, and since x -y = 0, x y =F 0. 
Hence x y z + x y -z 9= 0. (1) 
Since x -z = 0, x y -z = 0. (2) 
By (1) and (2), x y z =!= 0, and hence y z =F 0, or "Some y is z". 

Syllogisms of this form are generall~' considered yalid because of a tacit 
assumption that we are dealing with things which exist. In symbolic 
reasoning, or any other which is rigorous, any such assumption must be 
made explicit. 

An alternative treatment of the syllogism is due to 1Irs. Ladd-Franklin. 17 

If we take the two premises of any syllogism and the contradictory of its 
conclusion, we have what may be called an "inconsistent triad "-three 
propositions such that if any two of them be true, the third must be false. 
For if the two premises be true, the conclusion must be true and its con-

17 See "On the Algebra of Logic", in Studies in Loqit.; by members oj Johns Hopkins 
Unu!ers:ity, ed. by Peirce; also articles listed in Bibl. We do not follow ?Irs. Franklin's 
symbolism but give her theory in a modified form, due to Josiah Royce. 
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tradictory false. And if the contradictory of the conclusion be true, i. e., 
if the conclusion be false, and either of the premises true, then the other 
premise must be false. As a consequence, every inconsistent triad corre
sponds to three valid syllogisms. Any two members of the triad give the 
-contradictory of the third as a conclusion. For example: 

1. All x is y 
2. All y is z 

All x is z. 

Inconsz8tent Triad 

1. Allxisy 
2. All y is z 
3. Some x is not z. 

Valid Syllogisms 

1. All x is y 

3. Some x is not z 
Some y is not z. 

2. All y is z 
3. Some x is not z 

Some x is not y. 

Omitting the cases in which two universal premises are supposed to 
give a particular conclusion, since these really have three premises and 
are not syllogisms, the inconsistent triad formed from any valid syllogism 
will consist of two universals and one particular. For two universals will 
give a universal conclusion, whose contradictory will be a particular; while 
if one premise be particular, the conclusion will be parti'cular, and its 
contradictor;r will be the second universal. Representing universals and 
particulars as we have done, this means that if we symbolize any incon
sistent triad, we shall have two equations { = O} and one inequation {=I= O}. 
And the two universals {= Ol must give the contradictory of the particular 
as a conclusion. This means that the contradictory of the particular 
must be expressible as the elimination resultant of an equation of the form 
a x + b -x = 0, because we have found all conclusions from two universals 
to be thus obtainable. Hence the two universals of any inconsistent triad 
will be of the form a x = 0 and b -x = 0 respectivel;r. The elimination 
resultant of a x + b -x = 0 is a b = 0, whose contradictory will be a b =1= 0. 
Hence every inconsistent triad will have the form: 

ax = 0, b -x = 0, ab=l=O 

where a and b are any terms whatever positive or negative, and x is any 
positive term. 

The validity of any syllogism may be tested by expressing its proposi
tions in the form suggested, contradicting its conclusion by changing it 
from {= O} to {=I= O} or the reverse, and comparing the resulting triad 
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with the ahoye form. And the conclusion of am' sd!o"'ism ma,' bE' <Tot 
~ ~ r, t b 

considering how the triad must be completed to ha,'e required form. 
Thus, if the two premises are 

Xo ;r is .If .• 

and All not-z is y, 

:r. y = 0 

-:;;-lJ = 0 

the conclusion must be uniwrsal. ThE' particular rE'quired to complete 
the triad is .r -:;; =f O. Hence the conclusion is or -;:: = 0, or "All ;c is z ". 
(Incidentally it may be remarked that this HUd syllogism is in- no one of 
the Aristotelian moods.) _-\gain, if the premises should be :r lJ = 0 and 
y z = 0, no conclusion is possible, because these two cannot belong to the 
same inconsistent triad. 

'Ye can, then, frame a single canon for all strictly \'alid syllogistic reason
ing: The premises and the contradictory of the conclusion, e:\.-pressed m 
s:'-'111bolic form, [= ° 1 or {=f O}, must form a triad such that 

(1) There are two universals [= Oland one particular : =f 
(2) The two universals have a term in common, which is once positiye 

and once negatiye. 

(3) The particular puts =f 0 the product of the coefficients of the com
mon term in the two uniyersals. 
A few experiments with traditional syllogisms will make this matter clear 
to the reader. The yalidity of this canon depends solely upon the nature 
of the syllogism-three terms, three propositions-and upon the law of 
elimina tion resultants, "If a ;1: + b -.r. = 0, then a b = 0". 

Reasoning which involves conditional propositions-hypothetical argu
ments, dilemmas, etc.-may be treated by the same process, if we first 
reduce them to syllogistic form. For example, we may translate "If A 
is B, then C is D" by "All x is y ", where x is the class of cases in which 
A is B, and y the class of cases in which (: is D-i. e., "All cases in which A 
is B are cases in which C is D". And we may translate" But A is B" 
by" All z is x", where z is the case or class of cases under discussion. Thus 
the hypothetical argument: "If A is B, Cis D. But A is B. Therefore, 
Cis D", is represented by the syllogism: 

"All cases in which A is B are cases in which Cis D. 
"But all the cases in question are cases in which A is B. 
"Hence all the cases in question are cases in which C is D." 

And all other arguments of this tJ"P€ are reducible to syllogisms in some 
similar fashion. Thus the sJ'111bolic treatment of the syllogism extends to 
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them also. But conditional reasoning is more easily and simply treated 
b~' another interpretation of the algebra-the interpretation for propositions. 

The chief "alue of the algebra. as an instrument of reasoning, lies in 
its liberating us from the limitation to syllogisms, hypothetical arguments, 
dilemmas, and the other modes of traditional logic. J\Iany who object to 
the narrowness of formal logic stilI do not realize how arbitrary (from the 
logical point of view) its limitations are. The reasons for the syllogism, 
etc., are not logical but psychological. It may be worth while to exemplify 
this fact. 'Ye shall offer two illustrations designed to show, each in a 
different way, a wide range of logical possibilities undreamt of in formal 
logic. The first of these turns upon the properties of a triadic relation 
whose significance was first pointed out by Mr. A. B. Kempe.18 

It is characteristically human to think in terms of dyadic relations: 
we habitually break up a triadic relation into a pair of dyads. In fact, so 
ingrained is this disposition that some will be sure to object that a triadic 
relation is a pair of dyads. It would be exactly as logical to maintain that 
all dyadic relations are triads with a null member. Either statement is 
correct enough: the difference is simply one of point of view-psychological 
preference. If there should be inhabitants of Mars whose logical sense 
coincided with our own, so that any conclusion 'which seemed valid to us 
would seem yalid to them, and yice versa, but whose psychology otherwise 
differed from ours, these ~Iartians might have an equally fundamental 
prejudice in favor of triadic relations. Vie can point out one such which 
they might regard as the elementary relation of logic-as we regard equality 
or inclusion. In terms of this triadic relation, all their reasoning might 
be carried out with complete success. 

Let us symbolize by (ac/b), a -b c + -a b -c = O. This relation may be 
diagrammed as in figure 16, since a -b c + -a b -c = 0 is equivalent to 
ace be (a + c). (Xote that Cae/b) and (ca/b) are equivalent, since a -b c 
+ -a b -c is symmetrical with respect to a and c.) 

This relation (ae/b) represents precisely the information which we 
habitually discard in drawing a syllogistic conclusion from two universal 
premises. If all a is b and all b is c, we have 

a-b = 0 and b-e = 0 

Hence a -b (c + -c) + (a + -a) b -c = 0, 

18 See his paper" On the Relation of the Logical Theory of Classes and the Geometrical 
Theory of Points,", Pmc. London Math. Soc., x.'U, 147-82. But the use we here make of 
this relation is due to Josiah Royce. For a further discussion of Kempe's triadic relation, 
see below, Chap. VI, Sect. IV. 
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Or, a -b c + a -b -c + a b -c + -a b -c = o. 
[5·72J This equation is equivalent to the pair. 

(1) a -b -c + a b -c = a -c (b + -b) = a -c = O. 
and (2) a -b e + -a b -c = O. 

(1) is the syllogistic conclusion, "AU a is c "; (2) is . Perhaps most 
of us would feel that a s~·nogistic conclusion states all the information 
given by the premises: the ':'Iartians might equally well feel that precisely 

" 'b 
FIG. 16 

what we overlook is the only thing worth mentioning. And yet with this 
curious" illogical" prejudice, they would still be capable of understanding 
and of getting ror themseh-es any conclusion which a syllogism or a hypo
theti611 argument can give, and many others which are only very aw1.-wardly 
stateable in terms or our rormallogic. Our relation, a c b, or "All a is b ", 
would be, in their terms, (Ob/a). (Ob/a) is equivalent to 

l·a-b+O·-ab = 0 = a-b 

Hence the syllogism in Barbara \yould be "(Obia) and (Oc/b), hence (Oca)". 

This would, in fact, be only a special case of a more general principle which 
is one of those we may suppose the Martians would ordinarily rely upon 
for inference: "If (xb/a) and (xc/b), then (xc/a)". That this general 
principle holds, is proved as follows: 

(xbja) is -x a -b + x -a b = 0 
(xc/b) is -.;c b -c + x -b c = 0 

These two together give: 

-.;c a-b (0 +-c) + x -a b (c+-c) + -.;c b -c (a + -a) + x-b c (a +-a) = 0, 
or, -.;c a -b c + -x a -b -c + x -a b c + x -a b -c + -x a b -c + -.;c -a b -c 

+ :c a -b c + x -a -b c = o. 
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[.j·72] This equation is equiyalent to the pair, 
(1) -.l· a b -c + -.r a -b -c + .r -a b c + .r -a -b c 

= -,1' (1 -c (b + -b) + .1.' -a c (b + -b) 
= -.r a -c + ,1' -(1 e = O. 

(2) x -0 b -c + -,r -0 b -c + ;l' a -b c + -.r a. -b c 
= -a b -e (.1' + -x) + a -b e (x + -x) 

= -a b -e + a -b c = O. 

(1) is (x(a) .. or which our s;dlogistic conclusion is a special case; (2) is a 
similar yalid conclusion, though one which we neyer draw and have no 
language to express. 

Thus these ::\Iartians could deal with and understand our formal logic 
by treating our dyads as triads with one member null. In somewhat 
similar fashion, hypothetical propositions, the relation of equality, syllo
gisms with a particular premise, dilemmas, etc., are all capable of state
ment in terms of the relation (ae/b). As a fact, this relation is much more 
powerful than any d~'ad for purposes of reasoning. Anyone who will 
trouble to study its properties will be convinced that the only sound reason 
for not using it, instead of our dyads, is the p~ychological difficulty of 
keeping in mind at once two triads \vith two members in common but 
differently placed, and a third member which is different in the two. Our 
attention-span is too small. But the operations of the algebra are inde
pendent of such purely psychological limitations-that is to sa~', a pfocess 
too complicated for us in any other form becomes sufficiently simple to be 
clear in the algebra. The algebra has a generality and scope which" formal" 
logic cannot attain. 

This illustration has indicated the possibility of entirely valid non
traditional modes of reasoning. "\Ye shall now exemplify the fact that by 
modes which are not so remote from familiar processes of reasoning, any 
number of non-traditional conclusions can be drawn. For this purpose, 
we make use of Poretsky's Law of Forms:19 

x = 0 is equiyalent to t = t -x + -t x 

This law is evident enough: if x = 0, then for any t, t -x = i·I = t, and 
-i x. = -to 0 = 0, while t + 0 = t. Let us now take the syllogistic premises, 
"All a is b" and" All b is e ", and see what sort of results can be derived 
from them by this law. 

All a is b, 
All b is c, 

19 See Chap. II, 7 ·15 and 7 ·16. 

a-b = O. 
b -e = 0, 



Applications of the Boole-ScluOder 

Combining these, a -0 + b -c = O. 

And [:3·4·41] -(a-b+o-(') = -(a-u)·-(&-c) = (-a+oj +c) 

= -a -b + -a c + u c. 

Let us make substitutions, in terms of a, 0, and c, for the t of this formula. 

a + b = (a + b) (-a -b + -a e + b c) + -a -b (a -b + b -c) 

= aoe+-abc+bc = be 

\Yhat is either a or b is identical with that which is both band c. This is a 
non-syllogistic conclusion from "All (I is b and all b is c ". Other such 
conclusions may be got by similar substitutions in the formula. 

a + c = (a + c) (-(I -b + -a c + be) + -(I -c (a -b + b -(') 

= abc + -a -b e + -a c + b e + -a b -(' = abc + -a (0 + c). 

\Yhat is either a or c is identical with that which is a, b, and c., all three, or 
is not a and either b or c. 

-b c = -b c (-a -b + -a c + b c) + (b + -c)(a -b + b -c) 

= -a -b c + b -c + a -b -c = -a -b c + (a + b) -c 

That which is b but not c is identical with what is c but neither a nor b 
or is either a or b but not c. The number of such conclusions to be got from 
the premises, "All a is b" and" All b is c", is limited only by the number of 
functions which can be formed with a, b, and c, and the limitation to sub
stitutions in terms of these is, of course, arbitraQ'. By this method, the 
number of conclusions which can be drawn from given premises is entirely 
unlimited. 

In concluding this discussion of the application of the algebra to the 
logic of classes, we may give a few examples in which problems more involved 
than those usuall~' dealt with by formal logic are solved. The examples 
chosen are mostly taken from other sources, and some of them, like the 
first, are fairly historic. 

Example UO 

A certain club has the following rules: (a) The financial committee 
shall be chosen from among the general committee; (b) Xo one shall be a 
member both of the general and library committees unless he be also on 
the financial committee; (c) Xo member of the libf'ary committee shall be 
on the financial committee. 

Simplify the rules. 
:0 See Venn, Symbolic Logic, ed. 2, p. 331. 
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Let f = member of financial committee. 
g = " " general " 
l = " " library " 

The premises then become: 

(a) f c g, or f -g = O. 
(b) (g l) cf, or -f g 1 = O. 
(c) f 1 = O. 

'We can discover by diagramming whether there is redundancy here. In 
figure 17, (a) is indicated by vertical lines, (b) by horizontal, (c) by oblique. 

FIG. 17 

Ca) and (c) both predicate the non-enstence of f -g l. To simplify the 
rules. unite (a), (b), and (c) in a single equation: 

f -g + -f g 1 + f 1 = 0 

Hence, f -g + -f g 1 + f 1 (g + -g) = f -g + -f g 1 + f g 1 + f -g 1 
[5·91] =f-g+(-f+f)gl =f-g+gl = O. 
And [5·72] this is equivalent to the pair, f -g = 0 and g 1 = O. 

Thus the simplified rules will be: 

(a' ) The financial committee shall be chosen from among the general 
committee. 

(b') No member of the general committee shall be on the library com
mittee. 
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Example 2.21 

The members of a certain collection are classified in three ways-as 
a's or not, as b's or not, and as e's or not. It is then found that the class b 
is made up precisely of the a's which are not c's and the c's which are not a's. 

How is the class c constituted? 
Given: b = a -c +-a c. To solve for C.2~ 

b = b (c + -c) = be + b -c. 

Hence, b c + b -c = a -c + -a c. 
Hence [7·271 a -b + -a bee c a -b + -a b. 
Or (2· 2J c = a -b + -a b. 

The c's comprise the a's which are not b's and the b's which are not a's. 
Another solution of this problem would given by reducing b = a-c 

+ -a c to the form {= 0 I and using the diagram. 

[7 ·1] b = a -c + -a c is equivalent to 

b·-(a -c + -a c) + -b (a -c + -a c) = 0 

And [6·4] -(a -c + -a c) = a c + -a -c. 
Hence, abc + -a b -c + a -b -c + -a -b e = O. 

,,\Ve observe here (figure 18) not only that c = a -b + -a b, but that the 

FIG. 18 

relation of a, b, and c, stated by the premise is totall~r symmetrical, so that 

we have also a = b -c + -b c. 
n Adapted from one of Venn's, first printed in an article OIl. "Boole's System of Logic", 

,Mind, I (1876), p. 487. 
12 This proof will be intelligible if the reader understands thesolutionformuIa referred to. 
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E,rample 3.23 

If x that is not a is the same as b, and a that is not ,l' is the same as c, 
what is .:r in terms of a. b, and c? 

Gi,'en: b = -a;r and c = a -,r. To soke for :t:. 

[i·ll b = -([ .r is equivalent to 

-(-a,r)b+-a-b,l' = 0 = (a+-,r)b+-a-bx 

= a b + b -x + -a -b x = 0 (1) 
_-1.nd c = a -,2' is equiyalent to 

-(a-:c)c+a-c-,r = 0 = (-a+:r)c+a-c-,J; 

= -a c + c ,1: + a -c -x = 0 (2) 
Combining (1) and (2), 

a b + -a c + (-a -b + c) ;1: + (b + a -c) -,<; = 0 (3) 

Hence [5·i21 (-a -b + 0) ;J; + (b + a -e) -,J; = 0 (4) 

[i· 221] This gives the equation of condition, 

(-a-b+c)(b+a-c) = be = 0 

[i·2J The solution of (4) is 

(b+a-c) cxc..,.(-a-b+e) 
And b;y (.5), 

-(-a-b+c) =-(-a-b+c)+bc = (a,+b)-c+bc 

(5) 

= a -e + b Co + -0) = b + a-o 
Hence [2·2] J.' = b+a-e. 

FIG. 19 

2Z See Lambert, Logische Abhandlungen, I, 14. 

= 
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This solution is verified by the diagram (figure 19) of equation 
combines all the data. Lambert gives the solution as 

~'l: = (a + b) -c 

This also is wrified by the diagram. 

Example 4.24 

20.) 

which 

'Yhat is the precise point at issue between two disputants, one or whom, 
A, asserts that space should be defined as three-wa~' spread having points 
as elements, while the other, B, insists that space should be defined as 
three-way spread, and admits that space has points as elements. 

Let s = space, 
t = three-way spread, 

p = having points as elements. 
A asserts: 8 = t p. B states: s = t and 8 cpo 

8 = t p is equivalent to 

8·-(tp)+-stp = 0 = S-i+8-p+-stp = 0 (1) 
8 c p is equivalent to s -p = 0 (2) 
And s = t is equivalent to 8 -t + -s t = 0 (3) 
(:2) and (;3) together are equivalent to 

s -t + 8 -p + -8 t = 0 (4) 

(1) represents A's assertion, and (4) represents B's. The difference between 

A B 

FIG. 20 

the two is that between -8 t P = 0 and -8 t = O. (See figure 20.) 

-8 t = -8 t P + -8 t -p 

2( Quoted from Jevons by Mrs. Ladd-Franklin, loco cit., p. 52. 
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The difference is, then, that B asserts -8 t -p = 0, while A does not. It 
would be easy to misinterpret this issue. -8 t -p = 0 is t -p C 8, "Three
way spread not haying points as elements, is space". But B cannot sig
nificantly assert this, for he has denied the existence of any space not having 
points as elements. Both assert 8 = t p. The real difference is this: B 
definitel:; asserts that all three-way spread has points as elements and is 
space, while A has left open the possibility that there should be three-way 
spread not haying points as elements which should not be space. 

Erample .5. 

Amongst the objects in a small boy's pocket are some bits of metal 
which he regards as useful. But all the bits of metal which are not heavy 
enough to sink a fishline are bent. And he considers no bent object useful 
unless it is either heayy enough to sink a fishline or is not metal. And the 
only objects hea,";y enough to sink a fishline, which he regards as useful, 
are bits' of metal that are bent. Specificall~" what has he in his pocket which 
he regards as useful? 

Let ;T = bits of metal, 
y = objects he regards as useful, 
z = things heavy enough to sink a fishline, 

U' = bent objects. 

Symbolizing the propositions in the order stated, \ye have 

.TY=!=O 
x -z C /c. or x-z-w = 0 
ywC(Z+-.l~), or x y-z 10 = 0 
z y C;T W, or -x y z + y z -w = 0 

Expanding the inequation with reference to z and w, 

x y ZIt' + X Y z -w + x y -z1o + x y -z -10 =!= 0 

Combining the equations, 

;1: -z -w (y + -y) +.1: y..:.z W + -x y z ew + -10) + y z -w (x + -x) = 0 

or ;1: y -z -10 + X -y -z -I£' + ;1: y -z w + -x Y z w + -x y z -w + x y z -w = 0 

All the terms of the inequation appear also in this equation, with the 
exception of x y z w. Hence, by 8 ·17, x Y z 10 =!= O. The small boy has 
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some bent bits of metal heavy enough to sink a fishline, considers 
useful. This appears in the diagram (figure 21) b,\- the fact that while 

FIG. 21 

some subdivision of x y must be not-null, aU of these but :c y Z /L' is null. 
It appears also that anything else he may have which he considers useful 
mayor may not be bent but is not metal. 

Example 6.25 

The annelida consist of aU invertebrate animals ha \-jng red blood in a 
double system of circulating vessels. And aU annelida are soft-bodied, 
and either naked or enclosed in a tube. Suppose we wish to obtain the 
relation in which soft-bodied animals enclosed in tubes are placed (by virtue 
of the premises) with respect to the possession of red blood, of an external 
co"\-ering, and of a vertebral column. 

Let a = annelida, 

8 = soft-bodied animals, 
n = naked, 

t = enclosed in a tube, 
i = invertebrate, 
r = having red blood, etc. 

Given: a = 'i r and a c: 8 (n + t), 'With the implied condition, n t = O. To 
eliminate a and find an expression for 8 t. 

~5 See Boole, Laws of Thought, pp. 144-46. 
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a = iris equivalent to 

-(i r) a + -a i r = a -i + a -r + -a -i r = 0 

a c: 8 (n + t) is equivalent to a '-(8 n + s t) = 0. 
-(8n+8t) =-(sn)·-(sf) = (-s+-n)(-s+-f) =-s+-n-t. 

Hence, a -8 + a -n -t = ° 
Combining (1) and (2) and n t = 0, 

a -i + a -r + -a i r + a -8 + a -n -t + n t = 0 

Eliminating a, by 7 ·4, 

(-i + -r + -s + -n -t + n t) (-i r + n t) = n t + i r -s + i r -n -t = 0 

The solution of this equation for 8 is2& i r c: s. 
And its solution for t is i r -n c: t c: -no 

(1) 

(2) 

(3) 

Hence [5·3] ir-nc:sic:-n, or st = ir-n+u·-n, where U is un

determined. 

The soft-bodied animals enclosed in a tube consist of the invertebrates 

---------(1;--------- I ---------a--------

FIG. 22 

2& See Chap. lX, Sect. IV, "Symmetrical and Unsymmetrical Constituents of an Equa
tion ". 
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,shieh hl1se red blood in a douhle system of circulating and a 
cOYering, together 'with an undetermined additional das5 (which ma~' be 

null) of other animals which haw a body coyering. solution may he 
,'erifled by the diagram of equation (figure ~2). In this diagram, 8 t is 
the square formed by the two crossed rectangles. The lower hall of this 

inner square exhibits the s&Iution. Xote that the qualification, -II, in 
i r -n c,'/ i, is necessary. In the top ro,\' is a single undeIeted area repre-
::;enting a portion of i r which is not contained in s t. 

Kmmple 7.27 

Demonstrate that from the premises" .\U a IS eIther b or e", and 
., .\ll c is a ", no conclusion can be dra\1;n "vhieh onl~' two of the 
classes, 0, b, and c. 

Gi\'en: a c (b + e) and c ca. 

To prove that the elimination of anyone element gh'e::: a result ,yhich 

is either indeterminate or contained in one or other of the premise" .. 

a c (b + c) is equivalent to a -b -c = O. 

And c c a is equivalent to -a c = O. 
Combining these. Cl -b -c + -a c = O. 
Eliminating a [7 ·4], (-b -c) c = 0, which is the identity, 0 = O. 
Eliminating c, (Cl -b) -a = 0, or 0 = O. 
Eliminating b, (-a c + a -c) -a c = -a c = 0, which is the second 

premise. 

E:romple 8. 

A set of balls are all of them spotted 'with one or more of the colors, red, 
green, and blue, an~ are numbered. And all the balls spotted with red are 
also spotted with blue. All the odd-numbered blue balls, and all the even 
numbered bans which are not both red and green, are on the table. De
scribe the balls not on the table. 

Let e = eyen-numbered, -e = odd-numbered, 
r = spotted with red, 
b = spotted with blue, 
g = spotted with green, 
t = balls on the table. 

Given: (1) -r -b -g = O. 

27 See De Morgan, Formal Logic, p. 123. 

15 
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(2) r -b = O. 
(3) [-e b + e -(r g)] ct, or (-e b + e -r + e -g) -t = O. 

To find an expression, :r, such that -t c .r, or -t x = -to Such an expression 
should be as brief as possible. Consequently 'We must develop -t 'With 
respect to e, r, b, and g, and eliminate all null terms. (An alternative 
method 'Would be to soh"e for -i, but the pro~edure suggested is briefer.) 

-t = -t (e + -e)(r + -r)(b + -b)(g + -g) 

= -t (e r b g + e r b -g + e r -b g + e -r b g + -e r b g + e r -b -g 

+ e -r b -g + -e r b -g + e -r -b g + -e -r b g + -e r -b g 

+ e -r -b -g + -e r -b -g+ -e -r b -g + -e -r -b g + -e -r -b -g) (4) 

From (1), (2), and (3), 

-t (-e b + e -r + e -g + r -b + -r -b -g) = 0 

Eliminating from (4) terms involved in (5), 

-t = -t(erbg+-e-r-bg), or -tc(erbg+-e-r-bg) 

(5) 

All the balls not on the table are even-numbered and spotted with all three 
colors or odd-numbered and spotted with green only. 

FIG. 23 



Applications the Boole-Schruder 

In the diagram (figure 2:3), equation 

(2) boY" oblique, (:3) by horizontaL 

Example 9.28 

is indicated by n:rtit-al lines, 

.Suppose that an anal~":;is of the properties of a particular dass of sub

stances has led to the following general conclusions: 
1st. That whereyer the properties a and b are combined, either the 

propert;\" c, or the propert~" d, is present also: but they are not jointlr present. 

2d. That wheren'r the properties band c are combined, the properties 

a and d are either both present with or both ab:Jent. 
;jd. That where\"er the properties a and b are both absent, the proper

ties c and d are both ab;;ent al:::o: and \"ice Yer5a. where the properties 

c and d are both ab;;ent, a and b are both ahsrnt also. 

Let it then be required from the abo\'e to determine what may be con
cluded in any particular instance from the presence of the property a with 

respect to the presence or absence of the properties band c, pa~"mg no 

regard to the property d. 

Given: (1) abc (c -d + -c d). 
(2) bee (a d + -a -d). 

(3) -a -b = -c -d. 

To eliminate d and solve for a. 
(1) is equivalent to a b ·_(c -d + -c d) = O. 

(2) is equivalent to b c ·-(a d + -a -d) = O. 

But [6·4]-(c-d+-cd) = cd+-c-d, 

and -(a d + -a -d) = -a d + a -d. 
Hence we have, a b (c d + -c -d) = abc d + a b -c -d = 0 (4) 

and be (-a d + a -d) = -a bed + abc -d = 0 (5) 

(3) is equivalent to 

-a -b (c + d) + (a + b) -c-d 
= -a-bc+-a-bd+a-c-d+b-c-d = 0 (6) 

Combining (4), (5), and (6), and giving the result the form of a 

function of d, 

(-a -b c + -a -b + abc + -a be) d 

+ (-Q. -b c + a -c + b -c + a b -c + abc) -d = 0 

28 See Boole, LalL's of Thought, pp. 118-20. For further problems, see ~lrs. Ladd
Franklin, loco cit., pp. 51-61, Venn, Symbolic Logic, Chap. XIII, and Schroder, Algebra da 
Lo(Jik: Vol. I, Dreizehnte Yorlesung. 
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Or, simplifying, b~' ;). -± and;) . 9 1, 

I.-a -b + b c) d + !,-a -b c + a -c + b -c + a b c) -d = 0 

Hence [7, -!] eliminating d, 

(-0 -b + be) (-a -b c + a -c + b -c + abc) = -a -b c + abc = 0 

Soh'ing this equation for a [7 ·2], -b ceo c (-b + -c). 

The property a is always present ·when c is present and b absent, and when
eYer 0 is present, either b is absent or c is absent. 

The diagram (figure 24) combines equations (4), (5), and (6) . 

.-=f!=.-

FIG. 24 

As Boole correctly claimed, the most powerful application of this algebra 
is to problems of probability. But for this, additional laws which do not 
belong to the system are, of course, required. Hence we omit it. Some
thing of what the algebra will do toward the solution of such problems will 
be evident if the reader imagine our Example 8 as giving numerically the 
proportion of balls spotted with red, with blue, and with green, and the 
quaesitum to be "If a ball not on the table be chosen at random, what is 
the probability that it will be spotted with all three colors? that it will be 
spotted with green?" The algebra alone, without any additional laws, 
answers the last question. As the reader will observe from the solution, 
all the balls not on the table are spo~ted with green. 
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III. TUE ApPLICATrOX TO PROPOSITlOXS 

If, in our po:;tulates, a, b, c, etc., represent proposition,.;, and the .. Pl'otl

uct", a b, represent the proposition which asserts (/ and b hoth. tht'n we 
have another interpretation or the algebra. Since a+b i~ the negative of 

-a -b, a + b will represent "It j,; raIse that a and b are both fal::e ", or 

"At least one of the two., a and h, is true ". It has been cu:;tomary to read 
a + b, "Either fl or b", 01' .. Either II is true or b i:s true". But thi5 i,,; some
what mi5leading. .. Either ... or ... " frequentl;" denotes, in 

use. n relation which i" to bt· understood in intension, while this 
algebra is incapable of rehniOlh of intension. For instance, 
we ::;hould hardly affirm "Either meet at finite imE'rnds or all 
men are mortal", lYe might well :3ay that the "Either ... or ... " 
relation here predicated fails to hold because the t\YO propositions are 
irreleyunt. But at lea~t one of the two, ., Paralld:! meet at finite illter.;als ., 
and "All men are mortal ", is a true proposition. The relation denoted 
by + in the algebra holds between them. Hence, jf we render a + b b;.· 
"Either a or b ",we must bear in mind that no nccel18arN eonnection of a 

and b, no relation or ., l'ele\"ance .. or "logical import", is intended. 
The negatiye of (t, -a, will he its contradictor~', or the proposition ,. a is 

false". It might be thought that -a should symbolize the "contrary" 
of a as weH,-that if (! be "AU men are mortal", then" Xo men are mortal" 
should be -a. But if the contrary as well as the contradictory be denoted 
by -a, then -a ,yill be an ambiguous function of G, whereas the algebra 
requires that -a be unique. 29 

The interpretation of 0 and 1 i5 most easily made clear b~" considering 
the connection between the interpretation of the algebra ror propositions 
and its interpretation for classes. The propositional sign, a, may equally 
well be taken to represent the class of cases in which the proposition a is 
true. a b will then represent the class of cases in which a and b are both 
true; -a, the class of cases in which a is false, and so on. The "universe", 1, 
will be the class of all cases, or all "actual" cases, or the universe of facts. 
Thus a = 1 represents "The cases in which (! is true are all cases ", or 
" a is true in point of fact", or simply "a is true". Similarly 0 is the class 
of no cases, and a = 0 will mean "a is true in no case", or "a is false". 

It might well be asked: May not cr, b, c, etc., represent statements which 
are sometimes true and sometimes raIse, such as .i Today is }Ionday" 
or "The die shows an ace"? }Iay not a symbolize the cases in which a is 

29See Chap. II, 3'3. 
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true. and these be not all but only some of the case::;? And should not 
(l = 1 be read "a is alwa~'s trne ", as distinguished from the less com
prehensiye statement, ., a is true"? The ans,Yer is that the interpretation 
thus suggested can be made and that Boole actually made it in his chapters 
on "Secondar~' Propositions ".30 But symbolic logicians haye come to 
distinguish between assertions which are sometimes true and sometimes 
false and propositiolls. In the sense in which .• Today is Monday" is 
sometimes true and sometimes false, it is called a propositional function 
and not a proposition. There are two principal objections to interpreting 
the Boole-Schroder AJgebra as a logic of propositional functions. In the 
first place, the logic of propositional functions is much more complex than 
this algebra., and in the second place, it is much more useful to restrict the 
algebra to propositions by the ad€l.itional law" If a =!= 0, then a = 1, and 
if a =!= 1, then a = 0", and a yoid any confusion of propositions with asser
tions which are sometimes true and sometimes false. In the next chapter, 
we shall investigate the consequences of this law, which holds for proposi
tions but not for classes or for propositional functions. VVe need not pre
sume this law at present: the Boole-Schroder Algebra, exactly as presented 
in the last chapter, is applicable throughout to propositions. But we shall 
remember that a proposition is either always true or never true: if a proposi
tion is true at all, it is always true. Hence in the interpretation of the 
algebra for propositions, a = 1 means "a is true" or "a is always true" 
indifferently-the two are synonymous. And a = 0 means either "a is 
false" or "a is always false". 

The relation a c b, since it is equivalent to a -b = 0, may be read "It 
is false that' a is true and b is false''', or loosely, "If a is true, then b is 
true n. But a c b, like a + b, is here a relation which does not signify 
"relevance" or a connection of "logical import". Suppose a = "2 + 2 
= 4" and b = « Christmas is a holiday". We should hardly say "If 
2 + 2 = 4, then Christmas is a holiday". Yet it is false that "2 + 2 = 4 
and Christmas is not a holida~''': in this example a -b = ° is true, and 
hence a c b will hold. This relation, a c b, is called" material implication"; 
it is a relation of extension, whereas we most frequently interpret" implies" 
as a relation of intension. But a c b has one most important property in 
common with our usual meaning of "a implies b "-when a c b is true, the 
case in which a is true but b is false does not occur. If a c b holds, and a is 
true, then b will not be false, though it may be irrelevant. Thus" material 

30 Laws of Thought, Chaps. XI-XIV. 
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implication" is a relation which coyer::; more than the" .. or 

logic: a cb holds wheneyer the usual "(1 implies b" haiti:;; It hold,,; in 
some cases in which ., a implies b" does not hold.31 

The application of the algebra to propositions IS so simple, and so 

resembles its application to classes, that a comparath'el~- fe,,- illustrations 
will suffice. \Ye giw some from the elementary of conditional propo
sitions, and conclude 'with Olle taken from Boole. 

E:raI1l1)e 1. 

If.lisB,CisD. 
And A is B. 

Let .r = A is B: II = C is D. 

The two premises then are: 

(1) :r c y, or [4·[lJ -.r + y = 1-
(2) .1: = 1, or -;to = o. 

[5·7] Since -.r+y = 1 and -.1:: = 0, y = 1. 

Y = 1 is the conclusion ., Cis D". 

E:rample 2. 

(l) If A is B, C is D. 

(2) But C is not D. 

Let x = A is B; y = C is D. 

(1) :1: cy, or -J:+Y = l. 

(2) Y = o. 
[5·7] Since -.r+y = 1 and y = 0, -;r = 1. 

-x = 1 is the conclusion " A is B is false ", or H A is not B". 

Example 3. 

(1) If A is B, Cis D; and (2) if E is P, Gis H. 
(3) But either A is B or Cis D. 

Let U' = A is B; x = C is D; y = E is F; z = G is JI. 

(1) W C'-I:, or [4·9]w x = u'. 

(2) y C z, or y z = y. 

(3)w + y = 1. 

(1) 
(2) 

31 "Material implication" is diMussed more at length in Chap. IV, Sect. I, and Chap. 
v, Sect. v. 
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Since U' + 11 = I, and U' ;1; = If and y Z = l/, If ,1' + Y z = 1. 

Hence [4·5] 1I:,r+-lc.l~+y::;+-Yz = 1+-1C;t'+":Yz = 1. 

Hence,r + -Ii') + Z (ll + -y) = .r + Z = 1. 

.r +.<: = 1 is the conclusion" Either C is D or G is II". This dilemma 
may be diagrammed if we put our equations in the equh'alent forms 

(l)lC -.1: = 0.. (:2) 11-: = 0. (:3) -w -y = O. In figure 25,w -.J; is struck 

FIG. 25 

out with horizontal lines, y -z with yertical, -lC -y with oblique. That 

eyer~-thing which remains is either .1.' or z is eyident, 

Example 4. 

(1) Either A is B or C is not D. 
(2) Either C is D or E is F. 
(3) Either A is B or E is not F. 

Let ,r, = A is B; y = C is D; z = E is F. 

(1) ,];+-y = 1. 

(2) y + z = 1, or -y -z = 0, 

(:3) ;1: + -z = 1, or -,r z = O. 
By (l),x+-y(z+-z) = x+-yz+-y-z = 1. 

Hence by (2), x + -y z = 1 = x + -y z (x + -x) = x + x -y z + -;1: -y z. 

And by (;3), -;1; -y z = O. Hence x +.<:-y z = x = 1. 

Thus thes~ three premises give the categorical conclusion" A is B ", indi
cating the fact that the traditional modes of conditional sJ·llogism are by 
no means exhaustive. 
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E:ramplc ;3.32 

.-\s:mme the premises: 

1. If matter is a necessary being, either the propert~· of gra,-itation is 

necessarily present, or it is necessaril~' absent. 

2. If gravitation is llecessaril~' absent, and the world is not subject to 
,,any presiding intelligence. motion does not exist. 

:3. If grayitation i5 necessarily pre:'.ent, a yucuum is necessary. 

4. If a· vacuum is neceS3:ny, matter is not a ne('t':::sar~' being. 

5. If matter is a necessary being, the 1;H1rld is not subjcC't to a presiding 
intelligence. 

Let .,' = ::'<.Iatter is a necessar:; being. 

y = Gnn"itation is present. 

;:; = The world is not subject to a pre;;iding intelligellce. 
If = ::'<.Iotion e}"-1sts. 

t = Grayitation is necessaril~' absent. 

z· = A yacuum is necessar~·. 

The premises then are: 

;1) ,1; c (y+ t), or ;1; -y -t = O. 
~:2) t:: c -1£', or t Z Ie = O. 
(3) Y C i', or y -1) = 0. 
(4) tC-x, or V:1: = O. 
(5) ;r C z, or x -z = O. 

And since gravitation cannot be both present and absent .. 

(6) y t = O. 

Combining these equations: 

;1; -y -t + t Z it + y -1: + .1: .1.: + X -z -I- Y t = 0 

From these premises, let it be required, first, to discover an~' conection 

between x, "l\Iatter is a necessary being", and y, "Gravitation is neces:3ariIy 

present". For this purpose, it is sufficient to discover whether an~' one 

of the four, x y = 0, x -y = 0, -J: Y = 0, or -.1' -y = 0, since these are 

the relations which state any implication which holds between x, or -J:, 

and y, or -yo This can alwa~'s be done by collecting the coefficient:::; of 

x y, x -y, -x y, and -x -y, in the comprehensive expression of the data, 

such as equation (7), and finding which of them, if any. reduce to 1. But 

l!2 See Boole, Laws of Tlu:rughi, Chap. XIV. The premises assumed are supposed to be 
borrowed from Clarke's metaphysics. 
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sometimes, as in the present case, this lengthy procedure is not necessary, 
because the impection of the equation representing the data readily reyeals 

such a relation. 

From (7), [5·72]r.l'+-ry = O. 

Hence [1·5] /; ;1'y + -~';1: Y = (L' + -i') ,l' !! = ;l' y = 0, or ;1; C -y, Y C -x. 

II matter is a necessary being, then gravitation is not necessarily present; 
if gravitation is necessaril~' present, matter is not a necessary being. 

Xext, let any connection between x and 'w be required. Here no such 
relation is easily to be discovered by inspection. Remembering that if 

a = 0, then a b = 0 and a -b = 0; 

i 
i 
I 
I 
I 
I 
I 
I 
! 

til , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-* I 
I 
I 
I 
I , 
I , 
I 

From (7), (-y-i+tz+y-v+v+-z+yt) U'x 

+ (t z + y -H Y t) w-x 

+ (-y -t + Y -v + v + -z + y t) -11) X 

+ (y -v + y t) -lC -x = 0 

Here the coefficient of Ie x reduces to 1, for [5·85], 

y -v + l' = Y + v, and t z + -z = t+-z 

and hence the coefficient is -y -t + Y + t +v + -z + y t. 
But [5·913J (-y-t+y+t)+'L'+-z+yt = 1+1l+-z+yt = l. 
Hence 1i'.1: = 0, or 1l' C -.1:, X' C -II'. 

1-------- -{l}- - -- -- --T--------x--- ------

1---------y ---------] 

+ 
+ 
+ 

FIG. 26 

v t I -t 
-vi 

(8) 
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::\one or the other coefficient;:; in reduces to 1. Henee the conelu~ion 

which connects ,1' and Ii' is: ., If motion exi"ts. matter j" not a lleC(',,:,mry 

being; if matter is a necessary being, motion doe::; not exist ". 
Further conclusions, relating other terms, might he deriwd from the 

same premises. _1..11 such conclusions are readil~' disco\'erahle in the dia
gram of equation (7). In fact, the diagram j" more cOl1wnient for such 
problems than the transformation equations in the algebra . 

. -illother method ror discowring the implications inyolwd in gin'H data 
is to state the data entirely in term" or the relation c, and, rememhering 
that "If 0 c band bee, then ace ", as \yell as "a c b is equh'alent to 

-b c -a "" to seek directly an~' connection reyealed between the propo
sitions which are in que:stion. Although by thi" nwthod it is possible to 
o\'erlook a connection which exists. the danger is relatin>ly small. 

IY. THE ApPLrcATro~ TO REL'\Tro~S 

The application of the algebra to relations is relatively unimportant, 
because the logic of relations is immensely more complex than the Boole
Schroder Algebra, and requires more e:l."tensi\'e treatment in order to be of 
senice. 'Ye shall, consequently, confine our discussion simpl~' to the 
explanation of this interpretation of the algebra. 

A relation, taken in extension, is the class of all couples, triads. or tetrads, 
etc., "which hOt'e the property of being so related. That is, the relation 

"rather of" is the class of all those couples, (.1.'; y), such that .1' is father 
of y: the dyadic relation R is the class of all couples (.1'; y) such that l' has 
the relation R to y, ,l~ R y. The extension of a relation is the class of things 
which haye the relation. We must distinguish between the class of couples 

(.1:; y) and the class of couples (y; .1'), since not all relations are symmetrical 
and x R y commonly differs from y R x. Since the properties of relations, 
so far as the laws of this algebra apply to them, are the same whether the~; 
are dyadic, triadic, or tetradic, etc., the discussion of dyadic relations will be 

sufficient. 
The" product ", R x S, or R S, will represent the class of all those couples 

(x; y) such that x R y and .1: S II are both true. The" sum ", R + S, wiII be 

the class of all couples (x; y) such that at least one of the two, .r R y and 
x S y, holds. The negatiye of R, -R, will be the class or couples (.r; y) for 

which x R y is false. 
The null-relation, 0, will be the null-class of couples. If the class of 

couples (t; u) for which t R u is true, is a class ..,"vith no members, and the 
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class of couples (/:; for which L'S w is true is also a class with no members, 
then Rand S haw the same extension. It is this e)..'iension "which 0 repre
sents. Thus R = 0 signifies that there are no two things, t and u" such 
that t R 11 is true-that nothing has the relation R to anything. Similarly, 
the uniwrsaI-relation., 1, is the class of all couples (in the uniYerse of dis

course). 
The inclusion, ReS, represents the assertion that every couple (J.~; y) 

for "which.r R y is true is also such that a; S y is true; or, to put it otherw~se, 
that the class of couples (;r; y) for which x R y is true is included in the 
class of couples (u; ~.') for which ~l Sv is true. Perhaps the most satisfactory 
reading or ReS is "The presence of the relation R implies the presence of 
the relation S ". R = 8, being equiYalent to the pail', ReS and S c R, 
signifies that Rand S haye the same extension-that the class of couples 
(x; y) for ,-.;-hich a: Ry is true is identically the class of couples (1<; v) for 
which 11 S v is true. 

It is ob-dous that all the postulates, and hence all the propositions, of 
the Boole-Schroder Algebra hold for relations, so interpreted. 

1·1 If Rand S are relations (that is, if there is a class of couples (x; y) 

such that.7.: R y is true, and a class of couples (11; 1') such that u S 'J: is true), 
then R x8 is a relation (that is, there is a class of couples (Ie; z) such that 
If R z and U' S z are both true). If Rand S be such that there is no couple 
(w; z) for which !t' R z and lL' S z both hold, then R x S is the null-relation, 0 
-i. e., the null-class of couples. 

1· 2 The class of couples (x; y) ror which x R y and x R y both hold is 
simply the class of couples for which x R y holds. 

1· 3 The class or couples denoted by R x S is the same as that denoted 
by S x R-nameI;)-', the class of couples (x; y) such that x R y and x S y 

are both true. 
1·4 The class of couples (.7.:; y) for which x R y, x S y, and x T y all 

hold is identically the same in whatever order the relations be combined
i. e., R x (8 x T) = (R x S) x T. 

1· 5 R x 0 = O-i. e., the product of the class or couples for which x R y 

holds and the null-class of couples is the null-class of couples. , 
1· 6 For ever~' relation, R, there is a relation -R, the class of couples 

for which x R y is raIse, and -R is such that: 

1· 61 If the relation R x -8 is null (that is, if there is no couple such 
that x R y is true and x S y is false), then R x S = R (that is, the class of 
couples for which x R y is true is identically the class of couples for which 
x R y and x 8 yare both true); and 
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1·62 If R x S = Rand R x-iS = R, tl1l'rl Ii = fl-i. e., if 
couples tor which .r R .1J and .r S yare both true is 
couples for 'which or R 1I is true. and if also the class of couples for which 
x R !I is true and J..' {) Y is fa7sc i:; identically the class of couples for ,yhich 
x R y is true, then the class of couples for .r R y is true is null. 

1· 7" 1 = -O-i. e., the unin:rsal class of couples is the negatine' of the 
nuH-class of within unh-erse of discourse of couples. 

1·8 R + S = -{-Ii x-S)-i. e., clai's of I.r; such that 
at least one or the two, .1.' R 1I and ,r S 11, is true i;:; the negatiw of the class 
or couples for which J: R y and .1: .) yare 

1·9 R x S = R is equiyalent to ReS-i. e .. ! if class of couples 
for which x R y and J: S yare both true is identical with the class of couples 
for which x R y is true, then the presence of R implies the presence of S; 
and if the presence of R implies the presence of S, then class of couples 
(x; y) for which J.' R 11 is true is identical with the cla:"s of couples ror Yl;hich 
x R 11 and J.' S 11 are both true.33 

S3 For a further discussion of the logic of relations, see Chap. 11", Se?t. Y. 



CHAPTER IV 

SYSTK\IS BASED OX :\B.TERIAL IMPLICATION 

"\Ye are concerned, in the present chapter, with the" calculus of propo
sitions" or calculus of "material implication ", and with its extension to 
propositional fUIlctions. "\Ye shall discover here two distinct modes of 
procedure, and it is part of our purpose to set these two methods side by side. 

The first procedure takes the Boole-Schroder Algebra as its foundation, 
interprets the elements of this system as propositions, and adds to it a 
postulate which holds for propositions but not for logical classes. The 
result is what has been called the "Two-Yalued Algebra ", because the 
additional postulate results in the law: For any ;-r, if x =l= 1, then x = 0, 
and if .J:: =l= 0, then .r = 1. This T"'o-Yalued Algebra is one form of the 
calculus of propositions. The ex "tension of the Two-Valued Algebra to 
propositions of the form <PXn' where Xn is an indiyidual member of a class 
composed of .rl, X?, X3, etc., giycs the calculus of propositional functions. 
IT and :3 functions ha ye a special significance in this s;<;stem, and the relation 
of "formal implication ", ITA <pX C 1f;x), is particularly important. In terms 
of it, the logical properties of relations-including the properties treated 
in the last chapter but going beyond them-can be established. This is 
the t~'pe of procedure used by Peirce and Schroder. 

The second method-that of Principia .JIathematica-begins with the 
calculus of propositions, or calculus of material implication, in a form which 
is simpler and otherwise superior to the Two-Valued Algebra, then pro
ceeds from this to the calculus of propositional functions and formal impli
cation, and upon this last bases not only the treatment of relations but also 
the" calculus of classes". 

It is especially important for the comprehension of the whole subject 
of symbolic logic that the agreement in results and the d:~fference of method, 
of these two procedures, should be understood. Too often they appear to 
the student simply unrelated. 

L ThE TWO-VALUED ALGEBRA! 

If the elements a, b, ... p, q, etc., represent propositions, and a x b or 
a b represent the joint assertion of a and b, then the assumptions of the 

1 See Schroder, Algebra der Logik: II, especially Funjzehnte VorZesung. An excellent 
summary is contained in Schroder's Abriss (ed. Milller), Teil II. 

222 
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Boole-Schroder .\lgebra ,yill all be round to hold for ,,:' was 
explained in the last chapter.~ As was there made dear. jJ = 0 will rl'pre~ 
sent" 11 is false ", and p = 1, •. p is true ", Since 0 and 1 are unique. it 
foUows that any two propo::;itions, p and '1. sll<:h that p = \) and IJ = fl. 

or such that p = 1 and q = L are also such that p = 'I, P = '1, in the 
algebra, represents a relation or extension or .. truth "aIue ", not an equh'a
lence of content or meaning, 

-p symbolizes eOlltradictory or denial of p. 

The meaning of p + '! is determined from its definition, 

P +fJ is the denial of "p is false and 1/ is fabe ". or it is the propo:,ition 
"At least one of the two, p and '1. is true ". p + It may be read loosel,l:, 
"Either p is true or q is true". The p05:3ibility that both p and q should 
be true is not excluded. 

p c q is equi\'alent to p q = p and to P -I] = 0, pel] j" the relation of 
material implication. 'Ye shall consider its properties with care later in 
the section. For the present, we may note simply that pc q mean::; exuetl,\' 
"It is false that p is true and q false ", It ma,\' be read" If p is trm', Ii is 
true", or " p (materially) implies q". 

'Yith the interpretations here given, all the postulates of the Boole
Schroder Algebra are true for propositions. Hence ail the theorems will 
also be true for propositions. But there is an additional law which holds 
for propositions: 

p = (p = 1) 

"The proposition, p, is equi\'alent to ' p is true' ". It follows immediately 

from this that 
-p = (-p = 1) = (p = 0) 

"-p is equh'alent to 'p is raIse "'. It also follows that -p = -(p = 1), 

and hence 

-(p = 1) = (p = 0), and -(p = 0) = (p = 1) 

'" p = 1 is false' is equivalent to p = 0 ", and'" p = 0 is false' is equivalent 
to p = 1", Thus the calculus of propositions is a tll'o-ralued algebra: 
every proposition is either = 0 or = 1, either true or false. We may, then, 
proceed as folIo\\'s: All the propositions of the Boole-Schroder Algebra 

2 However, many of the theorems, especially those concl"nling functions, eliminations, 
and solutions, are of little or no importance in the calculus of propositions. 
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which were giwu in Chapter II may be regarded as already established in 
Two-Yalued Algebra. \Ye may, then, simpJy add another division of 

propositions-the additional postulate of the Two-Yalued Algebra and the 
additional theorems which result from it. Since the last division of the
orems in Chapter II was numbered 8·, we shall number the theorems of 

this section 9·. 
The additional postulate is: 

9·01 For ewry proposition p, p = (p = 1). 

And for conwnience we add the convention of notation: 

9·02 -(p = q) isequiyalenttop =l= q . 

• -\.s a consequence of 9·01, we shall haye such expressions as -(p = 1) and 
-(p = 0). 9·02 enables us to use the more familiar notation, p =l= 1 and 

p =l= O. 
It follows immediately from 9·01 that the Two-Valued Algebra cannot 

be viewed as a wholly abstract mathematical system. For whatever p 
and 1 may be, p = 1 is a proposition. Hence the postulate asserts that 
any element, p, in the system, is a proposition. But even a necessary 
interpretation may be abstracted from in one important sense-no step in 
proof need be allowed to depend upon this interpretation. This is the 
procedure we shall follow, though it is not the usual one. It will appear 
shortly that the validity of the interpretations can be demonstrated vyithin 
the s~ostem itself. 

In presenting the consequences of 9·01 and 9·02, we shall indicate 
pre\Oious propositions by which any step in proof is taken, by giving the 
number of the proposition in square brackets. Theorems of Chapter II 
ma~', of course, be used exactly as if they were repeated in this chapter. 

9·1 -p = (p = 0). 

[9·01J -p = (-p = 1). And [3·2}-p = 1 is equivalent to p = O. 

9·12 -p = (p =l= 1). 

[9 ·01] P = (p = 1). Hence [3· 2J -p = -(p = 1) = (p =l= 1). 

9·13 (p =l= 1) = (p = 0). 

[9·1·12] 

9·14 (p =l= 0) = (p = 1). 

[9·13,3·2] 

9 ·13 and 9 ·14 together express the fact that the algebra is two-valued. 
Every proposition is either true or false. 
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rp to thi" point-that i:i. throughout the 
logical relations "If . . . . then . . ... , .. Either . , , (Jf •• ., .. Both 

... and .. ,", etc" not in the symhob of :i,';stem but jU:-it a~ 

would be "Titten in arithmetic or geometry or any oth('r mathematical 
system. 'iYe haye had no right to do otherwi~e. That"... c ... " 
is bil interpretation" If ... , then ... ", and " ... + ... " j" by inter
pretation ,. Either ... or ... ", does not warrant us in identifying the 
theorem .. If a c b, then -b c -a" with ", a c III c '::-b c ". We han: 
had no more rea~on to identif~' "If . . . . then . . ." in theorem,; with 
". . . c ... " than a geometrician would haw to identif:; the period at 
the end of a theorem with a geometrical point. The framework of logical 
relations in terms of which theorems are "tated Illtbt ht· di::;tillguished from 
the content of the s~'stem, e\'('l1 when that cnntent is logie. 

But we can ,lOll' prO/'c that we ha,'e a right to interchange the joint 
assertion of p and q with p XI], "If p, then q ", with lJ C I]. (:tc. "\Ye can 
demonstrate that if 11 and q are member" of the da~s E, then jI c '} is a 
member or K, and that "If 1', then q", is ffjllil'alcllt to pc q. _\ntl we can 
demonstrate that this is true not merely as a matter of interpretation but 
by the necessar~'laws of the system itself. \re can thus 13roye that writing 
the logical relations inyoh'ed in the theorems-" Either . or ... , 
"Both ... and ... ," "If ... , then ... "-in terms of +, x, c, 
etc., is a yalid procedure. 

The theorems ill which these things are proyed are never needed here
after, except in the sense of validating this interchange of symbols and their 
interpretation. Consequently we need not give them any section number. 

(1) If p is an element in K, p = 1 and l' = 0 are elements in K. 
[9·01] If p is an element in K, p = 1 is an element in K. [l-i5] 

If p is an element in K, -1' is an element in E, and hence fH ,I] P = 0 
is an element in E. 

(2) The two, p and q. are together equh'alent to p x g, or p q. 

[9·01] ])g = (p q = 1). [5·7aJ pq = 1 is equh'alent to the 
pair, p = 1 and q = 1, and hence [9·01J to the pair, p and q. 

(3) If p and q are elements in K, then pc q is an element in K. 
[4·9] pc q is equivalent to p -q = 0, and hence [9 ·11 to -(p -q). 

But if p and q are elements in E, [1· 6, 1·1]-(p -q) is an element in E. 

(4) -p is equiyalent to "p is false ". 

16 

[9 ·12] -p = (p =!= 1), and [8 -Oil p =!= 1 is equivalent to "p = 1 
is false", and hence [9·01] to "p is false". 
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(5) pc q is equinllent to "If p, then q". 

[5· oJ; pc q gives "If p = 1, then q = 1 ", and hence [9· 01J 

"If p, then fj" • 

. :\.nd ., If p .. then q" giws p c q, for [9·01] it gives" If p = 1, then 

q = I", and 
Suppose as a fact 1) = 1. Then, by hypothesis, q = 1, and 

[:2·2Jpcq. 
Suppose that p =t= 1. Then [9 ·14] P = 0, and [5·63] pc q. 

If 1) and q are elements in K, then p = q is an element in K. 
[7 ·1] p = q is equiyalent to p -q + -p q = 0, and hence [9 ·1] 

to -(p-q+-pq). Hence [1·6, 1·1,3·35] Q.E.D. 

(7) p = q is equivalent to "p is equivalent to q". 

[:2·2] p = q is equh'alent to "p c q and q c p". 
By (5) abow. "p c q and q c p" is equivalent to "If p, then q, and 
if q, then p". And this is equivalent to "p is equivalent to q". 

(8) If p and q are elements in K, then p =t= q is an element in K. 
[9·02] (p =t= q) = -(p = q). 

Hence, by (6) aboYe and 1· 6, Q.E.D. 

(9) p =t= q is equh-alent to "p is not equivalent to q". 

By (4) and (2) above, Q.E.D. 

(10) p + q is equivalent to " At least one of the two, p and q, is true. 
[l·S] p+q = -(-p-q). 

By (4) and (2) above, -(-p -q) is equivalent to "It is false that 
(p is false and q is false)". And this is equh-alent to "At least one 
of the two, p and q, is true". 

In consideration of the above theorems, we can henceforth write ". . . 
c ... " for" If ....• then ... ", " ... = ... " for" ... is equivalent 

to ... ", " ... + ... " for "Either ... or ... ", etc., for we have 
prm-ed that not only all expressions formed from elements in K and the 
relations x and + are elements in K, but also that expressions which in
Yolve c, and =, and =t= are elements in the system of the Two-Yalued 
Algebra. The equh'alence of "If ... , then ... " with" ... c ... ", 
of "Both ... and ... " with" ... x ... ", etc., is no longer a matter 
of interpretation but a consequence of 9·01, p = (p = 1). Also, we can 
go back over the theorems of Chapter II and, considering them a8 propo8itioM 
of the TU'o-T'alued Algebra, we can replace "If ... , then ... ", etc., 
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by the symbolic equh·alents. Each theorem not wholly in symbols gin,s a 
corresponding theorem which is wholly in s~-mbol::i. But when we coni/ider 
the Boole-Schroder Algebra, without the additional postulate, fl· 01. this 
procedure is not yalid. It is mlid only where 9·01 is one the po,;tnlates
i. e., only in the s~-stem of the Two-Yalued J..1gebra. 

Henceforth we shall write aI! our theorems with ]I c q for ., If p. then q", 

P = /1 for" p is equi\-alent to '1 ", etc. But in the prooJ~ we shall frequently 
use "If ... , then .. _" instt'ad of " ... c ... ", etc., because the 
symbolism "ometimes renders the proof ob5cure and makes hard reading. 
(That this is the case is due to the fact that the T,,-o-Yalued Algebra does 
not ha,'e what we shall hereafter explain as the true "logi:3tic" form.) 

9 ·15 0 =l= 1. 

o = O. Hence (9 ·1:3] 0 =l= l. 

9·16 (p =f q) = (-p = q) = (p = -rj). 

(1) If p = q and p = 1, then q =l= 1 and :9·13] q = O. 
And if p = 1, [3·2] -p = O. Hence -p = q. 

(2) If p =f q and p =f 1, then [0·1:3J p = 0, and [3·2] -p = 1. 

Hence if p =f q, then q =f 0, and [9 -1-1J Ij = 1 = -po 
(3) If -p = q and q = 1, then-p = 1, and [3·2] p = o. 

Hence [9 -1.5J p =f q. 

(4) If -p = q and q =f 1, then -p =f 1, and [9 ·13J -p = O. 
Hence [3· 2J P = 1, and p =l= q. 

By (1) and (2), if p =f q, then -p = q. And b;:.' (3) and (-1:), if 
-p = q, then p =l= q. Hence p =l= q and -p = q are equi\·alent. 

And [3·2J (-p = q) = (p = -q). 

This theorem illustrates the meaning of the relation, =, in the calculus 

of ,material implication. If p =f q, then either p = 1 and q = ° or p = 0 
and q = 1. But if p = 1, then -p = 0, and if p = 0, then-p = 1. Hence 
the theorem. Let p represent "Caesar died", and q represent" There is 
no place like home". If" Caesar died" is not equh'alent to "There is 
no place like home ", then "Caesar did not die" is equiyalent to "There 
is no place like home". The equivalence is one of truth wllles-{ = 0 I or 
{ = 1 }-not of content or logical significance. 

9·17 p = (p = 1) = (p =f 0) = (-p = 0) = (-p:{= 1). 

[9·01·13·14·16] 

9·18 -p = (p = 0) = (p :{= 1) = (-p = 1) = (-p :{= 0). 

[9-1·13·14·16J 
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9·2 (p = I)(p = 0) = O. 

[2·4J p-p = O. And [9·01] p = (p = 1); [9·1] -p = (p = 0). 

Xo proposition is both true and false. 

9·21 (p =f: 1)(p =f: 0) = o. 
[2·4]-p p = O. And [9·18] -p = (p =f: 1); [9·17] p = (p =f: 0). 

9·22 (p = 1) + (p = 0) = 1. 

[4·8] p+-p = 1. Hence [9·01·1] Q. E. D. 
Eyery proposition is either true or false. 

9·23 (p =f: 1) + (p =f: 0) = 1. 

[4·8,9·01·1] 
Theorems of the same sort as the above, the proofs of which are obvious, 

are the following: 

9·24 (pq) = (pq = 1) = (pq =f: 0) = (p = l)(q = 1) = (p =f: O)(q =f: 0) 

= (p =f: O)(q = 1) = (p = 1)(q =f: 0) = -(-p + -q) 

= (-p + -q = 0) = [(p = 0) + (q = 0) = 0] 
= [(p =f: 1) + (q =f: 1) = 0], etc., etc. 

9·25 (p+q) = (p+q = 1) = (p+q =f: 0) = (p = 1)+ (q = 1) 

= (p =f: 0) + (q =f: 0) = -(-p -q)'= [(p = O)(q = 0) = 0] 
= [(p =f: I)(q =f: 1) =f: 1], etc., etc. 

These theorems illustrate the variet~· of wa~'s in which the same logical 
relation can be expressed in the Two-Yalued Algebra. This is one of the 
defects of the system-its redundanc~' of for~s. In this respect, the 
alternative method, to be discussed later, gives a much neater calculus of 
propositions. 

'We turn now to the properties of the relation e. 'Ve shall include here 
some theorems 'which do not require the additional postulate, 9·01, for the 
sake of bringing together the propositions which illustrate the meaning of 
"material implication". 

9·3 (peq) = (-p+q) = (p-q = 0). 

[4·9] (peq) = (p-q = 0) = (-p+q = 1). 
[9·01] (-p+q = 1) = (-p+q). 

"p materially implies q" is equivalent to "Either,p is false or q is true", 
and to "It is false that p is true and q false ". 

Since p e q has been pr~ved to be an element in the system, "It is false 
that p materially implies q" may be symbolized by -(p e q). 
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9·31 -(peg) = (-P+'1 = 0) = -q). 

[:3·4]-(-p+l]) = p-q. And [9·;3J -(pe = -.-p+ 

[9 ·02] -(-p + q) = (-p + '1 = 
" p does not materiall;<1 imply q" is equiyalent to ,. It is false that either p 
is fa lse or q is true", and to " p is true and q false". 

9·32 (p=O)e e 

[o·n:3! 0 C 1/. Hence Q.E.D. 

If p is fulse, then for an~' proposition '1, p materially implies g. This is 
the famous-or notorious-theorem: " A proposition implies any 
p~oposition 

9,33 (I] = l) e(pc 

[;j·G1] peL Hence Q.E.D. 

This is the companion theorem: ".:\ true proposition is implied an,\' 
propo::ition ". 

9·34 -,(peg) e(p = 1). 

The theorem follows from 9·:3::! by the reductio ad absurdum, 
since if -(peg:), then [9·32J p '* 0, and [9·1-1] p = 1. 

If there is any proposition, g, which p does not materian~· imply, then p is 
true. This is simpl~' the in wrse of g.:)2. A similar consequence or 9 ·:33 is: 

9·35 -(peg) eeq = 0). 

If -(peq), then [9·;3:3J q =i= 1, and [9·13] q = O. 
If p does not materially impl:.- q, then q is false. 

9·36 -(peq)e(pe-IJ); -(peq)e(-pel/l; -(peq)e(-pe-q). 

[9·:34·35] If -(p c q), then p = 1 and q = O. 
[3·2] If p = 1, -p = 0, and if q = 0, then -q = 1. 

[9-32] If -p = 0, then -p eq and -p e-q. 

[!)·33J If -q = 1, then p e-q. 

If p does not materially imply g, then p materiaH,.\· implies the negath-e, 
or denial, of q, and the negative of p impliefl '1, and the negative of p implies 
the negath'e of q. If" Today is ::\Ionday" does not materiall:.' imply 
"The moon is made of green cheese", then "Today is ::\Ionday" implies 
"The moon is not made of green cheese", and "Today is not ::\londay" 
implies "The moon is made of green cheese", and "Today is not :\Ionday" 
implies "The moon .is not made of green cheese". 

Some of the peculiar properties of material implication are due to the 
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fact that the relations of the algebra were originall~' deyised to represent 
the :l~'stem of logical classes. But 9·36 exhibits properties of material 
implication which haw no analogy amongst the relations of classes. 9 ·36 
is a consequence of the additional postulate, p = (p = 1). For classes, c 
represents .. is contained in": but if a is not contained in b, it does not 
follow that ([ is contained in not-b-a may be partly in and partly outside 
of b. 

9·37 -(pcg) c(qcp). 

[9·36] If -(p c q), then -p c-q, and hence [3·1] q c p. 

Of any two propositions, p and q, if p does not material1y imply q, then q 
materially implies p. . 

9·38 (pq)c[(pcq)(lJcp)J. 

[9·24] P q = (p = I)(q = 1). Hence [9,33] Q.E.D. 
If p and q are both true, then each materially implies the other. 

9·39 (-p -q) c [(p c q)(q c p)J. 

[9·24J -p -q = (-p = I)(-q = 1) = (p = O)(q = 0). 
Hence [9,32] Q.E.D. 

If p and q are both false, then each materiaII;r implies the other. 
For any pair of propositions, p and q, there are four possibilities: 

1) p = 1, q = 1: ptrue, qtrue. 
2) p = 0, q = 0: p false, q false. 
3) p = 0, q = I: p false, q true. 
4) p = 1, q = 0: p true, q false. 

1\ow in the algebra, 0 cO, 1 c 1, and 0 c 1; but 1 cO is false. Hence in 
the four cases, above, the material implications and equivalences are as 
fo11o,,'s: 

1) p c q, q c p, p = q. 

2) P c q, g C PJ P = q. 
3) pcg, -(qcp), p =!= q. 

4) -(p c q), q c p, p =!= q. 

This summarizes theorems 9· 31-9 ·39. These relations hold regardless of 
the content or meaning of p and q. Thus p c IJ and p = q are not the 
"implication" and "equivalence" of ordinary logic, because, strictly speak
ing, p and q in the algebra are not" propositions" but simpJy the" truth 
values 11 of the propositions represented. In other words, material im.pli-
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cation and material equivalence are relations of t.he e.dt/l."inn (oi 
tions, whereas the "implication" and" equh'alence .. of Or(limlI'~' 

relations of intension or meaning. But, as has been mentioned, the material 
implication, pc q, has one most important property in common with (, q 
can be inferred from p ,. in ordinary logic; if p is true and IJ false, ]I c fj 

does not hold. And the relation of material equi,'nienee, p = q, never 
connect:'> a true proposition with a false one. 

These theorems should make as clear a;:; it can made the exact 
meaning and charadt'r of material implication. This is important, since 
many theorems whose significance would otherwi~e be yer~' puzzling follow 
from the unusual character of this relation. 

Two more propositions, of ::'ome importance, ma:, he gi\'en: 

9·4 (p q c r) = (q pc r) = [p c 1'1 c = [I] C C 

[1·3] pg = gp. Hence [3·2] -(pq) ]J,!, and' q)+r] 

= [-(q p) + r]. 
But [9·3J [-(p q) + r] = (p q c r), and [-(I] p) + r] = 1"1 pc 

) . .nd [:3·41] [-(p q) + r] = ((-p+ -I]) + rJ = [-p + (-If + = [p C (q C I')J 

Similarl~', [-(q p) + r] = [q c (p c r)]. 

This theorem contains Peano'::; Principle of Exportation, 

[(p q) c r} c [p c (q c r)J 

"If p q implies r, then p implies that g implies r"; and his Principle of 

Importation, 

[p c (q c r)} c [(p q) c r] 

"If p implies that q implies r, then if p and q are both true, r is true." 

9·5 [(p q) cr] = [(p-r) c-q] = [(g-r) c-pj. 

[9·3] [(pq) cr] = [-(pq)+rJ = [(-p+-q)+r] = [(-p+r)+ 
= [(-q+r)+-p] = [-(p-r)+-q] = [-(q-r)+-pj. 

[9·3] [-(p -I') + -q] = [(p -1') c -1]), and 
[-(I] -r) + -p] = [(g -1') c -pl. 

If p and q together imply 1', then if p is true but r is false, q must be false, 

and if q is true but r is false, 1) must be false. This is a principle first stated 
b~· Aristotle, but especiall~' important in :'Irs. Ladd-Franklin's theory of 

the syllogism. 
,,\Ye haye now given a sufficient number of theorems to characterize the 

Two-Yalued Algebra-to illustrate the consequences of the additional 
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postulate p = (p = 1), and the properties of pc q. Any further theorems 
of the system will be found to follow readily from the foregoing. 

A com-ention of notation which we shall make use of hereafter is the 
foHo\ying: A sign =, unless enclosed in parenthese·s, takes precedence oyer 
any other sign; a sign c, unless enclosed in parentheses, takes precedence 
oyer any + or x; and the sign +, unless enclosed in parentheses, takes 
precedence o\-er a relation x. This sa ,-es many parentheses and brackets. 

II. THE C.UC'C"LcS OF PROPOSITlOXAL FUXCTIONS. FcNCTIOXS OF ONE 

VARIABLE 

The calculus of propositional functions is an e:\.-tension of the Two
Yalued Algebra to propositions which inYoh-e the yalues of yariables. Fol
lowing }Ir. RusseIl,3 ,ve may distinguish propositions from propositional 
functions as follows: A proposition is any expression which is either true 
or false; a propositional function is an expression, containing one or more 
yariables, which becomes a proposition when each of the yariables is re
placed by some one of its yalues. 

There is one meaning of "Today is }Ionday" for 'which 'today' denotes 
ambiguously Jan. 1, or Jan. 2, or ... ,etc. For example, when we say 
.. , Today is }Ionday' implies 'Tomorrow is Tuesday''', we mean that if 
Jan. 1 is ::\Ionday, then Jan. :2 is Tuesday; if Jan. 2 is Monday, then Jan. 
:3 is Tuesday; if .July 4: is }Ionda~-, then .J nI~- i5 is Tuesday, etc. 'Today' 
and 'tomorrow' are here variables .• whose ,'alnes are Jan. 1, Jan. 2, Jan. 3, 
etc., that is, all the different actual days. \"hen' today' is used in this 
yariable sense, "Today is }Ionday" is sometimes true and sometimes false, 
or more accurately, it is true for some l'allles of the yariable 'toda:-- " and 
false for other ,"alues. "Today is Monday" is here a propositional function. 

There is a quite different meaning of "Today is Monday" for which 
'today' is not a Yariable but denotes just one thing-Jan. 22, 1916. In 
thi8 sense, if "Today is :\Ionda;,"" is true it is always true. It is either 
simply true or simply false: its meaning and its truth or falsity cannot 
change. For this meaning of 'today', "Today is }:Ionday" is a proposition. 
'Today,' meaning Jan. 16, 1916, is one value of the variable 'today'. ,Vhen 
this value is substituted for the variable, then the propositional function is 
turned into a proposition. 

3 See Principles of }rfathematics, Chap. VII, and Principia 1Vathematica, I, p. 15. Mr. 
Russell carries out this distinction in ways which we do not follow. But so far as is here 
in question, his view is the one we adopt. Principia Mathematica is cited hereafter as 
Principia. 
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'iYe may use .p.;:, ift(.t, ,1/), , /I, <r, etc., to represent 
functions. in 'which the yuriable terms are .1', or .1' and N, or ,J', p, and :::, ete. 
These propositional function", mu::;t be carefully di::;tingui",hed from the 
functions discussed in Chapter II. We there used i, F, and the GreE'k 
capitals, <P, 'If, etc., to indicate functions; here we use only Greek 
leiters. _-\.Iso, for any function at one yariable, we here omit any parenthesis 
around the variable-.p.,., iftY, tx. 

f(.r), 'If(.l·, y), etc., in Chapter II are confined to representing :such 
expressions as can be formed from elements in the class ]{ and the relations 
x and +. If;c and y in 'Iti.;:, are logical da::':ies, then 'It(.t·, y) is some 

logical clas:i, such as .r + y or a .r + b -.11. Or if a: in is a proposition, 
then J(:r) is some proposition such as a.1" or -.r + U. The 
functions, <p.l', 1/;(.1:, y), £-(.1', y, z), etc., are subject to no such restriction . 
.p,r become.'! a proposition 'when .1' is replaced by one of its yulues, it 
does not necessarily become any such proposition as a .1' or -.J: + b. • ,I' is 
::Uonday,' 'x is a citizen of .1/.' 'y is between .1' and ::: '-these are t~'pical 
propositional functions. They are neither true nor false, but the~' bec:ume 
either true or false as soon as terms denoting indi,"idual things are sub
stituted for the variables ;r, 1I, etc. )J1 the functions in thi::; chapter are 
such propositional functions, or expressions derh'ed from them . 

. \ fundamental eonception of the theor,\" of propositional function;:; is 
that of the" range of significance". The range of significance of a function 
is determined by the extent or the class, or classes, of terms which are 
,'alues of its yariables. AU the terms which can be substituted for .r, in 
'P.l', and 'make sense', constitute the range of <;.1'. If.px be 'x is mortal', 
the range of this function is the aggregate of aU the indi"idual terms for 
which' x is mortal' is either true or false. Thus the ., range of significance" 
is to propositional functions what the ., unh'erse of discour:5e" is to class 
terms. Two propositional functions, .p.r and y;y, may be such that the 
class of yalues of x in <p:"'C, or the range of 'PX, is identical with the class of 
yalues of y in 1/Iy, or the range of ifty. Or the two functions may hayc 
different ranges of significance. '.1' is a man' and '.1' is a poet' wiII ha,.,:e the 
same range, though the values of x for which they are true will differ. Any x 

for which' x is a man' is either true or false, is also such that' .1' is a poet' 
is either true or false. But some x's for which';"C is a poet' is either true 
or false are such that' J.: precedes x+ l' is nonsense. ';)" is a poet' and 
'J: precedes ;1.'+ l' haye different ranges.4 It is important to note that the 

4 According to ~Ir. Russell's "theory of types" (see Principia, t, pp. 41-42), the one 
fundamental restriction of the range of a propositional function is the principle that nothing 
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range of <;;1: is determined, not b~" .r, but by <;. ~x and <py are the same 

function. 
If ·we huye a propositional function of two yariables, say' x is a citizen 

of y', we must make t\"1"0 substitutions in order to turn it into a proposition 
which is either true or false. And we conceiw of two aggregates or classes
the class of ntlues of the first variable, :1', and the dass of yalues of the second 
variable, y. These two classes may, for a given function, be identical, or 
the;~; may be different. It depends upon the function. "John Jones is a 
citizen of Turkey" is either true or false; "Turke;:;" is a citizen of John 
Jones" is nonsense. But" 3 precedes;)" is either true or false, as is also 
"5 precedes 3 ". The range of ;T and of y in 1/;(,7:, y) depends upon 1/;, not 

upon :1: and y. 
_-\ convenient method of representing the values of x in <p,"); is by XI, X2, 

X3, etc" This is not to presume that the number of such ,"alues of x in ~X 
is finite, or eyen denumerable. Any sort of tag which would distinguish 
these yalues as individual would serve all the uses which we shall make 
of ;<'b .l·~, .l'3, etc., equally well. If ;('b ;('2, :1:3, etc., are individuals,5 then 
~Xlo ~:I.'~, ~;;"3, etc., will be propositions; and cpx n \I"ill be a proposition. 
<;.1'3 is a proposition about a specified indh"idual; <p,l'n is a proposition about 
'a certain indiyidual' which is not specified,6 Similarly, if the yalues of x 

in 1/;(:r:, y) be Xl, x~, ;;"3, etc., and the ,-alues of y be !11, Y2, Ys, etc., then 
1/;(J.'~, Y3), 1/;(,1.'2, y,,), 1/;(.l'm, Yn), etc., are propositions. 

'Ye shall no"\v make a ne,\" use of the operators II and 4, giving them 
a meaning similar to, but not identical with, the meaning which they had 
in Chapter II. To emphasize this difference in use, the operators are here 
set in a different style of type. "Ie shall let ::::.r<;.1: represent <PXI + CPJ:'2 + <p,l's 
+ . , , to as many terms as there are distinct values of x in <p,"C. And IIx<px 

will represent <p.rl x CP.l"2 x cpJ..'3 X • •• to as many terms as there are distinct 
yalues of ;"I: in <;.r. C\Ye ha\'e heretofore abbreviated a xb to a b or a·b. 
But where propositional functions are im"oh"ed, the form of expressions is 

that presupposes the function, or a function of the same range, can be a value of the func
tion. It seems to us that there are other restrictions, not derived from this, upon the 
range of a function. But, fortunately, it is not necessary to decide this point here. 

S "Individuals" in the sense of being distinct values of x in <pZ-which is the only 
conception of "individual" which we require, 

s It may be urged that <pI" is not a proposition but a propositional function. The 
question is most difficult, and we cannot enter upon it. But this much may be said: 
Whenever, and in whatever sense, :;tatements about an unspecified individual can be 
asserted, <pI" is a proposition, If any object to this, we shall reply "A certain gentle
man is confused". Peirce has discussed this question most acutely. (See above, pp. 
93-94.) 
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likely to be complex. Con~equentl;: we l>hnll. l:l th:;:; chapter, alwnys 
write" products" ·with the sign x.J 

The fact that there might be an infinite set of yalnes 01 .l~ in Y'1' does 
not affect the theoretical adequacy of our defillition". For nothing
depends upon the order of !p;rTl" "'X". <;:.1',,, and it is only required that the 
'mlues of x which are distinet should be identifiable or "tugable". Tht' ob
jection that the yalues of :r might not be ewn denumerable is more serious, 
but the difficult~· mar be met by a deyice to be mentioned shortl;;. 

Since 'P.l'h <;,/:2, <p.ra, etc., are propositions. <;:./.'1 + <;.1'2 + <;:.1."3 + . " is a 
proposition-the proposition, "Either <;:.1": or ",,1'2 or ",.1';; or .. , etc. ". Thus 
~x'P;r represents "For some yalue of .r (at least one), y:r is true ". And 
~.r'P.l· is a proposition. Similarly, ~.!'l x <;.1"~ x <p:r3 x .. , is the joint assertion 
of y.l·1 and 'P.r~ and 'P.l's, etc. Thus IIzy.1:' represents the proposition" For 
all values of x, <;X is true". \Ye may translate ~.ry.l; loosely by" <;.1' is 
sometime8 true", and IIx<p.1: loosely by " r.p.L' is alil'tl1l8 true ". This trans
lation fails of literal accuracy inasmuch as the yuriatioIl:; of x in 'P'" may 
not be confined to differences of time. 

The conception of a propositional fUllction, <;.1', and of the class of yalues 
of the "ariable in this function, thus giw us the new types of proposition, 
<;.r3. <;.rn, ~"'Px, and IIx'Px. Since the laws of the Two-Yalued Algebra 
hold for propositions generally, all the theorems of that system will be 
true when propositions such as the abore are substituted for a, b, ... p, q, 

etc. (\Ye must, of course, remember that while a, b, '" p, q, etc., in the 
Two-Yalued Algebra represent propositions, ;r in <;:r, etc., is not a proposi
tion but a variable \yhose values are individual things. In the theorems 
to follow, we shall sometimes need a symbol for propositions in \vhich no 
,"ariables are specified. To avoid any possible confusion, we shall represent 
such propositions by a capital letter, P.) \Ve m~~" then, aS8ume as already 
proved an~; theorem which can be got by replacing a, b, .. , 1', q, etc., in 
any proposition of the Two-Yalued Algebra, by 'PXs, ip.t" , ~",'P.t, or II",,,,J.". 
Additional theorems, which can be proved for propositions invoh'ing values 
or variables, will be given belo'Y. These are to be proyed b~' reference to 
earlier theorems, in Chapter II and in Section I of this chapter. As before, 
the number or the theorem by which any step in proof is taken will be given 
in square brackets. Since the previous theorems are numbered up to 9·, 
the additi6nal theorems of this section will be numbered beginning with 10·. 

One additional assumption, beyond those of the Two-Yalued Algebra, 
will be needed. The propositions which have been pro\"ed in sufficiently 
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general form to be used where sums and products of more than three terms 
are in question all require for their demonstration the principle of mathe
matical induetion. If, then, we wish to use those theorems in the proofs 
of this section, \Ye are confronted by the difficulty that the number of 
values of .r in y.l" and hence the number of terms in 1;",cp.r and IIxcp.r may 
not be finite. And any use of mathematical induction, or of theorems 
dependent upon that principle for proof, will then be im'alid in this con
nection. Short of abandoning the proposed procedure, two alternatives 
are open to us: we can assume that the number of va1ues of any variable 
in a propositional function is always finite; or we can assume that any 
law of the algebra which holds lclzaterer finite number of elements be involved 
holds for any number of elements whateyer. The first of these assumptions 
'would obyiousl~- be false. But the second is true, and we shall make it. 

This also resolYes our difficulty concerning the possibility that the 
number of ,-alues of .r in ip.r might not be eyen denumerable, and hence 

that the notation ip.l'1 + ip.l'~ + S?i·s + .. , and cpXI x cp.1'2 X qXl~3 X .•• might be 
inadequate. ''Ie can make the convention that if the number of yalues of ;r; 
in any function, <;:.l', be not finite, CP.l'1 + \O.l'2 + 'P.l'3 + ... , or 1;xcp.r, and 
<;:.tl x <P.l'2 x (,O,l'3 x ... , or IIx<;::i', shall be so dealt'with that any theorem to 
be proved will be demonstrated to hold for any finite number of "alues 
of J: in <p.r; and this being proyed, our assumption allows us to extend the 
theorem to an;; case in \vhich the values of the variable in the function are 
infinite in number. This principle will be satisfactorily covered by the 
conYention that <p,rl + (,O.l'2 + (,0.1';; + ... and <p.);l x cp.l'2 X cp:i's X ••• shall alwa~-s 
be supposed to have a finite but tmdetennined number of terms, and any 
theorem thus proyed shall be presumed independent of the number of 
distinct values of any yariable, ;"1:, which is inyolyerJ..7 

This postulate, and the conwntion which makes it operath-e, will be 
supposed to extend also to functions of any number of variables, and to 
sums, products, and negatiyes of functions. 

::\0 further postulates are required, but the following definitions are 
needed: 

10·01 

10·02 

10·03 

~ <;:x = ::5", cpx = cpXl + ipX2 + cp,l's + .... 

II <p:C = IIx cp.); = cpXl x ip.r~ x cpXs x •••• 

- cpX = -{ CPJ:}. Dei. 

Def. 

Def. 

7 This procedure, though not invalid, is far from ideal, as are many other details of 
this general method. We shall gather the main criticisms together in the last section of 
this chapter. But it is a fact that in spite of the many defects of the method, the results 
which it gives are without exception valid. 
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10·031 -<p.l'n = - f <p.r,,1. DeI. 

10·04 -IIx'P.1: = -:Ux.,:.d. Dd. 

10· 05 -:::;"cp.(' = -l :::;"cp.d Def. 

The last four merely serw to abbrc\'iate the notation. 
Elementary theorems concerning propositions which iH\'oln~ ntlucs or 

one \'ariable are as follows: 

10·12 IIcp:l: = -:::; -cp.r. 

[.3·95} cp,l'l X rp.l'z X \p.l·s X , ., = - (- 0,:.1'1 + -CP.1'2 + -<p.1';; + , . , :' 

10·1 states that" For some values of .1', o,:.i' is true" is equiyalent w the 
denial of "For all yalues of .1', 0,:.1' is false". 10 . I::! Etates that .. For aU 
values of ;l~, rpx is true" is equiyalent to the denial of .. For some ynlues 
of ,1', cp.?: is false ". These two represent the eA'ien::,ion of De :J.[organ's 
Theorem to propositions which im'oh'e yuIues of .... arinbles. They might 
be othenvise stated: "It is true that all .1' is .... , is equh'alent to "It is 
false that 80me x is not·· ."; and "It is true thnt some.r is ... "is equi\'a-
lent to "It is false that all .1' is not " 

10· 2 rr."x C cp.rn. 

(5·99] cpXI x ."x~ X rpX3 X ... C CP.1'1 

and rpXl x ."x~ x rpXs x ... C I!'.r~ 

and ",X1 x cpJ'2 x ipXs X • ,. C cp.Ta, etc., etc. 

10·21 "'Xn C ~cp.1:. 

[5·9911 .".1~1 C cp.rl + ip,r2 + <;.('3+ .. , 

and rp;1:2 C ",XI + ipX~ + CP.l'3 + .. . 
and .",l'a C .,,;1'1 + rpX2 + ip.l'a + .... etc., etc. 

By 10·2, jf ipX is true for all values of x, then it is true for any given value 
of .1', or "\Vhat is true of all is true of any given one". By 10·21, If '{:J: is 
true for one given value of x, then it is true for some value of .1:, or "\Yhat 
is true of a certain one is true of some". It might be thought that the 
implication stated br 10·21 is reversible. But we do not haye :::;cp.r C cp;I:", 

because cpX" ma:r be cp.1'2 , and :::; \0,1" C ip:(.'2 would not hold generally. For 
example, let cpJ: = "Today (x) is ::\londa;y". Then ~cp:r will mean "Some 
day is ~Ionda~"', but rpx" will mean "Today (Jan. 1) is :Monday", or will 
mean "Today (Feb. 23) is Monday", etc. "Some day is :Monda:;" does 
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not imply" Jan. 1 is 1Ionday ", and does not impl;:-" ·'Feb. 23 is ::\Ionday"
does not imply that an~' one giyen day is 1Ionda;:-". :en in <p.r" means" a 
certain yalue of ,r" in a sense which is not simply equiyalent to "some 
yalue of .,' ", Xo translation of <p.r" ,,"ill giye its exact significance in this 

respect. 

10·22 II <p.r c ~ <p.i.', 

[5·1,1O·2,21J 
"\Yhatewr is true of all is true of some, 

10,23 II<p.r is equhoalent to "'Yhateyer yalue of x, in cp:c, :L'n may be, <p,r n ". 

II <p.r = <P.l'I X <f.r~ x cp.l'3 x " .. = (cp.rl x <p.l'z x CP":3 x .. , = 1) [9· O1J 
,And [5·9';"1] <p.rl x <p.l'z X <p.l's X . " = 1 is equivalent to the set 

<P'['I = 1, <p.l'z = 1, <pXs = 1, .... 
And [9·01J <pJ.'n = 1 is equivalent to <pXn. 

Hence II 'P.l' is equivalent to the set <,0.1:1, cpXz, <p.i'S, •. ,. 

This proposition is not tautological. It states the equiyalence of the 
product ",.rI x <p.tz X cp:l's x " .. with the system of separate propositions 
<pXl, <pJ'z, CPXs, etc. It is by yirtue of the possibility of this proposition 
that the translation of II <p.l: as "For all yalues of .1', i.p:C is true" is legitimate. 
In this proof we make use of the principle, 17 = (p = I)-the only case in 
'which it is directly required in the calculus of propositional functions. 

By yirtue o.f 10·23 we can pass directly from an~" theorem of the Two
Yalued _~gebra to a corresponding theorem of the calculus of propositional 
functions. If we ha\"e, for example, p C17+ q, we ha\'e also "\Yhateyer 
yalue of :r, in cp.l', .rn ma~' be, <p.rn C i.p.rn + P". And hence we have, by 
10·2:3, II,,[ <p.l' C <p.r + PJ. We shall later see the importance of this: it 
gives us, for every theorem concerning "material implication", a cor
responding theorem concerning "formal im plication". 

Xext, we giYe various forms of the principle by which any proposition 
may be imported into, or exported out of, the scope of a II or :s operator. 

10·3 :SIO,r + P = :SA.;.r + P). 

~ rpx + P = (<p.l'! + i.p.l"2 + <P.l'3 + ... ) + P 
= (<p.rl + P) + (<,0.1:2 + P) + (i.p.'l::s + P) + ... [5,9S1] 

= :sx( 10.1: + P) 

10·31 P+:::;cpx = :Sx(P+ <;,.r). 

Similar proof. 

10·3 may be read: '" Either for some x, i.pX is true, or P is true' is equi\'a-
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!t:>nt to 'For some .1', either 'P.l' i:'i true or P is true···. 

read: ." Either P is true or. for some .1', <,:.t is true' i" 

some .1', either P is true or <p.t i:; true'''. 

10 ·32 l1<p.(' + P = II.z~.r + p). 

II 'P.i" + P = (<;,1': x ..p.l''.'. x <;.l'3 x • .. + P 

In·:31 may be 
to . For 

= (.p.t·l + p) x <p.!'" + P) X + P) x . .. I.j· 

10 ·33 P + II<pJ' = 
Similar proof. 

'. Either P is true or, for eyer~' .i.', <p,l' is true" is equiYnlE'nt to .. For e\'er~' .r, 
either P is true or <p.r is true. " 

10·34 ::::x(.p.~· + P) = ::::x(P + 

[4·3] ::::<;:1.' + P = P +:::: .p.1'. Hence 

10·35 II",(<p.l'+P) = II",(p+ <;.1'). 

[10· ;32· 3:3J 

Exactl~' similar theorems hold where the relation of the two pl'opo,;itions 

IS x instead of +. The proofs are 50 simple that onl~' the first need be 

giwn. 

10·36 ::::.p.l' xP = ~x(.;.l' xP). 

::::<px xP = (<;.l'l + o;:o.r~+ <p.l's + ... ) xP 

= (<;.1'1 xP) + (<p.{'~ xP) + xP) + '" [')' 
= ::::".c<p.l' x P) 

"<p.~' is true for some .1', and P is true", is equiyalent to "For some .r, <j:X 

and P are both true". 

10·361 P x:::: <;.1' = ::::AP x <p.r). 

10·37 ll",x xP = IIx(",.t' xP). 

10·371 P xII",./;" = llz(P x <;:.1') • 

. 10·38 ::::z(",.r xP) = ~=(P x ",.t). 

10·381 II:(.p.('xP) = II,,(Px<;.t). 

,\Ye should perhaps expect that a proposition, P, might be impocted 

into and expocted out of the scope of an operator when the relation of P 
to the other member of the expression is c. But here the matter is not 

quite so simple. 
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10·4 Pc -:::'..;.1' = -::::..(p c 

[D,:3] Pc-::::',;.l' = -P+-::::'<p.r = -P+(<p.l'l+ <;.1'2+ ..;·1'3+ ... ) 

= (-P + <;.1'1) + (-P + y.1'2) + (-P + <p.tS) + .. . 
[.j·9S1] 

(P c <;.1'1) + (P c ..;.l'2) + (P c \C.1'3) + ... [9· 3J 
-:::.AP c y.l:) 

The relation c, in the abo\'e, is, of course, a material implication. 
But it is tedious to read continually" p materially implies q". ,\Ye shall, 
then. translate p c q sim pl~' by "p implies q", or by "If p, then q". 

10·4 reads: "P implies that for some .1', y.l' is true" is equiyalent to 
"For some .t·, P implies that <p.l' is true". This seems clear and ob'dous, 
but consider the ne:-.i: 

10·41 -::::. 'P.l' c P = II",( <p.l cP). 

[9·3] -:::''P.1'cP = -';:;.'P.l'+P = II-<p.1'+P [10·12] 
(-y.rl X- y.1'2 x-y.rs x ... ) + P 

= (-y.rl+P) x(-<p.C'2+P) x(-<p.t's+P) ... [5·941] 

= (<P.rICP) X(\O.1·2CP) X(\C.l'sCP) ... [9·3] 

= llx( <p.t' C P) 

'" <p.r is true for some :r' implies P" is equi-'alent to "For eyery a:, <p;r 

implies P". It is easy to see that the second of these two expressions gives 
the first also: If <;a: aZzraysimplic8 P, then if 'PX is sometimes true, P must 
be true. It is not so eas~' to see that -::: 'P.l' c P giyes llx( 'P.l C P). But we 

can put it thus: "If 'P.r: is ever true, then P is true" must mean "<px 

always implies p". 

10·42 P eIIy.r = IIx(P e <p.r). 

[9·;3] Pell<p."!: = -P+ll<p.r = -P+ (<;Xl X'P.1'2 x \CX3 x ... ) 

= (-P+ \O.ll) x(-p+ 'P.t'2) x(-P+ 10.1:3) X ..• 

[3·941] 
= (P e IOX1) x (P e 103:2) x (P e <pXg) • •. [9·3] 
= IT.,,(P c \Cx) 

"P implies that <p;1: is true for eYery x" is equivalent to "For every x, P 
implies <pa:". 

10·43 II lOX e P = i:.:,,( <px e P). 

[9·3] II<;xeP = -IIIO:1:+P = -:E-IO;'C+P [10·1] 

= (-<pXl + -10:1:2 + -<;.1:3 + ... ) + P 
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= (- .p.l! + P,i + t,- .p.!'~ + p) + :,- .;.1'" + + ... 

~5·9S11 

= .;.i"lCP)+(.;.r~c +(.;.r~cP)+ ... [n·;:.:: 
= ;:,,,i'.;:.r c 

'" .;.l is true for e\'ery :r' implies that P is true" is equinilent to ., For 
some .1', .;.l implies P ", _-\t fir~t sight thi" theorem seems to commit the 
"fallac~: of diyision" going one wa~'\ and the "faHac,\" or compo:3ition" 
going the other. It suggests the ancient example about the separate hairs 
and baldness. Suppo~e .p.l' he .. If ,l' is a hair of ::\1r, Blank's, ,r has fallen 
out". _-\nd let P be ":\11'. Blank is bahl", Then II.;.r cP will represent 
.. If all of ::'IIr. Blank's hairs have fallen out, ::'IIr. Blank i::\ bald ", 
And ;:/';J:' c P) will represent .. There i" mme bail' of ::\11'. Blank's such 
that if this hair has fallen out. :\fr. Blank is bald ". In this example. 
n.;.l' c P is obyiousl~- true, but ~z(.p.r c p) is dllbiou~. and their equi\'alence 
seems likewise doubtful. The explanation of the equivalence i~ this: we 
here deal with material implication. and .;:.r" c P means simply" It is 
false that ('P.T" is true but P is false)". n<p.l" cP mean:". in this example. 
"It is false that all ::\Ir. Blank's hairs have fallen out but :\Ir. Blank i~ not 
bald": and ;:x< .;.1' c P) means "There is some one of ::\lr. Blank's hairs 
such that • This hair has fallen out but ::\Ir. Blank is not bald' is false". 
Xo necessary connection is predicated behYeen the falling out of any single 
hair and baldness-material implication is not that t~·pe of relation. 

If 'we compare the last four theorems, we obserye that an operator in 
the cOiMcquenf of an implication is not changed by being extended in scope 
to include the ,,,hole relation, but an operator in the antecedent is changed 
from II to ~, from ~ to n. This is due to the fact that pel] is equh-alent 
to -p+ q. where the sign of the antecedent changes but the consequent 
remains the same; and to the law -no = ;:-0. -~O = n-o· 

The abo\'e principles, connecting any proposition, P, with a proposi
tional function and its operator, are much used in later proofs. In fact, 
all the proofs can be carried out simply by the ,-arious forms of this principle 
and theorems 10 ·1-10·23. Since P, in the abo\'e, may be any propo

sition, "'.l'n. ~"'x" n",x, etc., can be substituted for P in these theorems. 
(<,CJ:' + "'x) and (if;!' x ",.1') are, of course, functions of ;l.'. In order that 

(<p.l" + "':r) be significant, 'P'1' must be significant and 1/;x must be significant, 
and it is further requisite that ., Either <pJ:' or "'x" haye meaning. Such 
considerations determine the range of significance of complex functions 
like (<p.r + 1/;:r) and ('P.r x "':1'). A yalue of ;<:: in such a function must be at 

17 
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once a ,-alue of .1' in 'P.i: and a yalue of x in y,,:c: .1'" in <p.",. and in y".1'", in 
('f:I:" + y,,:rr.), denote:> identically the same individual. 

10·5 -:S;<p:c + -:s;y".?: = -:S;zC<p:t· + y".!'). 

Since addition is associati,"e and commutatin, 

-:s; <p.T + -:s;y".r = (",.1'1 + <p;r2 + <p.ts + .... ) + (y,,;(:1 + y,,:J..'2 + y".?:s + . - -) 

= (<p.1'! + y",l'1) + (cp.t2 + y".l'2) + (<p.l's + y".l's) + - - -

=:= -:S;z( cp.l' + y".1') 

"Either for some .r, <p.?:, or for some .1', y"x" is equivalent to "For some x, 

either opJ: or y"J:". 

If it be supposed that the functions, 'F:I: and y,,:c, may have different 
ranges-i. e., that the use of the same letter for the variable is not indicative 
of the range-then ~ <p'-I: + -:S;y"x might have meaning when 1:,,( rpX + y"x) did 
not. But in such a case the proposition which states their equiyalence 
will not have meaning. "\Ye shall make the connntion that ;en in rpXn 

and .Tr. in y".r" are identical, not only in (<p.l'" + y".l·,,) and (<px" x y,,:J..',,) , but 
wherever cpx and y"x are connected, as in -:s; cp.l..' + -:s;y,,;i;. "\Yhere there is no 
such presumption, it is always possible to use different letters for the 
,-ariable, as -:s; rp.l· + :::y"y. But even without this conYention, the above 
theorem will always be true when it is significant-i. e., it is nenr false
and a similar remark applies to the other theorems of this section. 

10 ·51 n <p.r x IIy"x = IIx( rpx x y,,;r). 

Since x is associative and commutati\-e, similar proof. 

"\Ye might expect -:s; <p.l' X -:::,y".l' = -:::',,( <p.!: x y".e) to hold, but it does not. 
"For some .r,:1' is ugly, and for some .r, .'1.' is beautiful", is not equivalent to, 
"For some .r., x is ugly and x is beautiful", Instead of an equi\-alence, we 
haye an implication: 

10· 52 ~r( <p:1: x ..p.r) c ~ <p.l' X '2:;..p.l', 

-:::,x( <pX x y"J.:) = (\0.1'1 x y"Xl) + (rpX2 x y".l~) + (\O.l's x y".l'3) + _ , _ 

[5,21 (<P,l'n xy".l'n) C <p.1::n, and (rp.l'n xy"Xn) Cy".ln 

Hence [5, :31] -:s;,,( <p.1' x ..p.l·) C -:::, \0.1', and J;..r( \0.1' X y"x) C -:::'y,,:r 

Hence [5, :34] '2:;,,( <pX x y,,;7:) C 1: <p.?: x '2:;y"x 

Similarly, II <pX + lly"x = II,,( <pX + y"x) fails to hold. "Either for every 
x,.1' is ugly, or for every;1', x is beautiful ", is not equiyalent to, "For e\'ery x, 

either x is ugly Or x is beautiful", Some x's may be ugly and others beauti
ful. But we have: 
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10·53 n ~.r + II1fx C II,,( 'P.r + f.r). 

[5·21] 'PX" C ('Porn + 1f:l'n), and 1/;.1'" C (<p.r" + 

Hence [5·31 II~.rCrrx('P.l:+1f.r), and II';·.l·cII,,(..p.~·+ 
Hence [,j. 3:3] II 'P.r + II1f.1:' C II: ( 'P.l' + 1/;.1') 

.) (-'Ii 

..... "f:.) 

In the proof of the' la~t t,,;o theorems, 'lye write a lemma for ..pJ.'r. in:;tead 
of writing it for .".l'j, for 'P.r~, for 'P.r~, etc. For example, in 10·52 we write 
(<px" x 1f.r,,) C <p.1'", instead of writing: 

('P,l'1 x 1/;.1':) C y.l'! 

..;.1'" x 1/;.1':l) C ",X:l 

': .,::.l's x :f.r3) C "::'{"J, etc., etc. 

The proofs are somewhat more oh\'iou::l with this explanation. This method 
of writing such lemmas will be continued. 

With two propositional fUllctions, 'P.l' and :/-'.l', we can form two impli-
cation relations, ~:( .,:::r C 1f.1') and II.( .p.l' C 1/;,1'}. But ~x, ..p.l' C states 
only that there is a value of .t' for which either <,-o:r is fabe or is true: 
and this relation conwys ";0 little information that it i,: hardly worth while 
to study its properties, 

IIx( .;.1" C 1f.r) is the relation of "formal implication "-" For eyer~' :r, 

at lea"t one of the two, ' .,::.l' is false' and' 1f.r is true', is a true statement". 
The negatice of II.r(Y'l' c1f,r) is ~"('f'.l' x-,p.1:), so that II..,(.p.l.' C1fx) mn~' al~() 

be read" It is false that there is an~' .1' such that 'PX is true and :f:c false ", 
The material implication. pC '1, states only" A.t least one of the two, 'p is 
false' and' q is true', is a true statement "; or, (, It is fa be that p i~ true 
and q false". The material implication. r.;J:. C 1f.t·", stutes only" .\.t lea:;t 
one of the two, , ip is false of .r n' and '1f is true of .t' n " j" a true statement"; 
or "It is false that <p.t'" is true and ,p.rr. is false", But the formal impli
cation, IIxC~.r C 1f.l·), states that !wll'uer .1'" be chosen, it is false that .",x" 
is true and 1f.l'" is false-in the whole range of <pX and 1jtx, there is not a 
case in which 'P.l: is true and 1f;C false. To put it another way, II.>:(.p.r c1fx) 

means "\Yhateyer has the predicate 'P has also the predicate 1jt". 

This relation has more resemblance to the ordinary meaning of "im
plies" than material implication has. But formal implication, it should 
be remembered, is simpl;v a class or aggregate of material implications; 
IIxC.;.1' C ,p;r) is simply the joint assertion of <pX! C f.rl' .;."1:2 C 1f:r~, ip,r~ C 1f'('~' 
etc., where each separate assertion is a material implication.s 

8 The whole question of material implication, formal implication, and the usual mean
ing of "implies", is discussed in Section v of Chap. Y. 
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The properties of formal implication are especiall~' important, because 
upon this relation are based certain derivatives in the calculus of classes 

and in the calculus of relations. 

Hence [10·23] Q.E.D. 

10·61 nx(~'l' c :/;.r) C (<p.1'n C :/;XrJ. 

[1O·2J 

If ~.J;: formally implies 1j;x, then <P'!n materially implies 1j;xn• 

10·611 [ITz(<px c:/;x) x ~:r,J c1j;:/.', .. 

[9·4, lO·{Hl 

If <p;r formally implies :/;.1' and ~ is true of X n , then 1j; is true of x n • This is 
one form of the syllogism in Barbara: for example. "If for eyery :r, 'x is a 

man' implies 'x is a mortal', and Socrates is a man, then Socrates is a 
mortal ". 

10·62 II,,(<px C :/;:r) C ~",(<p.r C 1j;x). 

[10·22] 

10·63 IIx(<p.r co/x) c (II<px cII1j;x). 

[10·61] If II.:c(<px c..px), then ~Xn c1j;x" 

Hence [5·3J Q.E.D. 

10· 631 (II" ( ~.r c 1j;x) x IT <px] c II1j;x. 

[9·4, 10·62] 

If ~.1' ahra~'s implies 1j;x and ~x is always true, then 1j;x is always true. 

10·64 II,,(~x c1j;.r) c (~~x c~:/;x). 

[10·61, 5·31] 

10·641 [IIA <pX c 1j;x) x ~ lOX] c J:,o/x. 

[9·4, ro·64] 

If <px always implies 1/;x and cpx is sometin:es true, then 1/;x is sometimes true. 

10·65 [II,,( ipX C o/;r) x II,,( 1/;.1.: c sx)] c II,,( ip.r c sx). 

[10·61J If IIx (cp;"!·c1/;.r) and IIx (1/;;;:c sx), then <pX"c1/;x" and 
1/;;;:" c S·l·,.. 

Hence [5 ·IJ whatever value of ;r., x" may be, cpX" C Sirn-

Hence [10·23J IT,,(~x c s-x) 



SystcIII,'j Based on Fild 

This theorem states that formal is a transiti VI;' It is 
another form of the syllogism in Barbara. For example let ,,:,1' = . ,j' i::: a 

Greek', if;:r = ':r is a man " and £-,r = '.I: is a mortal'; 10 'Ij,) "rill read: 
"If for e,-ery .r, '.r is a Greek' implies '.1' is a man', and for cwry .t. '.r is a 

man' implies '.~' is a mortal', then for eY<-Q" .r, '.1' is a Greek' implies'.r is a 
mortal "', 

HH35 may also be giwn the form: 

10·651 fl/"c.r c.if;.r) c [flz(if;.t' c 

[9,4, 10· 

c 

10·652 IIAif;.t c s.l') c 

[9·4, 10·05] 

.,::." c if;:r) c 

10·66 flx(ip.r Cif;.l') = II...,(-if;.r c-.,::.!'\ 

.,::.1' C 

.;.l' C 

[:3·1] (<p.r" cif;:rr.) = (-if;.l'n c-.;.1'r) 

Hence [~'2, 5·3J Q.E.D. 

An.'; further theorems concerning formal implication can he deriyed 

from the foregoing . 
. , Formal equiyalence ,. is reciprocal formal implication. just a::; material 

equh-alence is reciprocal materia! implication. The properties of formal 

equiyalence follow immediately from those of formal implication. 

10:67 II,,(<pJ: = if;:c) = [IIx (tp.1:' c if;x) xTIx (lf.1:' c .,c.r)]. 

'Yhateyer value of x, Xn may be, [2'::~1 r;:t" = if;.1:'" is equh"alent 

to the pair, <p.1:'n C If.l'n and if;x" c <pX". 

Hence [10·23] Q.E.D. 

10·68 [TIr( <p:r = if;:d x II,,( if;.l' = s-.r) 1 c TI:( <p.1· = \'.r). 

'Yhatever yalne of .r • . 1'n may be, if .p.r = if;x and lf~r = r.r, then 
y.r = s~.1:'. Hence [10·2:3] Q.E.D. 

10·681 II",(.p.r = if;.1:') c[fl,,(if;.r = s:c) cIIx (';'1:' = r.1:')]· 

[10,68, 9-41 

10·682 TI".(if;.r = \;r) c[TIx(<;x = If.r) cIIx(ip.r = \.r)J. 

[10·0S, 9·4J 

Formal equivalence, as indicated by the last three theorems, is a transitive 

relation. 

10·69 IIx( <pX = if;.r) c (.,ox n = if;x,,); II,,( <,ox = If.r) c (II <pX = flif;./.'); and 

II,,(<p.r = y"x) c (l:'Pl' = ~-.f;./.'). 

[2·2, 10·61·62·63] 



A SUI'I't'!! of Symbolic Logic 

10·691 TIz(';x' = 
Ul·2, 10·23] 

If we wish to inwstigate the propositions ,yhich can be formed from 
functions of the t~-pe of (.;.{' x 7f;.IJ) and (.;;c + 7f;y), \\'here the range of sig
nificance, of .;:r may differ from that of 7f;y, we find that these ,vill im-olve 
hYO operator:5-~"II:I(.;;t; ifJY), IIy~",(<p.r; ifJy), etc. And these are special 
cases of a function of two ,-ariables. (<p:t' X ifJy) and (<p;r + ifJy) are special 
cases of i;(x. y). Hence we must first inwstigate functions of h .... o variables 
in general. 

III. PROPOSITIOXJ .. L FrXCTIOXS OF Two OR ?-.IORE VARUBLES 

A propositional function of two variables, <p(.1·, y), gives the derivative 
propositions 'P(.l'm, Yn), IIx<p(.l', Yn), kxky'P(X, Y), ~yIIx'P(:t:, V), etc. The 
range of significance of 'P(;r, y) will comprise all the pairs (.r, y) such that 
'P(.r, y) is either true or false. 'Ye here conceiw of a class of individuals, 

Xl, .1'2, .1.'3, etc., and a class of individuals, YI, Ye, Y3, etc., such that for any 
one of the a"s and anyone of the y's, 'PC.l·, y) is either true or false. 

As has already been pointed out, the function may be such that the 
class of ,'alues of x is the same as the class of values of y, or the values or x 

may be distinct from the "mlues of y. If, for example, 'P(x, y) be "x is 
brother of y", the class of .1:: 's for which 'P(.i', y) is significant consists of 
identically the same members as the class of y's for which 'P(.1.', y) is sig
nificant. 9 In such a case, the range of significance of .pCl·, y) is the class of 
all the ordered couples which can be formed by combining any member of 
the class Ivith itself or with an~' other. Thus if the members of such a 
class be all a2, a3, etc., the class of couples in question will belD 

(a1) 01), (al> a2), (al, a3), 

(a2' a1), (a2, a2), (a2' as), 
(a3, a1), (a3, a2), (a3, a3), 

'" Etc., etc. 

But if .p(x, y) represent "x is a citizen of y", or "x is a proposition about 
y", or "x is a member of the class y", the class of x's and the class of y's 
for which 'P(x, y) is significant will be mutually exclusive. 

S Presuming that" A is brother of A" is significant-i. e., false. 
10 Schroder treats all relatives as derived from such a class of ordered couples. (See 

Alg. Log., ill, first three chapters.) But this is an unnecessary restriction of the logic of 
relatives. 
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Although <;(.1', y) represent::; some relation of .1' awl N, it 

saril:; represent any relation of the algebra, ::lUch a::; ,1.' C Ii or .;: = !I; and. it 
cannot represent relations which are not as::;ertable. 

'P(X1, y), 'PC.c'", y), etc., are propositional function::; of one y. 
Hence IIlI'P(.l'b lJ), II~.p~J·c, y), ~;;'P(xj, y), etc., are proplJ8itioll8, the meaning 
and properties of which follo,y from preceding definitions and theorems. 

And IIy'P(,r, ~v'P('l', TIx.p;,.l', and ~x'P(.l·, are propositional 
functions of one yariable. ,\Ye can, then. define propo;;ition~ inyolving 
two variable;;; and two operators. as follow::;; 

11·01 II"II:;<p(.r, y) = II,,; Y,: j. Def 

11·02 ~xII;;<p(,r, y) = .." \ ,1]) ; . Det. -xl , 

11·03 IIx~y'P(.1·, y) = IIx{:::~<p(.l', ,1]);. DeL 

11·04 ~x~v"P(·l', ,II) = ~.rr~UY(J.~, y) i· Def. 

It will be seen from these definitions that our explanation or the range 
of significance of functions of hvo variables was not strictl:-- required: it 
follows from the explanation for fUllctions of one yariable. The same COll

yention regarding the number of \"alues of yariables and interpretation of 
the propositions is abo extended from the theory of functions of one 

variable to the theor~' of functions of two. 
(,Where the first yariable has a subscript, the comma between the two 

will be omitted: 'P(:r.y) is 1'(.1'2, .11), etc.) 
Since IIy'P(.l', .11) is a propositional function of one nriable •. r, the defini

tion .. 10·02" gives us 
rr~rry<p(x, .11) = II,,{IIy<p(.l', .11) I = IIY'P(,z'jY) xIIyo;(xzy) x x ... 

And the e}""Pansion of this last expression, again by 10·02. is 

I cp(XIYl) x 0;(.1:1Y2) x <p(.1:1Y.) x .. , l 
x { cp(X2Yl) x cp(.1'2YZ) x <p(.'l:2Y3) x ... \ 

x {<p(:1:3Y1) x <p(Xayz) x o;(xaYa) x ... I 
x. ,. Etc" etc. 

And similarly, by 10·01, 

~",rrycp(.1:, y) = ~,,(IIycp(;'I:, y) I = rrll<P(XIY) + I1YCP(X2Y) + II"cp(xaY) + .•. 

And the expansion of the last expression, by 10·02, is 

{cp(.l'lYl) x CP(XIY2) x cp(XIYa) x ... } 

+ { cp(X2Yl) x cp(xzYz) x cp(Xzya) x ... I 
+ {cp(.'taY1) x q:;(xsYz) x <p(,raYs) x ... } 

+ ... Etc., etc. 
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Or, in general. any propositional function with tiyo operators is expanded 

into a t,\'o-dimensionaI array of propositions as follmys: 

(1:; The operator nearest the function indicates the relation (+ or x) 

between the constituents ill each linc. 
(2) The subscript of the operator nearest the· function indicates the 

letter whlch varies u'ithin the lillcs. 
(:3) The operator to the left indicates the relation (+ or x) between 

each tlCO lines. 
(-4:) The subscript of the operator to the left indicates the letter which 

varies from line to line. 

Some caution must be exercised in interpreting such propositions as 
~xIIy'P(.r, .If), etc. It is usually sufficient to read ~xIIy "For some :/.' and 
eyery y", but strictly it should be .. For some ;1:, eyery y is such that ". 
Thus ~xIIy.;(.1~, y) should be "For some .l', eyery y is such that cp(x, y) is 
true ". And rr~~x.;(.l', y) should be "For eyery y, some ;i: is such that 
.;(.1', y) is true". The two here chosen illustrate the necessity of caution, 

which ma~' be made clear as follows: 

~Xrry.;(.l', Y) = II y CP(.2'lY) + n~cp(.r~y) + IIycp(.l'zy) + ... 

That is, ~xrr.!lcp(.);, y) means "Either for Xl and every y, c,o(.r, y) is true, 
or for .l.'~ and every y, cpC.l', y) is true, or for :/.'s and eyery y, cp(x, y) is true" 
... or for some other particular x and every y, cpC:);, y) is true ". On the 
other hand, 

rry~~cp(.l', y) = ~x.;(.r, Yl) X ~xcp(.l'. !J2) x ~x<p(x, ys) x, .. 

That is, ny~xcp(.r, y) means "For some .1: and yt, <pC.i·, y) is true, and for 
some .r and y~, cp(.t', y) is true, and for some .1: and Ys, cpC.T, y) is true, and 
... "; or "Given any y,there is one.1: (at least) such that cp(x, y) is true". 
The following illustration of the difference of these t,vo is given in Principia 
..11 athematica: 11 Let c,o(.1', y) be the propositional function" If y is a proper 
fraction, then ;1: is a proper fraction greater than y". Then for all values 
of y, we have ~:cp(.l', Yn), so that ny::E:xc,o(x, y) is satisfied. In fact, IIb::E:xcp(.l~,y) 
expresses the proposition: "If y is a proper fraction, then there is always 
a proper fraction greater than y". But ~Xrrycp(.r, y) expresses the propo
sition: "There is a proper fraction which is greater than any proper frac
tion ", which is false. 

In this example, if we should read ~xnll "For some ;r and every y"; 

11 See I, p. 161. 



II:,~x "For eyery y and some .z· ... 'In.' should make equiyulent thl'~e tlH) 

Yer~- different propositions. But t'a~t·::; ,,-here this caution is are 

infrequent, as we shall see. 

'Yhere both operators are IT or both ~, the two-dimensional array or 
propositions can be turned into u one-dimen~ional array, "inee eyer~- rela

tion throughout ,,-ill he in the one eU3E' x, in the other +, ani! hoth of 

these are assoeiatiy(' and commutatiw. It from OUl' discussion of 

the range of significance of a function or two yariahlcs that an~- such func

tiOll • .,:1.1',1/ ' may he treated a~ a funetion of the yariHhle, the iI!'dcl'Nl 

couple, {.I·.. Hence ,ye can make the further cOl1yem:ions: 

11·06 TI,zTIy",,(.l', y) = IT I, :,. ""i.l'. y) = IT I , :; • pl. 

The second half of each of the~e serves m!.'rel~" to ~implify notation. 

11·07 If .l',. and Ys be any yalues of .t' ami !f. , m ""f.r. y:, there 

is a value of (.1:, y)-say, (.r, -~u{'h that <;1.1'. l/J. 

11 ·05 and 11·06 could be derh-ed from 11,0;, but the pro!.'e~~ i5 tetii uU:', 

and since our interest in such a deriYH.tion would be purel;>.' incidental. 

we prefer to set dmm all three as assumptions, 

If we ,,-i::::h to identify a giwn constituent of ~x,,, ",,(.1.'. ·with a con-

stituent of ~X~y",,(.l', g), some cOl1\"ention of the order of terms in ~z, 1/) 

is required, because if the order or constituents in ~x~~'f(.1:, be unaltered, 

this identification ,,;;ill be impossible unless the number of yalues 11 is 

determined-which, b;y our conwntion, need not be the case. Hence we 

make, concerning the order of terms in ~z, 11<;('1', the following conn'l1-

tion: <p(:rmYn) precedes ",,(.try.) if III + n < r + oS, and where III + iI = r -l- 8, 

if n < 8. Thus the order of terms in ~z. yIP(.r, y) wiII he 

<{'(.l'lYI) + tp(X2Yl) + 1P(:rIY2) + <;(J.'3Yl) + <p(.r~g~) + <{'(.'(Iga) + <P(J.·41/J) + , . , 

This arrangement determines an order independent of the number of yalue::; 

of .(', or of y, so that the equivalent of <p(J', Y)n in terms of <{,(.r,y,) can ah'i'a,rs 

be specified,l2 An exactly similar conn:ntion is supposed to go \'ern the 

arrangement of terms in IIx , y<p(.t, 11) and their identification \vith the terms 

of TIxIIv<{'(.r, y). These conyentions of order are HCYer required in the 

proof of theorems: v,e note them here OI1!~" to ob,'iate any theoretical 

12 This arrangement turns the two-dimensional array into a Qne-ciimensiollll.l by the 
familiar device for denumerating the rationals-i. eo, by proceeding along successive di
agonals, beginning with the upper left-hand corner. 
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objection. The identification of ~x~~.;(.1:, y) "'ith ~z, yrp(x, y), and of 
II.:TI. <;(.1', y) with II.:, iI"c(.1', y), is of little consequence for the theory of 
propo:3itional functions itself, but it will be of some importance in the theory 
of relations which is to be derh'ed from the theory of functions of two or 
more \'aria bIes. 

Having now somew'hat tediously cleared the ground, 'we may proceed 
to the proof of theorems. Since ~x, y';(.1', y) and II", yrp(x, y) may De re
garded as inyohi.ng only one yariable, (.1:, y), many theorems here follow 
at once from those of the preceding section. 

11·1 ~x, ll';('1', y) = ~x~lIrp(x, y) = -TIx, y-rp(a:, y) = -(IIxIIy-rp(:r, y)}. 

[11·05·06, 10·05] 

11·12 II", ~rp(.l", y) = II"IIyrp(x, y) = -1;.:, y-rp(x, y) = -{~x1;y-rp(x, y)}. 

[11·05·06, 10·04] 

11·2 II;!", y'!'(x, y) C '!'(J.:, :II)". 

[1O·2J 

11·21 rp(l', Y)n C ~'" yCp(:l', y). 

[10·21] 

11·22 II", vcp(.r, y) C ~x, ycp(x, y). 

[10 ·22J 

11·23 IIx • 1i rp(:I.', y) is equi\'alent to "\Yhate\'er yaIue of (x, y), in cpCx, y), 
(:1', y)" may be, .,,(.1.', y),,". 

[10· 2:3J 

11·24 IIxTIycp(:l', y) is equivalent to "\Yhateyer ,'alues of x and y, III 

cp(:r, y), ;l', and y. may be, cp(xry.)". 

[10·2:3] IIzIIyrp(x, y) is equiyalent to ",YhateYer value of x, in 
IIyrp(.1:, y), ;l'r may be, IIyrp(xry)". And IIyrp(.l:rY) is equivalent to 
"\Yhatever value of y, in '!'(x,y), y. may be, rp(xrYs)". But [11·01J 
the values of .1: in IIyrp(xrY) are the yalues of :l~ in cp(x, y). Hence 
Q.E.D. 

11·25 "\Vhatever value or (x, V), in rpC.1:, y), (;1:, Y)n may be, rp(x, Y)n" 

is equh-alent to "Whatever values of x and y, in <p(J.', y), Xr and y. may be, 
rp(;l'rY.) ". 

[11-06·23-24] 

11-26 II",IIycp(x, y) C IIlIcp(xnY). 
[11,01, 10·2] 
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Since x is associatiye and coromutatiyc, (~.E.D. 

11·28 ::::z:S~<p(.r,.II) = :S.:S,,<;(:c, 

Since + is associatiw and coromutatiyE', Q.E.P. 

11·29 1l"lly.p(.l', y) c II.:: <p(.l'. 

[ll':::!lj·27J 

11·291 II.::II;,.p!.l", ~I) C Of' 

[2·2, 1l·2.J:j 

11·3 Il"II".p(:r, y) c :S"lly';::.l', y). 

[11·01, 10-:21J 

11·31 ::::"lly.p(x,,I/) c IIy:S.::'P(,r, y). 

[11·0al IIy::::.? <;(.1:', y) = f .;;(.rl.I.N + .;;;,r~Pl': + 
x + ! + ~j 

+ ... } 

+ .. ·l 
x i ~(J.·lY'J) + 9 Lf.''2.Y:t ; + ;,p: + ... 

x .. , Etc., ete. 

251 

Since x is distributive with reference to +, thi" es:pre:lsion is equal 
to the sum of the products or each column separately, plus the sum 
or all the cross-products, that is, to 

A + { 9(.1:1.111) x <;(,rlY2) x ,,:(,l':Y:I} x . , , : 

+ { .p(:r~Yl) x <;(X2Y2) x <;(.r2Y3) x ... l 
+ : 9C.raYI) x <;(.r3Y~) x <;t,l':ll!8) x . , . I 
+ ... Etc., etc. 

where A is the sum of aU cross-products, 
B,ut [11·02) this is :Sxll,iip(.t', y) + A. 
Hence ::::"II.ip(.r, y) + A = IIy:Sx'P(.l', ,1/). 

Hence [5·21J ::::.rll!lip(.r, y) clly::::.r<p(:C, y). 

\Ye have already called attention to the fact that the implication of 11·31 
is not reyersible-that :s"llyip(x, .II) and lll/::::",<p(.r. arE' not equivalent. 
11·32 ll",::::yip(;z', y) c :Sx:Syip(.r, y). 

[11·03] llr~!I<p(.r} y) = :Sy'P(:rlY) x::::y<p(J>~y'l x::::li'P(J'sY) x ... 

[11·0-:1:] ::::;r:Sl/<p(:r, y) = ::::y'!'(:rlY) + ::::y,!,\.r~y) + ::'yc.;<.l'3Y) + ... 
And [5·992] -:::'lIip(:rlY) x ::::y'!'(.r2Y) x :Sli<P(.l:'3Y) x ... 

c ::::yt;'(.l·lY) + ::::;;'P(.('~y) + ::::y.p(x~y) + ... 

\Ve have also the propositions concerning formal implication where 
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function:; of two ,'ariables are concerned. The formal implication of 

1f;(J', y) by I'(.r, y) may be written either II",. :\I[so(.c, y) c I/;(x, y)] or 

IIzII,,[';(J-, y) c1/l(:r, y)]. B~' 11·06, the:;e two are equivalent_ \Ve shall 

gi ye the theorem:; only in the fir::st of these forms. 

11·4 II"" l/[SO\.c, y) c f(:c, y)] = II:. ~(-r;(.t-, y) + 1/I(;r, y)] 
= IIz, y-[so(.l', y) x-I/;(.l', y)]. 

[10,6] 

11·41 II". y[so(.l'_ Y) C f(.l-, y)J c [.;(x, y)" c I/;(_"C, y)"l

[1O-1n] 

11·411 l II", 1I[ 1'(.1'., y) c f(.t', y)] x <;(x, Y)nl c I/;(x, y)",_ 

[10-611J 

11- 42 IIz,:lf so (.l:, y) c f(.r, y)] c ::3z , 1;[ r;(x, y) c I/;(x, y)]. 

[10- 02] 

11·43 II",. y[r;(_r, y) c1f;(.t', y)l c[II:c, yr;(."C, y) cII"" y1f;(x, y)]. 

[10·63] 

11·431 {IIz, y[r;(x. y) cf(;r, y)] xII", ur;(;c, II)} cII"" yf(x, y)_ 

[10-u3!] 

11·44 IIz, y[r;(:r. y) cf(J-, y)] c[::3"" yso(."C, y) c::3 ... yf(x, y)]. 

[lO-t14] 

11·441 {IIz_ y[so(:r, y) c fC-"C, y)] x ::3", l/SOC."C, y) l c :3,., l/f(J.-, y)_ 

[10-641] 

11-45 {IIz, y[so(x, y) cf(x, y)] xII" I#(X, y) cr(x, ym 
cII .. , y[so(x, y) cS'(x, Y)l-

[10 . (3.5J 

11·451 II", I/[so(x, y) cf(:e, y)] 

c {II", I/[I/;(x, y) cr(x, y)] cII", 1,[r;(X, y) cr(x, y)]}. 
[10-651] 

11-452 II"" 1/[1/I(x, y) c t(.l:, y)] 

c {IIz, y[so(x, y) c",,(:e, y)] cIIz• y[so(x, y) cr(x, y)]}. 

[10·652] 

11-46 II", IJ so(x, y) c ",,(x, y)] = IIz, 1/[-f(,1:, y) C -soC.1:, y)]. 

[10-60] 

Similarly, we have the theorems concerning the formal equivalence of 
functions of two variables. 
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11·47 II", ~[ , y) = 1/;(x, 

[lo·nS] 

11·481 lIz, ~[o;;:.!', 

l 
J' 

1/)] 

c II", ~[ y) = S-(.r, ym. 
·081J 

11·482 lIz, , y) = ~-(.r, y)] c lix, = y,(a', 11)] 

elI", y[ 
[10· 682J 

11· 49 IT", y[ ~(x, y) = ';'(.T, 

[1O·69J 

c[.pl.r, y)" = 
c [II.:, :I\::(;r. y) = It, :;';;:.1:, 

c [~x, y~(x, y) = ~:. A·(.r:, 

y) = s-(x, 

11·491 IT", y[o;(.r, y) = 1/;(J:, y)] = IT", y[-.p(.l', y) = -if;~.r, !!)}. 

[1O·691J 

Further propositions concerning functions of two \"ariables are simple 
consequences of the above. 

The method b~' which such functions are treated readily extends to 
those of three or more variables. ~(.l', y, :::) may be treated as a function 
of three variables, or as a function of one yariable, the ordered triad (.r, y, :::); 

just as tf(x, y) can be treated as a function of .r and y, or of the ordered 
pair (.r, V). Strictly, new' definitions are required with each extension of 
our theory to a larger number of variables, but the method of extension 
will be entirely obvious. For three variables, we should haye 

IIxnyn=~(x, y, z) = IIx!IIvIIz~(x, ~f, .<:)1 
~xnllnzop(x, y, z) = ~.rlIIyIIz'P(.r, .11, ,<:)1 

Etc" etc. 

It is interesting to note that the most general form for the analogues 
11· 05 and 11· 06 will be 

IT(x, lh z) .p(.!.', y, z) = TIxilCl/' .lop(;r, y. z) 

and ~(.r,!i, z)cp(.r, y, z) = ~'>:~(!1' .)<;(.1', y, z) 
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x, , " ann II,:;, .::) ;:! = Il)I.::'P('l'r,Y •. ::), etc., we shall be able to deduce 

fl. . .::, y,.::) , ii, =:i = nxn.:~, .::1 .;i'.,., y, z) = IIc;:, y)IIz y(x, y, z) 

= II)I(z, =} <p(.l', y, z) = II.:IIyII,y(.l·, y, z) 

And similarly for ~"x. ;;, z,. This calls our attention to the fact that yC.r, 
y, z) can be treated not only as a function of three yariables or as a function 
of one. but abo as a function of two, :r and (y, z) or (:c, y) and z or (x, z) 

and y. 
In general, the cOl1\'entions of notation being e::\:tended to functions of 

any number of yariables, in the obyious ''lay, the analogues of preceding 
theorem;:; for functions of two will follow. 

"\Ye failed to treat of such expressions as II y.rxn1f;y, ~<,Ox+n1f;y, etc., 
under the head of functions of one \'ariable. The reason for this omission 
was that such expressions find their significant equiYalents in propositions 
of the type IIxlly( .;.1' x 1f;1I), ~..::IIy( <{:X + 1f;y), etc., and these are special cases 
of functions of two variables. "\Ye may also remind the reader of the 
difference between two such expressions as ny.r + II1f;.'r and ll<px + II1f;y. 

The ranges of the two functions, <p and 1f;, need not be identical; there 
may be yalues of .1' in (.p: which are not yalues of y in 1f;y. But in an~' 
expression ot the form .;.i'" x 1f;.rn • :en as a yaIue of ;1; in <p.l: must be identical 
with .l:" as a ,-alue of .1' in 1f;.l'. For this reason, we haye adopted the con
Yention that where the same letter is used for the yariable in two related 
functions, these functions haye the same range. Hence the case where 

we have <f." and 1f;y is the more general case, in which the functions are not 
restricted to the same range. Theorems im'oh'ing functions of this type 
will not ahya;vs be significant for eyery choice of yand 1f;. There may eYen 

be cases in which an implication is not ~ignificant though its hypothesis is 
significant. But for whateyer functions such theorems are significant, 
they \vill be true; they will never be false for any functions, however chosen. 

The meaning of an expression such as :3~IIy( <p.l: + 1f;y) follows from the 
definition of ~.rrry<p(.t', y). 

~xIIy( cp;t' + 1f;y) = n.( <p.rl + 1f;y) + IIy( <pX2 + 1f;y) + ny( <p.l's + 1f;y) + ... 

I (<P).·l + 1f;Yl) x (<pXI + 1f;Y2) x (yXl + 1f;Ya) x . - . l 
+ ) (<PJ.'2 + 1f;Yl) x (<px~ + 1f;Y2) x (<PX2 + 1f;ys) x ... 1 
+ [( <p.Ts + 1f;Yl) x (<,Oxa + 1f;Y2) x (yl'S + 1f;ys) x ... I 
+ ... Etc., etc. 

And for any such expression with two operators we have the same type of 
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two-dimensional array as for a function hyo \'uriabll''; in general. The 

only difference is that here the function itself has a special ",:,1' + ';"!! 

or <;:1: x tJiy, etc. 

12·1 II.".l:xIItJiy = IItJiyxII.y.{' = II",IIl/:<;.Txif;y) = rUI~(fyx':P"',: 

= II)IA'P,l' x:/;]I) = II:,II.tilw x ":.",i. 

ll) [1· ;3J II ':P.l' x IItJiN = IItJiy x IT .p.r. 
(2) II 'P.r x IIhl = 'Pol'l x 'f.r~ x 'P.ra x ... ) x IItJiy 

= i 'P.l'l x II:/;y) x .,' <;.r~ x IIh/) x (':P.I':; X ITtJi!ll, X ... 

[."j.f!:>] 

x IT) <;.1'" X ';y) X . . . • :::71] 

= II "II/. 'P.t xtJiy). [11·01] 
l::l) By (:2) and 1· 3, 

II'P.?; xIItJiy = \II-.f,y x 'P.l']) x i:II1f;y x 

x '.II1f;y x x, .. 

= II/ tJiy x 'P.rI) x IT~i tJiy x .,:.1'2) 

x IIy( ljtll x .,:'.1':;) X . .. : 1\1'::':;] 

= II"IT,.(ljtyx.;.r). [11·01J 
1,-:1:) Similarl~', IItJiy x II.;.r = IIyII,,(ljty x 

., o;.r is true for eWQ' .j' and tJiy is true for every y" is equi\'alent to " 

every.1' and e\'er~' y, <p.i: and tJiy are both true ", etc, 

12·2 -:::. <;.l' + "5:.tJiy = -:::'1f;y + -:::. <;.1.' = ~x~/ <;:.c + 1f;y) = "5:.z~;,Ny + <;x) 

= ~,,"5:..r(.p,r + ljty) = ~:J~=(..pp + ·P'). 

(1) [.f·3} "5:..p.r+":;t/ly = ":;t/ly+":;ip.r. 

(2) "5:. <p,r + ~fY = (ip:rl + <p.r~ + <p.ta + ... ) + ~t/ly 
= (<p.T l + ~t/ly) + (-;.1:2 + ":;if,.y) + ('P.ra + ":;if;!I) + ... 

[.)·\\S11 

= ":;Y(<PXl + ljty) + "5:.y(<p.r~ + if;y) 

+ ":;i'P·ra+ ljty) + .,. [10·31] 

= ~"-:::'Y('P·r + t/ly). [1H)':I:] 
(3) By (2) and.f·:3, 

~ <;:r + -:::'if;y = (":;if;y + <;:rl) + (~if;y + <;.1'2) 

+ (~t/ly + 'P.t::) + .. 

= ~i;( ljt.lf + <;.1'l) + ":;~( if;y + <p.1'~) 

+ ~y(t/ly + 'P.l's) + . .. [10· :3J 
= -:::'x~y(if;y+ <;.r). [11·04] 

(4) Similarly, ~if;y+ ":;.,,.1" = ::'y::'x(if;y+ 'PJ:") = -:::'y"5:...(<;J:+if;,lf). 
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., Either for some .1', .,:,1', or for some y, Jj/y" is equh'alent to "For some 

.r and some y. either <;.1' or Jj/y", etc. 

12·3 ~ <;.1' x ~Jj/y = ~Jj/y x ~ 'P.t = ~I~V('fJ.· X Jj/y) = ~X~y(Jj/y X c;x) 
= ~Y~I( <;.r x Jj/y) = '2:, y 2:.;;; ( Jj/y x <;.1'). 

[1, 3J ~ <;.r x ~Jj/ll = '2:,l/;y x'::: 1£'.1'. 

(~) .::: <;x x ':::Jj/y = (<P'?:1 + <;.i·~ + <;.1'3 + ... ) x 'ZJj/y 

= (<,C~rl x ':::Jj/y) + (cp.1'2 X ~..f;y) + (<PX3 X '2:,..f;y) + ... 
[5·94] 

= ':::1I( <,C.l'l x ..f;y) + ':::y( rp.?:2 x Jj/y) + :':::y( c;.Ts x ..f;y) 

= ':::;;;':::y{ c;X x ..f;y). [11· 0-1] 
(3) By (2) and 1· 3, 

+ . .. [10·361] 

.::: 'fJ' x ':::..f;y = ('Z..f;y x <pXl) + (':::..f;y x c;X2) + C"2..f;y x if;;?:,) 

+ ... 
= ':::y(..f;y x cpXl) + ':::y(..f;y x cpX2) 

+':::y(..f;yx cpJ.·3) + ... [10·36] 

= 'Z;;;':::y (..f;y x cp.i'). [11· 04] 
(+) Similarly, 'Z..f;y x':::cpx = 2:. y '::: x (..f;y x c;x) = ':::y'Z,,(\Ox x..f;y). 

"For some x, cp.r, and for some y, ..f;y" is equivalent to "For some x and 

some y, <fl' and ..f;y", etc. 

12·4 IT <;:1' + IT..f;y = IT..f;y+ITrp.r = IIxITy(\O.t'+..f;y) = IT",lly(..f;y+ \Ox) 

= II y II,(\O.1:+..f;y) = II~IIx(..f;y+ \Ox). 

(1) [4·3] IIcpx + II..f;y = II..f;y+IIcp.l'. 

(2) IIc;.r + IIJj/y = (\OXI X c;X2 X cpXs X ... ) + ITJj/y 

= (<pXI + IIJj/y) x (cp.r:2 + IIJj/y) x (\OXg + ITJj/y) x ... 

[5·941] 

= IIi 'PI + Jj/y) x ITy( cpX2 + Jj/y) 

XITY(CPX3+ Jj/y) x... [10·371] 
= IIxIIy( <pX + Jj/y). [11· 01] 

(3) By (2) and 4·3, 

IT cp.'!: + II..f;y = (II..f;y + \OXI) x (IIl/;'y + c;X2) 

x (II..f;y + <pxs) x ... 

= IIlIC..f;y + \Ox!) x IIyC..f;y + C;;T2) 

x IIy(..f;y + \O:"'Cs) x . .. [10·37] 
= II.z;IIy(..f;y+ \OJ'). [11·01] 

(4) Similarly, IT..f;y+IT<px = IIyIIx(..f;y+ <px) = IIyITx(<px+..f;y). 

"Either for every x, <pX, or for every y, ..f;y" is equivalent to "For every x 
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and eyery y, either r;x or 1j;y", etc. At first glance this theorem may seem 
inyalid. One may say: "Suppose r;.l." be 'If :to is a number. it is odd', 
and 1j;y be 'If y is a number, it is eYen '. Then TIr;,r + TI-.j;y will be' Either 
eyery number is odd or ewry number is ewn', but TIxTIJ"c <;X + 1/;y) will be 
'Every number is either odd or eyen "'. The mistake of this supposed 
illustration lies in misreading IIzIIy(r;x + 1j;y). It is legitimate to choose, 
as in this case, <pX and if;y such that their range is identical: but it is not 
legitimate to read II"IIy(r;x + if;y) as if each giYen yaIue of .r were conneeted 
with a corresponding yalue of y. To put it another wa~': II"II .. (r;x + if;:I.') , 

as a special case of IIzIIi ipX + if;y), would not be "For en'ry yulue of x, 

either <px or if;:t:", but would be "For an~' two yalues of ;c, or for an~' yaIue 
of x and itself, either cpx or -.j;.1' ". Thus II"ITlI ( <.p.T: + 1/;y) in the supposed 
illustration would not be as aboye, but is in fact "For an~' pair of numbers, 
or for any number and itself, either one is odd or the other is even "-50 

that II r;x + IT-.j;y and IIzIIy( <.pX + if;y) would here both be fab€', and are equiva
lent. 

A somewhat similar caution applies to the interpretation of the next 
two theorems. The analogues of these, in <pC;r, y), do not hold. 

12·5 '2 <p.l~ + IT-.j;y = IT-.j;y + ";i; rpx = :::::",ITy(<p.r + -.j;y) = ";i;;::ITiif;y + rpx) 

= IIlI ::::: x ( rpX + 1j;y) = ITII:::::x(-.j;y + <px). 

(1) [4·3J :::::rpx + ITif;y = ITif;y+:::::rpx. 

(2) By proof similar to (2) in 12·2, ::::: <p.r + ITlfY = :::::.rIIy( <.pX + if;y). 

And by proof similar to (3) in 12·2, -:5: <.pX + IIlfY = :::::",IIlI( -.j;y + <px). 

(3) By proof similar to (2) in 12·4, ITlfY+ :::::rpx = IIlI:::::r(if;y+ <px). 

And by proof similar to (3) in 12·4, IT-.j;y+ :::::1"" = IIy:::::x(<.px+if;y). 

"Either for some x, tp.r:, or for eyery y, if;y" is equiyalent to "For some x 
and eyery y, either <pX or lfY", etc. 

12·6 -:5:<px xIIif;y = II-.f;y x ::::::'Px = ::::::",IIy('Px xif;y) = ".5;",ily (if;y x .,ox) 

= IIII:::::,,(r;x x1j;y) = ITI/:::::,,(if;y x I,'-'x). 

(1) [1·3J ~'Px xIIif;y = IIif;y x-:5:l,'-'x. 

(2) By proof similar to (2) in 12·3, 1: r;x x IT,yy = :::::"TIy(!p.r x ,yy). 

And by proof similar to (3) in 12·3, ~<.px xIIif;y = :::::",IIy(if;y x I,'-'x). 

(3) By proof sjmiIar to (2) in 12·1, II1j;y x::::: \OX = IIy:::::",(-.j;y x <,O'x). 

And by proof similar to (3) in 12·1, IT-.j;y x -:5: \OX = ITlI :::::,,(<px x,yy). 

"For some x, tpJ;, and for eyery y, ,yy" is equivalent to "For some x and 

every y, q:tX and -.f;y", etc. 

18 
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\Ye ma~' generalize theorems 12·1-12·6 by saying that for functions 
of the type (<px + I/ty) and (<p.'!: X I/ty) the order of operators and of members 
in the function is indifferent; and for propositions of the type 

~}<px{ :}{~}I/ty 
the operators may be combined, and the functions combined in the relation 
between the propositions. 

It will be unnecessary to give here the numerous theorems which follow 
from 10·5-12·6 by the principles p q c p, pcp + q, and II cpx c ~ cpx, etc. 
For example, 10·51, 

gives at once 

(1) IIi cp.'!: x I/tx) c II cpx 

(2) " c III/tx 
(3) " c::3 cpx 
(4) " c::31/tX 
(5) " c II cpx x ~Ytx 

(6) " c::3 cp::r; + ~I/tx 
Etc., etc. 

And 12·2, ::3 <pX + 'JJI/ty = ::3"'~1I( cpx + I/ty), etc., gives 

(1) ~cpx c ::3",'211(cpx + 1J;y) 
(2) ~I/ty c " 

(3) IIcpx c " 

(4) III/ty c " 

(5) 'JJtpx + rrl/ty c ~"'~11( tpX + l/ty) 
(6) I, cpx x ::31/1y c " 

Etc., etc. 

Another large group of theorems, only a little less obvious, follow from 
the combination of lItpX c lIcpx, or ~tpX c ~ cp::r;, with Jly,y c ~1/Iy, giving 
by 5·3, 

(1) Jlcpx + 1I1/Iy c JltpX + ~if;y 
(2) JlcpxxJl1/lycJlcp:xx~1/Iy 

(3) ~ cpx + 1I1/Iy c ~ cpa: + ~1/Iy
(4) ~tpx xJl1/ly c ~tpX x ~1/Iy 

Etc., etc. 

Each of these has a whole set of derivatives in which rrtpX + Jlo,fy is replaced 
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by IIxIIy(<p.r+ty), etc., II<pxx-:;ty b~o II"-:;:;(,?t'x,,t'y), etc. 'lYe gin" in 
summary form, the deriyatives of (2), b~o wa~' of illustration: 

An~; one of 
II<p;c XITty 

IT"IIy( <pX x ty) 

ITxITy( ty x 9.1:) 

II;:;IT,,( ty x 9X) 

IT"IIx( 9.l: x ty) 
ITty x IT ;;.1: 

c anyone of 
II<px x -:;ty 

IIx~u(;;x x 'fy) 

II,,-:;:;('fy x <;,x) 

-:::'yIIz( ty x <;,.r) 

-:;lIIT"c<;,;l.' x'fy) 

-:;ty xIT<p.!: 

II<px 

~ty 

II <;.1: + II1f;y 

IIxII:;( <p;C + 1f;y)" etc., etc. 
-:::'<;.1: + -:;ty 

-:::.",-:;y(;;x + ty), etc., etc. 
II<;x + -:;1f;y 

IIx~y( ,?X + ty), etc., etc. 

This table summarizes one hundred fift;t.°-six theorems, and these are only a 
portion of those to be got by such procedures. 

Functions of the type of (<;'x x 'fy) and (<;,x + 1f;y) give four different 
kinds of implication relation: (1) II"ITy( <;,X c ty); (2) IT"-:;JI(;;x c ty); 

(3) ~zITy( cpx c ty); and (4) ~z-:;!I( <pX c ty). With the exception of the 
first, these relations are unfamiliar as "implications ", though all of them 
could be illustrated from the field of mathematics. Xor are they par
ticularl;r useful: the results to be obtained by their use can always be got 
by means of material implications or formal implications. Perhaps 
IT"IIvC \i'X c 'fy) is of sufficient interest for us to give its elementary properties. 

12·7 ITzIIy( \i'X c ty) c (<pXn c ITty). 

[11,01] ITzITy(\i'X cty) = ITy(CPXICty) xITY{\i'X2ctl!) 

x ITII ( <pIa c ty) x ..• 

= (<pXl C ITty) x (<pI~ C ITty) 

x(\i'XscIIty) x ... [10·42] 

And this last expression is equivalent to the set 

<pXl c ITty, <pX2 c ITty, \i'I3 c ITty, etc. 

12·71 {ITzITy(<px cty) x <pxn } ciity. 

[9·4, 12·7] 
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If for e,"ery .1' and e\'ery y, .p.l· implies if;y, and for some gh"en ;r, .pX is true, 

then if;y is true for every y. 

12·72 lI"lIy(,,:.l·cif;y) = ~,,:J:clIif;y = lI-<p:r+lI1f;y. 

(1) If IT"ITy(<p;r c1f;y), then [12·7] <PXn cIT1f;y. 

Hence [5·991J ~<p:c clIif;y. 
And if ~tpxell1f;y, then [10·42] ITy("1:,'f'xc1f;y), and hence [10·41] 

IT"lI:;( <p.r e if; y). 
(2) [9·3] ~<pxeIT1f;y = -~<pJ.·+llif;y = ll-<px+ll1f;y. 

Il:-ll.,c<;x eif;y) is equivalent to "If there is some x for which 'f'X is true, 

then 1f;y is true for" ezoery y". 

12·73 /ll"ll:y{ <p.r e 1f;y) x llyIT:( 1fty c tz) 1 e llxllz( 'f'X e tz). 

[12·';"2] If IT.tlly(<pxe1fty) and llllll.(1ftycrz), then "1:,'f':l'cllif;y 

and ~1f;1I e m-z. 
But [10·21] TIif;y e ~1fty. Hence [.5·1] ::::'f'X e llrz, and [12·72] 

ll"ll.(<pJ: cr;:;). 

This implication relation is here demonstrated to be transitive. In fact, 
it is, so to speak, more than transitive, as the next theorem shows. 

12·74 {(~ tpX C ~1f;y) x TIyllz( 1fty e .\z) I e ll"llzC tpx e rz). 

[12· 72] llllllz(if;y e .\z) = ~1f;y c lIrz. 

And [5 ·1] if S <p."!; e S1f;y and ~1f;y e llrz, then "1:, tpX e TIrz, and [12·72] 
llzlIz( ip.r c rz). 

12·75 lll"lly(ipJ.' e 1fty) x (lI1f;y ellsz) 1 elI",llz(tpx e rz). 

[12· 72] lI",lIlI ( ip.t' e 1fty) = :::: <pX e ll1f;y. 

And [5 -I} if ~ 'PX e ll1f;y and ll1f;y e llrz, then "1:, lOX c ITtz, and [12·72] 
ll"lIz(ip.r etz). 

IV. DERIYATIOX OF THE LOGIC OF CLA.SSES FRO~I THE CALCULUS OF 

PROPOSITIONAL FUKCTIONS 

The logic of classes and the logic of relations can both be derived from 
the logic of propositional functions. In the present chapter, we have 
begun with a calculus of propositions, the Two-Yalued Algebra, which 
includes ::tIl the theorems of the Boole-Schroder Algebra, giving these 
theorems the propositional interpretation. We have proved that, con
sidered as belonging to the calculus of propositions, these theorems can 
validly be given the completely symbolic form: "If ... , then ... " 
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being replaced by ". . . c . . . ", ", . , is equh-alent to .. b~- ". . , 

= ... ", etc_ The Two-Yalned .-\Jgebra does not presuppose the Boole
Schroder Algebra; it simply includes it. 

Suppose, then, we make the calculus of propositions-the Two-Yalued 
Algebra-our fundamental branch of symbolic logic. ''Ie deri\"e from it 
the calculus of propositional functions by the methods of the last two 
sections. "'e may then further deri\"e the calculus of logical classes, and a 
calculus of relations, by methods which are to be outlined in this section 
and the next. 

The present section will not de\'elop the logic of classes, but ,,;-ill present 
the method of this de\"elopment, and proye the possibility and adequacy 
of it. .-\.t the same time, certain differences will be pointed out between 
the calculus of classes as deri,-ed from that of propo5itional functions and 
the Boole-SchrOder Algebra considered ail a logic of classes. In order to 
distinguish class-symbols from the yariables, J:, II, z, in propositional ftmc
tions, ,ve shall here 'represent classes by IX, )3, ~l, etc, 

For the derivation of the logic of classes from that of propositional 
functions, a given class is concein"d as the aggregate of indi,-iduals for 
which some propositional function is true. If y.T:r. represent" x is a man ", 
then the aggregate of .1::'S for' \ .... hich <p.r is true ,viII constitute the class of 
men. If, then, z( <pz) represent the aggregate of indh'iduals for which the 
propositional function <pz is true, z( <pz) 'will be "the class determined by 
the function <pz", or "the class determined b~' the possession of the char
acter <p",13 'We can use a, (3, 1', as an abbreviation for z(",z), :(o/z), z(~::;), 

etc. a = z( <pz) will mean" a is the class determined b~' the function .pz". 

(In this connection, we should remember that <;.'1; and .pz are the same 
function.) 

The relation of an individual member of a class to the class itself will 
be symbolized bye, x n € a represents ".1'" is a member of a' '--or briefly 
" x n is an IX". This relation can be defined. 

13 We here borrow the notation of Principia" The corresponding notation of Peirce 
and Schroder involves the use of ~, which is most confusing, be~ause this ~ has a meaning 
entirely different from the ~ which is an operator of a propositional funetion. But in 
Principia, 1 (>"z) does not represent an aggregate of individuals; it represents "z such 
that >"z". And ~(cpz) is not a primitive idea but a notation supported by an elaborate 
theory. Our procedure above is inelegant and theoretically objectionable: we adopt it 
becau:se our purpose here is expository only, and the working out of an elaborate technique 
would impede the exposition and very likely confuse the reader. As a fact, a more satis
factory theory on this point makes no important difference. 
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13·01 x" E z(yz) = yX" Def. 
"3:" is a member of the class determined by l/'Z" is equivalent to " l/'X" is 
true". 

(For conyenience of reference, we continue to giye each definition and 

theorem a number.) 
The relation "a is contained in {3" is the relation of the class a to the 

class {3 when eyery member of a is a member of {3 also. We shall symbolize 
" a is contained in {3" by a e {3. The sign c between a and (3, or between 
z(yz) and z(if;z), will be "is contained in"; e between propositions will 
be "implies ", as before. .Tn E a is, of course, a proposition; x E a, a propo
sitional function. 

13·02 ac{3 = IIz(xEaexE{3) Def. 

a e {3 is equh'alent to "For eyer~' x, 'x is an a' implies' x is a (3"'. 

II",(x E a ex E (3) is a formal implication. It will appear, as we proceed 
that the logic of classes is the logic of the formal implications and formal 
equivalences which obtain between the propositional functions which deter
mine the classes. 

13 ·03 (a = (3) = II",(x E a = X E (3) DeI. 

a = {3 is equivalent to "For every x, 'x is a member of a' is equivalent 
to 'x is a member of {3'''. a = {3 thus represents the fact that a and {3 
have the same e.riension-i. e., consist of identical members. 

x" E a, a e {3, and a = (3 are assertable relations-propositions. But 
the logical product of two classes, and the logical sum, are not assert able 
relations. They are, consequentl~·, defined not by means of propositions 
but by means of functions. 

13·04 ax{3= x{(.rEa)X(xE{3)} Del. 

The product of two classes, a and {3, is the class of x's determined by the 
propositional function "x is an a and x is a {3". The class of the x's for 
which this is true constitute a X {3, the class of those things which are 
both a'S and {3's. 

The relation x between a and {3 is, of course, a different relation from x 
between propositions or between propositional functions. A similar remark 
applies to the use of +, which will represent the logical sum of two classes, 
as well as of two propositions or propositional functions. This double 
use of symbols will cause no confusion if it be remembered that a and (3, 

z(lPZ) and z(if;z), etc., are classes, while x E a is a propositional function, 
and x" E a, a e {3, and a = {3 are propositions. 
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13·05 a + f3 = x!(x E a) + (.TE f3)} Def. 

The sum of two classes, a and /3, is the class of .1"S such that at least one 
of the two, ';r; is an a' and 'x is a /3', is true, or loosely, the class of x's 
such that either x is an a or .r is a /3. 

The negative of a class can be similarl~' defined: 

13·06 -a = X -(;1; E a) Def. 

The negatiye of a is the class of x's for which'.r is an a' is false. 
The" universe of discourse", 1, may be defined by the deyice of selecting 

some propositional function which is true for all values of the variable. 
Such a function is (S-.1; c I;x), whateyer propositional function tx may be. 

13 ·07 1 = x(l;x C .\.r) Def. 

1 is the class of ;c's for which !;.r implies ~-.rY Since this is ahm;;s true, 1 is 
the class or all x's. The "null-class", 0, will be the negatiw of 1. . 

13 ·08 0 = -1 Def. 

That is, by 1:3·06, 0 = x-(I;.r ct.1:'), and since -(p:, C!;.1') is fabe for all 
yalues of x, the class of such x's \vill be a class with no members. 

Suppose that a = z(yz) and f3 = =(1/Iz). Then, by 13·01, XTl E a = <;.tr.' 

Hence ac{3 will be ll"cyxc1/lx), and a = /3 will be llx(",;r = 1/1.1'). This 
establishes at once the connection between the assertable relations of 
classes and formal implication and equiyalence. To illustrate the way in 
which this connection enables us to derive. the logic of classes from that of 
propositional functions, we shall prove a number of typical theorems. 

It will be convenient to assume for the whole set of theorems: 

a = :(yz), (3 = z(1/IZ) , 'Y = z(~z) 

13·1 0 = x-C.\xc!;x). 

0=-1. Hence [13·06] 0 = x-C.t el). 
[13·01·07] xel = .\xctx. Hence 0 = x-(tx c t.1:'). 

13·2 II",(x el). 

[13·01·06] Xn el = (.Ix,.. cs-x,..). 
Hence llix E 1) = llx('\x c tx). 

But [2·2] 5'Xn cta:". Hence [10·23J ll",('\x c.\x). 

Every individual thing is a member of the "unh'erse of discourse". 
14 This defines, not the universe of discourse, but "uniyerse of discourse",-the range 

of significance of the chosen function,,I. With 1 so defined, propositions which invoh'e 
the classes £(ipz), z(if;z), etc., and 1, will be significant whenever 'P, y, etc., and r have 
the same range, and true if significant. 
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13·3 lIz -(x € 0). 

[13·01·06·07J ;t'" € 0 = -(!;'x" c!;,;r,,). 

Hence [3·2] -(X" I: 0) = (s~.r"c!;'.rn). 

But !,".r" c !,";cn• Hence [10· 23J IIx(!;,.r c !;,x), and II", -(x € 0). 

For everv J.' it is false that x € O-no individual is a member of the null-o , 

class. 

13·4 a c 1. 

[1:3·01·06].'1:" € 1 = C!;,;r" c!;'x,,). 

Since a = z(cpz), [13·01] Xn e a = cp.?:". 

[9·33J (!;'x" c!;'x,,) c[cpxn c (!;'xn c!;.?:,,)]. 

Hence since ;;x" C !,".l'n, cpx" C (!;'x n C !;,x,,). 

Hence [10·231 II,,[cp.tc(!;'.rc!;'x)], and [13·21 ac1. 

A.ny class, a, is contained in the universe of discourse. It will be noted 
(1:3·2 and 1:3·4) that individuals are 'members of 1, classes are contained in 1. 

In the proof of 13·4, we make use of 9·33, "A true proposition is implied 
by any proposition". !;':r" c t:r n is true. Hence it is implied by !pJ.'",. And 
since this holds, whatewT value of x, .rn may be, therefore, 

But cp:c is the function ,vhich determines the class a; ;;x c !;'x, the function 
which determines 1. Hence !p.rn is Xn I: a, and !;,.rn c !;.?:" is Xn € 1. Conse
quently we have II", (x € a C.1: € '1). And by the definition of the relation 

"is contained in", this is a c 1. 

13·5 0 C a. 

[9 ·1] -(x" E 0) is equivalent to (.l'n € 0) = O. 
Hence [13·3J (x" € 0) = 0, and [9·32] (J.~n € 0) C cpx". 

Hence [13·01] X,,€Ocx,,€a, and [10·231 II",(xeOcxea). 

Hence [13·02] 0 c a. 

The null-class is contained in every class, a. In this proo£; we use 9·32, 
"A false proposition implies any proposition". -(!;'x" c !;'x,,) is false, and 
hence implies q:x". But -(!;'x ctx) is the function ,,,hich determines 0; 
and <p:r, the function which determines a. Hence 0 Ca. 

The proofs of the five theorems just given are fairly typical of those 
which involve 0 and 1. But the great body of propositions make more 
direct use of the connection between the relations of classes and formal 
implications or equiyalences. This connection may be illustrated by the 
following: 
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13·6 z( 'Pz) c. z(..pz) = TI.rC <p.?: C ..p:I:). 

[13·02J z( 'Pz) C z( "/I:) = TI",l.t d( 'Pz) C.l"E 

[13·01] x"d(<pz) = <p.rn, and x"d(..pz) = ¥t.t n • 

Hence [2·1J IIA.rd(<pz) c.rd(..p;:;)] = II",(",,rc1,L·,r). 

265 

"The class determined b=-' <p::: is contained in the class determined by ..p::;" 

is equh'alent to "For eyery ;r, <pX implies "/Ix". 

13·7 [5:(",::) = z(..p;:)] = TIz(ipX = ..pJ:). 

[13·0:3J [z('P;:;) = z(..p:)] = IIzlX € z(<pz) = .r e z(..p;:;)]. 

[1:3. Oll J.·n € .z( .;z) = ,;,1',., and .1:n € z(..p;:) = ..p:en • 

Hence II.[.rd(.p.::) = .rd(..p;:;)J = II.z(<p.r = ..p.r). 

"The class determined by ip::: is equivalent to the class determined by ..pz" 

is equi\"alent to "For ewry .1', <p." is equivalent to '/;.r", 

13·8 (a C {3) = (-/3 C-OI). 

[10,66] II.,[x € z( 'Pz) c.1' € 2( ..p;:;)] = lIz 

Hence IIx(x e a c.,' € p) = IIA-(,r € (3) c -(x E a)], 

[13·01· 06] -(:1.' € a) = :r € -a, and -(.r. € {3) = X € -;3. 
Hence [13,02] (01 cp) = (-{3 c-a), 

13·9 [(acf3)X({3c'Y)lc(ac~(). 

[13·6j Cacm = IIx('P.1'c..p.r), (f3c'Y) = II.(..pXC~.l·), and (aC 

= Il,,( cp,r c ~:r). 

And [10·65] [IIx( <p.1: C ..p:t) x IIx( ..p.r. c ~x)] c ilz( <pol: c ~.r). 

The relation "is contained in" is transiti\"e. 13·9 is the first form of the 
syllogism in Barbara. The second form is: 

13 ·91 [(a C fJ) x (:rn € a)] c ex" E {3). 

[13·6] (a c fJ) = II,,( <pX c ..p.r). 

[13·01J eXn E a) = <PXn, and (x" € p) = ..p.r ". 
And [10- 611] [ITrC cpx c ..pa;) x 'PXnJ c ..pX1/.' 

If the class a is contained in the class {3, and .Tn is a member of a, then x" 

is a member of fl. 

13 ·92 [(a = fJ) x ({3 = 'Y)J c (a = "(). 

[13·7] (a = f3) = II"(,,,.r = ..p.r), ({3 = '1') = II,,(..px = ~x), and 

(a = '1') = ll,,(cpx = ~x). 
_-1.nd [10·681 [II,,(<px = f.r) xII",(f.r = ~.:r)l cllx(tpx = ~x). 

The last three theorems illustrate particularly well the direct connection 
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between formal implications and the relations of classes. 13·6 and 13·7 
are alternative definitions of a c {3 and a = (3. Similar alternative defini
tions of the other relations would be: 15 

-[z(~z)] = z(-cpz) 

z(cpz) xz(if;z) = z(cpz xif;z) 

z( cpz) + z( if;z) = z( cpz + if;z) 

We may give one theorem especially to exemplify the way in which 
every proposition of the Two-Valued Algebra, since it gives, by 10·23, a 
formal implication or equivalence, gives a corresponding proposition con
cerning classes. We choose for this example the Law of Absorption. 

13·92 [a+(axm] = a. 

[13·04·05J [a+(a x ,8)] = x{(xea)+[(xea) X(XE{3)J}. 

Hence [13 ·01] {Xn da + (a x (3)]} 

= {(x"Ea)+[(xn ea)x(xn E{3)ll. (1) 

But [13,03] {[a + (aXJ3)] = aJ 
= II:[{ (x E a) + [(x E a) X (:t. E 11)]} = (x E a)]. (2) 

But [13·01] (X,. E a) = cpX,., (X,. E (3) = if;x,., and by (2), 
{fa + (a X J3)] = a} = II",{[cpx+(cpxxif;x)] = lOX} 

But [5·4] [cpx,.+(cpx"xif;xn)] = CPXn· 

Hence [10·23] II,..{[cpx+ (cpx xif;,r)] = lOX}. 

All but the last two lines of this proof are concerned with establishing 
the connection between [a + (a x 13)] = a and the formal equivalence 

II",{[cpx+(cp.l:xif;x)] = lOX} 

Once this connection is made, we take that theorem of the Two-Valued 
Algebra which corresponds to [a + (a X (3)] = a, namely 5 ·4, (p + p q) = p, 

substitute in it cpx,. for p and if;xn for q, and then generalize, by 10·23, to 
the formal equivalence which gives the proof. An exactly similar pro
cedure will give, for most theorems of the Two-Yalued Algebra, a corre
sponding theorem of the calculus of classes. The exceptions are such 
propositions as p = (p = 1), which unite an element p with an implication 
or an equivalence. In other words, every theorem concerning classes can 
be derived from its analogue in the Two-Valued Algebra. 

'Ye may conclude our discussion of the derivation of the logic of classes 
Ii As a fact, these definitions would be much more convenient for us, but we have 

chosen to give them in a form exactly analogous to the corresponding definitions of Prin
cipia (see I, p. 217). 
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from the logic of propositional functions by deriving the set of postulates 
for the BoDle-Schroder Algebra given in Chapter II. This will prove that, 
beginning with the Two-Yalued Algebra, as a calculus of propositions, the 
calculus of classes may be derived. This procedure may have the appear
ance of circularity, since in Section I of this chapter we presumed the 
propositions of the Boole-Schroder Algebra without repeating them. But 
the circularity is apparent only, since the Two-Yalued Algebra is a distinct 
s;,'stem. 

The postulates of Chapter II, in a form consonant with our present 
notation, can be pro';ed so far as these postulates express symbolic laws. 
The postulates of the e:l.'lstence, in the s~'stem, of -a when a exists, ofax p 
when a and f3 exist, and of the class O. must be supposed satisfied b;.' the 
fact that we haw exhibited, in their definitions, the logical functions which 
determine a x 13, -a, and 0.16 

14·2 (axa)=a. 

[13 ·011;Tn € a = 'P.-C n • 

Hence [13·04] Xn € (a X a) = [(.-c,. E a) x € a)] = ('P.l·" x 'PJ:,,). 

Hence (13·03J [(a x a) = a] = II~{[.-c E (a x = ;1:' E a} 

But [1·2] (~Xn X ~.l'n) = ~;l'". 

Hence [10·23] ilxI ('P.l' X <p.l') = 'P.d. 

14·3 (a x {3) = (13 x a). 

= rrAC.;.r x 'P.1.') = 'PxJ. 

[13·03} [(ax{3) = ({3xa)] = ilz{[.l'daX,B)] = [.rdpxa)lJ 

= ilx([(x € a) X (.1." €!3)] = [(.r e 13) x (.l' € am· 
[13·01·04] 

Hence [13·01] [(axJ3) = (!3xa)) = II,,[(~xx1f.r) = (1fxx"ox)J. 

But [1·3] (~J.·nx1fxn) = (1fxnx~Xn). 

Hence [1O·23J ilA("o:c x1f.l') = C1f;l.' x ~.l')J. 

14·4 (ax{3)X'Y=a X (13X'Y). 

[13·03J [(aX.B) x'Y = aX(j3X'Y)] = 
= ilz [ {x € [( a x.B) x "Ill = {x e[ a x (13 x "I )Jl ] 
= ilx[{[(x E a) x (x € {3)] X (x € "I)} = {(x € a) x [(x E .B) X (x E "1)1\]. 

[13·01-041 

Hence [13 ·OlJ r(a x {3) X'Y = a x ({3 x 'Y)J 
= rr",l[(~x x!f.-r) x~xJ = [sox x(1fx x~xm· 

IS A more satisfactory deri,ation of these existence postulates is possible when the 
theory of propositional functions is treated in greater detail. See Principia, I, pp. 217-18. 
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But [1·04J (~.l·" X 1/;J.·n) X ~.r" = ~Xn X (1/;.1.:" X ~x,,). 
Hence [10·23] II" a (~x x 1/;:1.') x ~x] = [~.1.: X (1/;.r x ~.r)]). 

14·5 a xO = o. 
[13·1·01J .1"neO = -(.\xn C:'\.1",,). 

[13·03·04] [a xO = OJ = II"[[(x,, E a) x (.1"n E O)J = (x .. E O)} 
= II., {[ ~x x -(.\x c: .\x) J = -(.\x c:.\x) }. [13· O1J 

But [2·2, 9·01] (.\x"C:'\J.· n) = 1, and [3·2] -(.\x"C:.\xn) = O. 
Hence [1·5] [~.1"" x-('\J.'" C:.\.1.:,,)J = 0 = -(.\.1"" c:.\x,,). 
Hence [10·23] II.,{[~.rx-(.\xc:.\x)] = -(.\xC:.\.r)}. 

0, in the fourth and fifth lines of the above proof, is the 0 of the Two-Valued 
Algebra, not the 0 of the calculus of classes. Since the general method of 
these proofs will now be clear, the remaining demonstrations can be some
what abbreviated. 

14·61 [(a x-J3) = 0] c: [(a x 13) = a]. 

[13·01· 02·04·06] The theorem is equivalent to 
II,,{[(~xx-f.r) = (XEO)]C:[(rpxx1/;.r) = rpx]} 

But [13·3] II" -(.1: EO), and hence [9 ·1] II.,[ (x EO) = 0]. 
Hence the theorem is equivalent to 

II;r;{(~xx-1/;x) = (XEO)]C:[(rpxx1/;x) = rpx]} 

But [13·3] IIz-(XEO), and hence [9·1] II.,[(XEO) = 0]. 
Hence the theorem is equivalent to 

II.,{[(cpx x-if;x) = 0] c:[(rpx xif;x) = rpx]} 

But [1·61] [(rpx" x-1/;xn) = 0] c:[(rpXn x1/;x,,) = cpx,,]: 
Hence [10·231 Q.E.D. 

14·62 {[(aXp) = a]x[(ax-m = al} c:(a = 0). 

The theorem is equivalent to 
II,,[{[(~xx1/;x) = rpx]x[(cpXx-if;x) = cpx]} c:[cp.1: = (X EO)]] 

But [13·3, 9·1] II,,[(x E 0) = 0]. 
Hence the theorem is equivalent to, 

II .. [ [[( cpx x f.r) = rp.r] x [( cpX x -1/;x) = cpx]} c: (cpx = 0)] 
But [1·62] {[(cpx" xif;xn ) = ~,,] x [(cpx" x-1/;x,,) = rpx,,]} c: (cpx" = 0). 
Hence [10·23] Q.E.D. 

The definition, 1 = -0, follows readily from the definition given of 0 in 
this section. The other two definitions of Chapter II are derived as follows: 

14·8 (a+ P) = -(-a x-(3). 

The theorem is equivalent to II,,[(cpx+ fx) = -(-cpx x-fx)J. 
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But [l·S] (<p.r,,+l/;.l'r.) = -(-<p;r"x-l/;.r,.\ 
Hence [10·23] Q.E.D. 

14 ·9 (a c {3) = [( a X 11) = a J. 
The theorem is equimlent to TI,( <p.l' C ,,".r) 

But [l·9] (tpJ.·"cl/;;r,,) is equivalent to f(<p.r" xif;.l'rJ 
Hence [10·23·69] Q.E.D. 

<px]. 

Since the postulates and definitions of the calculus of classes can be 
deduced from the theorems of the calculu5 of propositional functions, it 
follows that the whole sy;:;tem of the logic or das~es can be so deduced. 
The important difference5 between the calculus or cIa::::;e:; so deri..-ed and 
the Boole-Schroder Algebra, as a logic of c:lasse3, are two: The Boole
Schroder Algebra lacks the E-relation, and is thus defecth-e in application, 
since it cannot distinguish the relation of an individual to the class of 
which it is a member from the relation of two das5es one of which is con
tained in the other; (2) The theorems of the Booie-~chri:ider J.Jgebra 
cannot validl~- be giyen the completely s~'mboliC' form, while those of the 
calculus of classes deriwd from the calculus of propo:;itional functions can 
be given this formP 

Y. THE LOGIC OF RELATIOXS 

The logic of relations is deriyed from the theory or propositional func
tions of two or more variables, just as the logic of classes ma~· be based 
upon the theory of propositional functions of one variable. 

A relation, R, is determined in e)..iension when we logically exhibit the 
class of all the couples (x, y) such that ~r has the relation R to y. If <p(:r, y) 

represent "x is parent of y", then x y[",(.r. y)} is the relation "parent of". 
This defines the relation in extension: just as the e).."tension of "red" is 
the class of all those things which have the property of being: red, so the 
extension of the relation "parent or" is the class of all the parent-child 
couples in the universe. A relation is a property that is common to all the 
couples (or triads, etc.) of a certain class; the extension of the relation is, 
thus, the class of couple8 itself. The calculus of relations. like the calculus 
of propositions, and of classes, is a calculus of extensions, 

17 Oftentimes, as in Schroder, Alg. Log., I, the relations of propo:;itions in the algebra 
of classes have been represented in the symbols of the propositional calculus before that 
calculus has been treated otherv:ise than as an interpretation of the Boole:.schroder .41gebra. 
But in such a case, if these symbols are regarded as belonging to the system" the procedure 
is invalid. 
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"\Ye assume, then, the idea of relation: the relation R meaning the class 
of couples (.1:, y) such that .1: has the relation R to y. 

R = .f PCx Ry), S = 10 z(1O S z), etc. 

This notation is simpler and more suggestive than R = x y[ \0 (x, y)], 
S = 12· z[f(w, z)], but it means exactly the same thing. A triadic relation, 
T, will be such that 

T = x y z[T(x, y, z)] 

or T is the class of triads (x, y, z) for which the propositional function 
T(x, y, z) is true. But all relations can be defined as dyadic relations. A 
triadic relation can be interpreted as a relation of a dyad to an individual
that is to say, any function of three variables, T(x, y, z), can be treated as a 
function of two variables, the couple (x, y) and z, or x and the couple (y, z). 
This follows from the considerations presented in concluding discussion of 
the theorems numbered 11·, in section IIJ.18 Similarly, a tetradic relation 
can be treated as a dyadic relation of dyads, and so on. Hence the theory 
of dyadic relations is a perfectly general theory. 

Definitions exactly analogous to those for classes can be given. 

IS ·01 (x, y},. E Z lv[R(z, w)] = R(.1:, Y)n. DeI. 

It is exactly at this point that our theoretical considerations of the equiva
lence of \O(x, Y)n and \O(x, Y.) becomes important. For this allows us to 
treat R(x, y), or (x R y), as a function of one or of two variables, at will; 
and by 11· 07, we can give our definition the alternative form: 

15 ·01 (xm Yn) E ZW (z Rw) = Xm R Yn. Def. 

"The couple (;1:m Yn) belongs to the field, or extension, of the relation deter
mined by (z R 11)" means that Xm R Yn is true. 

15·02 ReS = IIx.lI[(xRy) e(xSy)]. Def. 

This definition is strictly parallel to 13·02, 

(a c (3) = IT", (x E a ex E (3) 

because, by 15·01, (x R y) is (x, y) E R and (x S y) is (x, y) E S. A similar 
remark applies to the remaining definitions. 

15,03 (R = S) = IT". lI[(X Ry) = (xSy)]. De£. 

Rand S are equivalent in extension when, for every x and every y, (x R y) 
and (x S y) are equivalent assertions. 

18 See above, pp. 253 ff. 
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15,04 R xS = .f: Y R y) x (.r S y)]. Del. 

The logical product of two relations, Rand S, is the class of y. 
such that .r has the relation R to y and .1: has the relation S to y. If R is 
" friend of", and S is "colleague of", R x S will be "friend and colleague of ") 

15·05 R+S = ;iY[(xRy)+(.rSy)J. DeI. 

The logical sum of two relations, Rand S, is the class or couples (.1', y) such 
that either .r has the relation R to y or .1: has the relation S to y. R + S 
will be "Either R of or is of". 

15·06 -R = .f: g R Def. 

-R is the relation of .r to y ,vhen x does not ha\-e the relation R to y. 

It is important to note that R x S, R + S, and -R are relations: x(R x S)y, 

.l:(R + S)y, and .1: -R yare significant assertions. 
The "uniwrsal-relation" and the "null-relation" are also definable 

after the analogy to classes. 

15 ·07 1 = .r y [sex, y) C sex, y)J. Del. 

x has the unh-ersal-relation to y in case there is a function, ~-, such that 
s(.r, y) e rex, y), i. e., in case x and y have any relation. 

15·08 0 = -1. Def. 

Of course, 0, 1, + and x have different meanings for relations from their 
meanings for classes or for propositions. But these different meanings 0 

0, +, etc., are strictly analogous. 
As was pointed out in Section III of this chapter, for every theorem 

involving functions of one variable, there is a similar theorem involving 
functions of two variables, due to the fact that a function tp(x, y) may be 
regarded as a function of the single variable (x, y). Consequently, for 
each theorem of the calculus of classes, there is an exactly corresponding 
theorem in the calculus of relations. We ma::, then, cite as illustrations of 
this calculus the analogues of the theorems demonstrated to hold for 
classes; and no proofs will here be necessary. These proofs follow from the 
theorems of Section III, numbered 11·, exactly as the proofs for classes 
are given by the corresponding theorems in Section II, numbered 10·. 

15·1 0 = x y-[t(x, y) etCx, y)J. 

The null-relation is the relation of x to y when it is false that r(x, y) implies 
sex, y), i. e., when x has no relation to y.19 Of course, there is no such 
(x, y) couple which can significantly be called a couple. 

19 As in the case of the 1 and 0 of the class calculus, the 1 and 0 of relations, defined as 
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15·2 II",,:;[(x,y)dj. 

Every couple is a member of the universe of couples, or has the universal 

(dyadic) relation. 

15·3 II." II -[(x, y) EO]. 

1\0 couple has the null-relation. 

15·4 ReI. 

15·5 0 eR. 
Every relation, R, is implied by the null-relation and implies the universal 
relation; or, whatever couple (x, y) has the null-relation has also the 
relation R, and whatever couple has any relation, R, has also the universal
relation. 

15·6 (R e S) = II .. , y[(.1: R y) e (.1: S y)]. 

For relations, ReS is more naturally read" R implies S" than" R is con
tained in S". By 15·6, "R implies S" means "For every x and every y, 

if x has the relation R to y, then x has the relation S to y". Or" R implies 
S" means "Every (x, y) couple related by R are also related by S". 

15·7 (R = S) = II", y[(x R y) = (x S y)]. 

Two relations, Rand S, are equivalent when the couples related by Rare 
also related by S, and vice versa (remembering that = is alwa~'s a reciprocal 
relation e). 

15·8 (R eS) = (-S e-R). 

If the relation R implies the relation S, then when S is absent R also will 
be absent. 

15·9 [(R eS) xeS e T)1 e (R e T). 

The implication of one relation by another is a transitive relation. 

15 ·91 [(R c S) x (xm R Yn)] C (Xm S Yn)' 

If R implies S and a given couple are related by R, then this couple are 
related also by S. 

15·92 [(R = S) xeS = T)1 e(R = T). 

The equivalence of relations is transitive. 
H it be supposed that the postulates concerning the existence of rela

tions are satisfied by exhibiting the functions' which determine them, then, 
we have defined them, are such that propositions involving them are true whenever sig
nificant, and significant whenever the propositional functions determining the functions in 
question have the same range. 
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us in the e;1;-;e of da::;';t'::C, we can deri\-e the pu:,tUlUt6 or 

lates) for a calculu:,> of relations from theorem:; of the 

sitional functions. The demollstrations 

tho~e already giWll for da~:5es, and may be 

16·2 (RxR)=R. 

16·3 (Rx8)= xR). 

16·4 

16·5 

16·61 

16-62 

iRxS)xT=Rx 

R xO = U. 

x T). 

= i C :(R x8) 

x S) = R] x [!,.R x = Rll c 

16·8 (R + S) = -(-R X-S). 

16·9 (R c = [tR xS) = Rj. 

These theorems ma~" abo he taken as confirmati()n ur the fact that 
the Boole-Schroder Algebra holds for relations. In fact. ., calculus 

relations" most frequently m('ans ju::;t that-the Boole-Schroder Algebra 

,,,jth the elements,. a, b, c, etc., int('rpreted HS relations taken in extension. 

So far, the logic or relations is a simple analoguf' of the logic of clas;:;es. 

But there are man~- properties of relations lor 'which classes present no 

analogies, and these peculiar properties are most important. In faet, 

the logistic deyelopment of mathematic::;, worked out by Peirce. Schroder, 

Frege, Penno and his collaborators, and 'Yhitehead and HusseU, has de

pended YeQ" largel~' upon a further stud~' of the logic of relations. '''hile 
we can do no more, within reasonable limit:;, than to suggest the manner 

of this development, it seems best that the most important of the:se proper

ties of relations should be giwn in outline. But even this outline cannot 
be complete, because the theoretical basis provided by our previous dis

cussion is not sufficient for completeness. 

Ever~' relation, R, has a converse, vR, which can be defined as follows: 

17·01 vR = p.i; (.""CRy). Def. 

If x has the relation R to y, then y has the com'erse relation, vR, to x. 
It follows at once from the definition of (:tmy,,) c R that 

Xm R Yn = y" vR .l"m 

because (:1:", R Yn) = (Xm!I,,) E R = (Y"xm) € vR = y" vR .rm' 
The converse of the converse of R is R . 

..,(vR) = R 

H1 
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smce v(uR) = .r y (y vR x) =.i Y (.r R y) = R. (This IS not a proof: 
proof would require that we demonstrate 

ITz , ,;[(.1', y) e v(uR) = (:r, y) e R] 

But it is obyious that such a demonstration may be given. In general, 
we shall not pause ror proofs here, but merely indicate the method or proof.) 

The properties of s~'mmetrical relations follow from the theorems con
cerning com·erses. For any symmetrical relation T, T = uT. The uni
Yersal relation, 1, and the null-relation, 0, are both symmetrical: 

(.r 1 y) = [i-C.r, y) c t(x, y)] = 1 = [t(y, x) c t(y, x)] = (y 1 x) 

(The" 1 " in the middle of this' proof' is obviously that of the calculus of 
propositions. Similarly for 0 in the next.) 

(x 0 y) = -[nr, y) c t(;c, y)] = 0 = -[t(y, x) c t(y, x)] = (y 0 x) 

It is obvious that if two relations are equivalent, their converses will be 
equi\'alent: 

(R = S) = CvR = vS) 

Xot, quite so obvious is the equh'alent of (R c S), in terms of uR and vS. 
"'\Ye mi~ht expect that (R cS) would give ( ... S cvR). Instead we have 

(R c S) = (vR c ... S) 

for (R c S) = ITz , y[(x R y) C (.l: S y)] = IT", y[(y vR ,1:) c (y vS x)] 

= (vRc ... S) 

'" Parent of' implies 'ancestor or '" is equivalent to '" Child of' implies 
'descendent of'-", 

The conYerses of compound relations is as follows: 

vCR xS) = ... R xuS 

for x vCR x S)y = y(R x S)x = (y R x) x (y S x) = (x vR y) x (x ... S y) 

= x( ... R xvS)y 

If x is employer and exploiter of y, the relation of y to a~ is "employee of 
and exploited by". Similarly 

v(R+S) = vR+ ... S 

If x is either emplo~'er or benefactor of y, the relation of y to x is "either 
employee of or benefitted by". 

Other important properties of relations concern "relative sums" and 
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"relative products". These must be distinguished from the 

sum and product of relations, symbolized by + and x. The nOll-relative 
product of "friend of" and "colleague of" is •. friend and colleague of": 
their relatiM product is "friend of a colleague of ". Their non-relative 
sum is "either friend of or colleague of": their felalicf' sum is i. friend of 
every non-colleague of". "\Ye shall denote the relath'e produet of Rand S 
by R! S, their relative sum by R t S. 

17·02 RIS = xz!~y[(.rRy) x(ySz)Jl. De£. 

RI S is the relation of the couple (.r, z) ·when for some y, .r has the relation 
R to y and y has the relation S to z. :1: is friend of a colleague of z when, 
for some y, x is friend of y and y is colleague of z. 

17·03 R t S = x z(IIy[(.r R y) + (y S z)]}. Def. 

R t S is the relation of or to z when, for eyery .II, either :r has the relation 
R to y or y has the relation S to z. ,1' is friend of all non-colleagues or .z 

when, for every y, either ;r is friend of y or y is colleague of z. 
It is noteworthy that neither relatiye products nor relatiw sums are 

commutative. "Friend of a colleague of" is not "colleague of a friend of". 
Nor is "friend of all non-colleagues of" the same as "colleague of all nOD
friends of". But both relations are associatiye. 

RI(S\T) = (R!8)[T 

for 2:.r{ (10 R x) x [xeS T)z]} = 2:x { (10 R ,1.') x :::;y[(,r S y) x (y T z)]} 
= :3!1~xl (10 R x) x [(x S y) x (y T z)]} 
= :3y~,,{[(u' R x) x (:c S y)] x (y T z) I 
= :3l1{~..[(lcR;1.')x(xSz)]x(y Tz)} 
= ~y{(w(R S)y] x (y T z) I 

"Friend of a (colleague of a neighbor of) " is "(friend of a colleague) of a 

neighbor of". 
Similarly, R t (S t T) = (R t S) t T 

"Friend of all (non-colleagues of all non-neighbors of)" is "(friend of all 

non-colleagues) of all non-neighbors of". 
De Morgan's Theorem holds for the negation of relatiye sums and prod-

ucts. 
-(RIS) = -R t-S 

for -{:3~[(x R y) x (y S z)]} = IIy -[(x Ry) x (y S z)] 
. :=: IIy[-(xRy)+-CySz)] 

= IIy[(x -R y) + (y -S z)J 
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The negatiye of "friend of a colleague of" is "non-friend of all colleagues 

(non-non-colleagues) of ". 
SimiIar1~", -(R t S) = -RI-S 

The negath"e of .. friend of all non-colleagues of" is "non-friend of a non

colleague of". 
Conyerses of relatiye sums and products are as follows: 

u(RiS) = uSI",R 

for x v(R: S)z = z(R I S)x = :S!l[(z R y) x (y S x)] 
= 1:!I[(y S x) x (z R y)] 
= 1:1/[(x ",S y) x (y ",R z)] 
= x(vS I ",R)z 

If x is employer of a benefactor of z, then the relation of z to x is "bene
fitted by an employee of". 
Similarly, vCR t S) = vS t ",R 

If x is hater of all non-helpers of z, the relation of z to x is "helped by all 
who are not hated by". 

The relation of relative product is distributive with reference to non
relatiye addition. 

R! (S + T) = (R S) + (R T) 

for x[R i (S + T)]z = };II{ (x R y) x [yeS + T)z]} 

= ::2!1{ (x R y) x [(y S z) + (y T z)J) 
= 1:1I {[(x R y) x (y S z)] + [(x R y) x (y T z)]} 

= [:r(R! S)z] + [x(R I T)z] 

Similarly, (R + S) ! T = (R IT) + (S I T) 

"Either friend or colleague of a teacher of" is the same as "either friend 
of a teacher of or colleague of a teacher of". 

A somewhat curious formula is the following: 

R i (S x T) c (R I S) x (R I T) 

It holds since x[R i (S x 1)]z = ::211 { (x R y) x [yeS x 1)z]} 

= ::3l/{ (x R y) x [(y S z) x (y T z)]} 

and since a x (b xc) = (a xb) x (a xc), 

= ::2y {(x R y) x (y S z)] x [(x R y) x (y T z)]} 
c ::211[(x Ry) x (y S z)] x::2l/[(x R'y) x (y T z)] 

And this last expression is [x(RiS)z] x[x(RI T)z], 
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If .r is student of a friend and colleague of :::, then ,17 is student 11 nml 
student of a colleague of z. The conYerse implication does not hold, be
cause" student of a friend and colleague 0' requires that the friend and the 
colleague be identical, while "student of a friend and student of a col
league" does not. (~ote the last step in the' proof " where :::~ is repeated, 
and observe that this step carries exact1~- that significance.) 

Similarly, (R x S) : T c (R! T) )( (S T) 

The corresponding formulae ydth t instead of . are more complicate,} 
and seldom useful; they are omitted. 

The relatiye sum is of no particular importance, but the relatiye product 
is a very useful concept. In terms of this idea, "powers ,. of a relation are 
definable: 

R2 = R I R, etc. 

A transitive relation, S, is distinguished by the fact that 82 c 8, and hence 
Sn c S. The predecessors of predecessors of predecessors ... of .l: are 
predecessors of x. This conception of the powers of a relation plays a 
prominent part in the analysis of serial order, and of the fundamental proper
ties of the number series. By use of this and certain other concepts, the 
method of "mathematical induction" can be demonstrated to be com
pletely deductive.20 

In the work of De Morgan and Peirce, H relative terms" were not given 
separate treatment. The letters by which relations were symbolized were 
also interpreted as relative terms by a sort of systematic ambiguity. .\ny 
relation symbol also stood for the class of entities which haxe that relation 
to something. But in the logistic development of mathematics, tiince that 
time, notably in Principia l11athematica,2! relath-e terms are giwn the 
separate treatment which they really require. The" domain ,. of a giYen 
relation, R-that is, the class of entities which have the relation R to some
thing or other-may be symbolized by D'R, which can be defined as follows: 

17·04 D'R=x[~uCxRy)l. Del. 

The domain of R is the class of x's determined by the function" For some y, 

x has the relation R to y". If R be "em plo;yer of ", D' R will be the class 

of employers. 
The "converse domain" of R-that is, the class or things to each of 

20 See Principia, I, Bk. II, Sect. E. 
21 See I, *33. The notation we use for domains and converse domains is that of Prin

cipia. 
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which something or other lzas the relation R-may be symbolized by G'R 

and similarly defined: 

17'05 (l'R = Y[~.t:(.l" R V)]. Def. 
The conwrse domain of R is the class of V's determined by the function 
"For some x, x has the relation R to y". If R be "employer of", G'R 
·will be the class of employees. 

The domain and converse domain of a relation, R, together constitute 
the ., field" of R, C'R. 

17·06 C'R = xl~1I[(xRy)+(yRl~)ll. 

The field of R will be the class of all terms which stand in either place in 
the relation. If R be "emplo;yer of", C'R is the class of all those who are 
.either employers or emplo;yees. 

The elementary properties of such" relatiye terms" are all obvious: 

Xn E D'R = ~y(.rn R y) 

Un E G'R = ~.t:(.r R Yn) 
Xn E C'R = ~y[(Xn R y) + (y R Xn)] 

C'R = D'R + G'R 

Howe\"er, for the logistic development of mathematics, these properties 
are of the highest importance. \Ye quote from Principia Matlzernatica: 22 

"Let us ... suppose that R is the sort of relation that generates a series, 
say the relation of less to greater among integers. Then D'R = all integers 
that are less than some other integer = all integers, a'R = all integers 
that are greater than some other integer = all integers except O. In this 
case, C'R = all integers that are either greater or less than some other 
integer = all integers. . .. Thus when R generates a series, C'R becomes 
important .... " 

\Ye have now surveyed the most fundamental and important characters 
of the logic of relations, and we could not well proceed further without 
elaboration of a kind which is here inadmissible. But the reader is warned 
that we have no more than scratched the surface of this important topic. 
About 1890, Schroder could write "vVhat a pity! To have a highly 
developed instrument and nothing to do with it". And he proceeded to 
make a beginning in the bettering of this situation by applying the logic 
of relatives to the logistic development of certain portions of Dedekind's 
theor~; of number. Since that time, the significance of symbolic logic has 
been completely demonstrated in the development of Peano's Forrnulaire 

JlI, p. 261. 
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and of Principia Mathematica. And the very head and front of tbi" 
ment is a theory of relations far more e:;.i:ended and complete allY 

previously given. \Ye can here adapt the prophetic worrh which Leibniz 
puts.into the mouth of Philalethes: "I begin to get a ,-cry different opinion 
of logic from that which I formerly had. I had regarded it as a scholar's 
diYersion, but I n01Y see that, in the Ivay ;you understand it, it is a kind of 
universal mathematics." 

VI. THE LOGIC OF Principia JIatliematica 

\Ye have now presented the extensions of the Boole-Schri5der Algebra--

the Two-Valued Algebra, propositional functions and the propositions 
derived from them, and the application to these of the laws of the Two
Valued Algebra, giving the calculus of propositional functions. Beyond 
this, we have shown in outline how it is possible, beginning with the Two
Valued Algebra as a calculus of propositions, to deriw the logic of clascse:; 
in a form some,,-hat more satisfactory than the Boole-Schr(jder Algebra, 
and the logic of relations and relative terms. In so doing, we haw presented 
as much of that de\'elopment which begins with Boole and passes through 
the work of Peirce to Schroder as is likel~' to be permanently significant. 
But, our purpose here being expository rather than historical, we haw not 
followed the exact forms which that development took Instead, we have 
considerably modified it in the light of what s~'1Ilbolic logicians have learned 
since the publication of the work of Peirce and Schroder. 

Those who are interested to note in detail our dh"ergence from the 
historical development will be able to do so b~- reference to Sections YII 
and VIn of Chapter 1. But it seems best here to point out briefly what 
these alterations are that we have made. In the first place, we have 
interpreted ~so;r, IIso.r, ~"if;(x, y), etc., explicitly as sums or products of 
propositions of the form SOXn, "if; (:rmYr.) , etc. Peirce and Schroder avoided 
this, in con'sideration of the serious theoretical difficulties. But while 
they did not treat II SOX as an actual product, ~ c;:x as an actual sum, still 
the laws which they gi\"e for propositions of this type are those which result 
from such a treatment. There is no slightest doubt that the method by 
which Peirce discoyered and formulated these laws is substantially the one 

, which we have exhibited. And this explicit use of IIC;::I: as the symbol for a 
product, ~<px as the symbol of a sum, makes demonstration possible where 
otherwise a large number of assumptions must be made and, for further 
principles, a much more difficult and less obyious style of proof resorted to. 
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In this part of their work, Peirce and Schroder can hardly be said to have 
formulated the assumptions or giyen the proofs. 

In the second place, the Boole-Schroder Algebra-the general outline 
of which is already present in Peirce's work-probably seemed to Peirce 
and Schroder an adequate calculus of classes (though there are indications 
in the paper of 1880 that Peirce felt its defects), ,\Yith this system before 
them, they neglected the possibility of a better procedure, by beginning 
with the calculus of propositions and deriving the logic of classes from the 
laws which govern propositional functions. A.nd although the principles 
which they formulate for propositional functions are as applicable to func
tions of one as of two variables, and are given for one as well as for two, 
their interest was almost entirely in functions of two and the calculus of 
reIatiws which may be derh-ed from such functions. The logic of classes 
which we haye outlined is, then, something which the~; laid the foundation 
for, but did not de\-elop. 

The main purposes of our e:X'Position thus far in the chapter have been 
two: first, to make clear the relation of this earlier treatment of symbolic 
logic with the later and better treatment to be discussed in this section; 
and second, to present the logic of propositional functions and their deri\-a
tives in a form somewhat simpler and more easily intelligible than it might 
otherwise be. The theoretically sounder and more adequate logic of Prin
cipia J1 athematica is gi\-en a form which-so far as propositional functions 
and their deri\'atiws is concerned-seems to us to obscure, by its notation, 
the ob,-iolls and helpful mathematical analogies, and requires a st;yle of 
proof which is much less obvious. ,\Yith regard to this second purpose, 'we 
disclaim any idea that the development 'we haye gh'en is theoretically 
adequate; its chief yalne should be that of an introductory study, prepara
tory to the more complex and difficult treatment 'which ob\'iates the the
oretical shortcomings. 

Incidentally, the exposition which has been given will sene to indicate 
how much we are indebted, for the recent de\-elopment of our subject, to 
the earlier work of Peirce and Schroder. 

The Peirce-Schroder symbolic logic is closeJy related to the logic of 
Peano's Forrnulaire de MatMmat£ques and of Principia Matlzematica. This 
connection is easily overlooked by the student, with the result that the sub
ject of his first studies-the Boole-Schroder Algebra and its applications-is 
likely to seem quite unrelated to the topic which later interests him-the 
logistic development of mathematics. Both the connections of these two 
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and their differences are important. \'1e shall attempt to out hoth. 
And because, for one reason, clearness requires that we stick to a 
illustration, our comparison will be between the content of 
sections of this chapter and the mathematical logic of Book 1. 
JI athematica. 23 

The Two-Valued Algebra is a calculus produced by to and re-
interpreting an algebra intended primarily to deal with the relations of 
classes. And it has seyeral defects 'which reflect this origin. In the first 
place, the same logical relation is expressed, in this s~'stem, in two different 
ways. \Ye have, for example, the proposition "If pc q and fJ cr. then 
1) c r", where p, q, and r are propositions. But" if ... , then .... ' 
is supposed to be the same relation which is expressed by c in ]I C Ij, If C r, 
and per. _-\.Iso," and" in "p c q and q c r" is the relation which is other
wise expressed by x-and so on, for the other logical relations. The 
system involves the use of "if ... , then ... ", " ... and ... ", 
"either ... or ... ", " ... is equivalent to ... "', and ". , . i:; not 
equivalent to ... ", just as any mathematical s~'stem may; yet these are 
exactly the relations c, x, +, =, and =l= whose properties are supposed to 
be investigated in the system. Thus the system. iah'Gs the lau's of the logical 
relat£ons of propositions for granted in order to prme them. Xor is this 
paradox removed by the fact that we can demonstrate the interchange
ability of "if ... , then ... " and c, of " ... and .. ." and x. etc. 
For the very demonstration of this interchangeability takes for granted 
the logic of propositions; and furthermore, in the s~'stem as developed, 
it is impossible in most cases to giye a law the completely s~'mbolic form 
until it has first been proved in the form which inyolws the non-s:"mholic 
expression of relations. So that there is no way in which the circularity 
in the demonstration of the laws of propositions c~n be remoyed in this 
system. 

Another defect of the Two-Yalued Algebra is the redundance of forms. 
The proposition p or "p is true" is symbolized by p, by p = 1, by p =l= 0, 

23 Logically, as well as historically, the method of Peano's Formulairc is a sort of 
intermediary between the Peirce-Schriider mode of procedure and Principia. 'lne general 
method of analysis and much of the notation follows that of the Formula ire. But the 
Formulaire is somewhat less concerned with the extreme 'of logical rigor, and somewhat 
more concerned with the detail of the various branches of mathematics. Perhaps for t·his 
reason, it lacks that detailed examination and analysis of fundamentals which is the ill&
tinguishing characteristic of Principia. For example, the F{)rmulaire retains the ambiguity 
of the relation ::l (in our notation, c:): p::l q may be either" t,he class p is contained in 
the class q", or "the proposition p implies the proposition q". In consequence, the Formu
laire contains no specific theory of propositions. 



A Sumy of Symbolic Logic 

etc., the negation of p or "p is false" by -p, p = 0, -p = 1, p =l= 1, etc. 
These various forms may, it is true, be reduced in number; p and -p may 
be made to do sen'ice for all their \·arious equivalents. But these equivalents 
cannot be banished, for -in the proofs it is necessary to make use of the fact 
that p = (p = 1) = (p =l= 0), -p = (p = 0) = (-p = 1), etc., in order to 
de~onstrate the theorems. Hence this redundance is not altogether 

a voida ble. 
Both these defects are remoyed by the procedure adopted for the 

calculus of propositions in Principia Mathematica,24 Here p = 1, P = 0, 
etc., are not used; instead we have simply p and its negative, symbolized 
by - p. And, impossible as it may seem, the logic of propositions which 
eYeQ' mathematical system has always taken for granted is not presumed. 
The primitive ideas are: (1) elementary propositions, (2) elementary 
propositional functions, (3) assertion, (4) assertion of a propositional func
tion, (5) negation, (6) disjunction, or the logical sum; and finally, the 
idea of "equivalent by definition ", which does not belong in the system 
but is merel:,' a notation to indicate that one symbol or complex of symbols 
may be replaced b~' another. An elementary proposition is one which 
does not invoh'e any variables, and an elementary propositional function 
is such as "not-p" where p is an undetermined elementary proposition. 
The idea of assertion is just what would be supposed-a proposition may 
be asserted or merely considered. The sign I- prefaces all propositions 
which are asserted. An asserted propositional function is such as " A is A" 
where A is undetermined. The disjunction of p and q is symbolized by 
p v q, instead of p + q. p v q means" At least one of the two propositions, 
p and q, is true". 

The postulates and definitions are as follows: 

*1·01 pjq. = .-pvq. Df. 

"p (materiall:,') implies q" is the defined equivalent of "At least one of 
the two, 'p is false' and 'q is true', is a true proposition". (The explana
tion of propositions here is ours.) p j q is the same relation which we 
haye symbolized by p c q, not its converse. 

(The propositions quoted will be given the number which they have in 
Principia. The asterisk \vhich precedes the number will distinguish 
them from our propositions in earlier chapters or earlier sections of this 
chapter.) 

The logical product of p and q is symbolized by p q, or p • q. 
14 See Bk. I, Sect. A. 
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*3·01 p.q. = .-(-pv-q). Df. 

"p is true and q is true" is the defined equiyulent of .. It is that at 
least one of the two, p and q, is false". Thi::; is, of cour:;e, a form or De 
Morgan's Theorem-in our notation, (p q) = -(-p + -Ii). 

The (material) equivalence of p and q is symbolized by p == q or p • == • fj. 
*4·01 P == q. = • p => q • q => p. Df. 

"p is (materially) equivalent to q" is the defined equivalent of "p (ma
terially) implies q and q (materially) implies p"'. In our notation, this 
would be (p = q) = (pcq)(qcp). ::\ote that .. , == ... and ... = ... 
Df are different relations in Principia. 

The dots in these definitions senoe as punctuation in place of parentheses 
and brackets. Two dots, :, takes precedence owr one, as a bracket oyer a 
parenthesis, three over two, etc. In *4·01 we have ouly one dot after =, 
because the dot between p::> q and q => P indicates a product: a dot, or two 
dots, indicating a product is always inferior to a stop indicated b~' the 
same number of dots but not indicating a product. 

The postulates of the system in question are as follows: 

*1·1 Anything implied by a true elementary proposition is true. Pp. 
(" Ppo" stands for" Primitive proposition ".) 

*1·11 V\'hen I{JX can be asserted, where a: is a real yariable, and 'f.r':J V"X 
can be asserted, where x is a real yariable, then 1/1.1' can be asserted, where .r 

is a real \rariable. Pp. 

A "re~l variable" is such as p in -po 

* 1 ·2 1-: p v p • ::> • p. Pp. 

In our notation, (p + p) c p. 

*1· 3 I-: q • ':J. P V q. Pp. 

In our notation, q c (p + q). 

* 1· 4 I-: p v q • => • q v p. Pp. 

In our notation, (p + q) c (q + p). 

*1·5 I-:pv(qvr).=>.qv(pvr). Pp. 

In our notation, [p + (q + r)] c [q + (p + r)}. 

*1·6 H.q=>r.=>:pvq.::>.pvr. Pp. 

In our notation, (q c r) c [(p + q) c (p + r)J. 

Note that the sign of assertion in each of the above is fonowed by a 
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sufficient number of dots to indicate that the whole of what follows IS 

a:>serted . 

.,.,1· '7 If p is an elementary proposition, -p is an elementary proposition. 

Pp. 

*1· 71 If p and q are elementary propositions, p v Ij is an elementary 

proposition. Pp. 

* 1· 7:2 If <p p and !f;p are elementary propositional functions which take 
elementary propositions as arguments, '!IP v!f;p is an elementary proposi-
tional function. Pp. 

This completes the list of assumptions. The last three have to do 
directly with the method by "which the s;ystem is deyeloped. By *1· 7, 
any proposition which is assumed or pl'O"';ed for p may also be asserted to 
hold for "'p, that is to say, -p may be substituted for p or q or 1', etc., in 
any proposition of the system. By *1· iI, p v q may be substituted for p 
or q or r, etc. And b~' * 1· 7::', if any two complexes of the foregoing symbols 
which make sense as "statements" can be treated in a certain ivay in the 
system, their disjunction can be similarly treated. By the use of all three 
of these, any combination such as p v q, p. q, p:::> q, p == q, p:::> q • q:::> p, 

-p. v. p v q. -p v -q, etc., etc., may be substituted for p or q or r in any 
assumed proposition or any theorem. Such substitution, for which no 
postulates would ordinarily be stated, is one of the fundamental operations 
by which the system is de'\'eloped. 

Another kind of substitution 'which is fundamental is the substitution 
for any complex of symbols of its defined equivalent, \vhere such exists. 
This operation is coyered by the meaning assigned to " ... = .. , Df". 

Only one other operation is used in the development of this calculus 
of elementar;v propositions-the operation for which *1·1 and *1·11 are 
assumed. If by such substitutions as haye just been explained there 
results a complex of s~'mbols in which the main, or asserted, relation is :::>, 

and if that part of the expression which precedes this sign is identical with a 
postulate or pre\'ious theorem, then that part or the expression which 
follows this sign may be asserted as a lemma or new theOl·em. In other 
words, a main, or asserted, sign ::> has, by *1·1 and *1·11, the significant 
property of "If . . . , then . . .". This property is explicitly assumed 
in the postulates. The main thing to be noted about this operation of 
inference is that it is not so much a piece of reasoning as a mechanical, or 
strictly mathematical, operation for which a rule has been given. No 
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"mental" operation is inyol\"ed except that required to a preYI0US 
propositioI). followed by the main implication sign, and to set orr what 
follows that sign as a ne,," assertion. The use of this operation does not, 

then, mean that the processes and principles of ordinary logic an' tacitly 
presupposed as warrant for the operations which giw proof. 

'What is the significance of this assumption of the obyious in * 1·1, .;..:·1·11, 

* 1· 7, *1· 71, and ,*,1· i:2? Precisely this: these po:;tulates explicitly 
assume so much of the logical operations a:> is necessar~' to dewlop the 
system, and beyond this the logic of propositions simply i::; not assumed. 
To illustrate this fact, it will be well to con;:;ider carefull~' an exemplary 
proof or two. 

Hp:;,-p.:;,.~p 

Dem. [Taut -: ] H -p v -17 .:;,. -p (1) 

[(1).(*1·01)] Hp:;,-p.:;,.-p 

"Taut" is the abbreyiation for the Principle of Tautolog:-', *1 <~ above. 
-pip indicates that -p is substituted in this postulate for p, giving 
This operation is yalid by *1·7. Then by the definition *1,01, above, 
p:;, -p is substituted for its defined equi,'alel1t, -p v -p, and the proof is 

complete. 

*2·05 H • q:;, r • :;, : p:;, q .:;, • p:;, r 

Dem. [sum -:] H • q:;, r .:;,: -p v q .:;,. -p v r (1) 

[(1).(*1·01)] H.q:;,r.:;,:p:;,q.:;,.p:;,r 

Here "Sum" refers to *1·6, aboye. .-\.nd (1) is what *1·0 becomes when 
-p is substituted for p. Then, by *1·01, p:;, q and p:;, r are substituted 
for their defined equivalents, -p v q and -p v r, in (1), and the resulting 

expression is the theorem to be proved. 
The next proof illustrates the use of *1·1 and *1·11. 

*2·06 H . p:;, q • :;, : q:;, r .:;, • p:;, r 

Dem. [Comm q:;, r, .E:;' '?!.-p:;, r] 
p, q, r 

H : q:;, r • :;, : p:;, q • :;, • p:;, r : • :;,: • p:;, q .:;, : q:;, r .:;, • p:;, r (1) 

(*2·05J H.q:;,r.:;,:p:;,q.:;,.p:;,r (2) 

[(1) • (2) • * 1·11] H. p:;, q .:;,: q:;, r .:;,. p:;, r 
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"Comm" is *2·04, preyiously prowd, which is p • ::) • q::) r : ::) : q::) • p::) r. 

\Yhen, in this theorem, q::) r is substituted for p, p::) q for q, and 1)::) r for r, 
it becomes the long expression (1). Such substitutions are valid by *1·7, 

.71, and the definition *1·01: if p is a proposition, -p is a proposition; 
if -p and q are propositions, -p v q is a proposition; and p::) q is the defined 
equivalent of -p v q. Thus p::) q can be substituted for p. If we replace 

the dot::; by parentheses, etc., (1) becomes 

l- r (q::) r) J [(p ::) q) ::) (p J r)]} ::) { (p ::) q) ::) [(q ::) r) ::) (p::) r) II 

But, as (2) states, what here precedes the main implication sign is identical 
with a previous theorem, *:2·05. Hence, by * 1·11, what follows this 
main implication sign-the theorem to be proved-can be asserted. 

Further proofs would, naturally, be more complicated, but they involve 
no principle not exemplified in the aboye. These three operations-sub
stitutions according to *1· 7, *1· 71, and *1· 7:2; substitution of defined 
equh'alents; and "inference" according to *1·1 and *1· l1-are the only 
processes which ever enter into any demonstration in the logic of Principia. 
The result is that this dewlopment a\'oids the paradox of taking the logic 
of propositions for granted in order to prove it. Nothing of the sort is 
assumed except these explicitly stated postulates whose use we have ob
served. And it results from this mode of development that the system is 
completely s;rmbolic, except for a few postulates, * 1·1, * 1· 7, etc., involving 
no further use of "if ... , then ... ", "either ... or ... ", " ... and 
... ", etc. 

,Ve haye now seen that the calculus of propositions in Principia j}fathe
matica a,'oids both the defects of the Two-Valued Algebra. The further 
comparison of the two systems can be made in a sentence: Except for the 
absence, in the logic of Principia, of the redundance of forms, p, p = 1, 
p =!= 0, etc., etc., and the absence of the entities ° and 1, the two systems 
are identical. Any theorem of this part of Principia can be translated 
into a valid theorem of the Two-Valued Algebra, and any theorem of the 
Two-Yalued Algebra not inyoh'ing 0 and 1 otherwise than as {= OJ or 
{ = I} can be translated into a yalid theorem of Principia. In fact, the 
qualification is not particularly significant, because any use of 0 and 1 in 
the Two-Yalued _-\lgebra reduces to their use as { = 0 j and {= I}. For 0 
as a term or a sum, and 1 as a factor, immediately disappear, while the 
presence of 0 as a factor and the presence of 1 in a sum can always be other
wise expressed. But p = 0 is -p, and p = 1 is p. Hence the two systems 
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:. ", 
are simply identical so far as the logical significanee of the propositions 
they contain is concerned.25 

The comparison of our treatment of propositional functions with the 
same topic in Principia is not quite so sil11ple.211 

In the first place, there is, in Principia, the "theory of types;' which 
concerns the range of significance of functions. But we shall omit con
sideration of this. Then, there are the differences of notation. 'Yhere 
we write II<px, or IIz<px, Principia has (.1') • .p.l'; and where we write ;:~.1', 

or ~xcpx, Principia has (ax) • <;;r. A further and more important difference 
may be made clear by citing the assumptions of Principia. 

*9·01 ",,((.t). <pxl. =. (a.l~) .-cp.l'. Df. 

*9·02 -((a:l~). cp.r). =. (.r) .-<;.1'. Df. 

*9·03 (x). lOX. vp: = • (.r). ip,r v p. Df. 

25 This may be proved by noting that, properly translated, the postulates oi each system 
are contained amongst the propositions of the other. Of the postulates in Principia, 
rendered in our notation: 

* 1·01 is (p c q) = (-p + q), which is contained in our theorem 9·3. 
* 1· 2 is (p + p) c p, which is a consequence of our theorems 2·2 and .5·33. 
*1·3 is, p c (p + q), which is our theorem 5 ·21. 

*1·4 is (p + q) C (q + p), which follows from our theorem 4·3, by 2·2. 

*1·5 is, p + (q +1') cq + (p + r), which is a consequence of our theorems 4·3 and 4·4, 
by 2·2. 

*1·6 is (q c r) c [(p + q) c (p +1')], which is a consequence of our theorem 5 ·31, by 2 ·2. 
The remaining (non-symbolic) postulates are tacitly assumed in our system. 

Of our postulates, 1·1-1·9 in Chap. II and 9·01 in Chap. IV: 

1·1 is a consequence of *1·7 and *1·71 in Principia. 

1· 2 is *4·24 in Principia. 

1·3 is *4·3 in Principia. 

1·4 is *2·3 in Principia. 
1·5 is equivalent to "If x = 0, then a x = 0", hence to -x c -(a x), which is a consequence 
of *3·27 in Principia, by *2·16. 
1· 61, in the form -(x -a) c (x a = x), is a consequence of *4·71 and *4 -61 in Principia, 
by *4·01 and *3·26. 
1·62, in the form [(ya = y)(y -a = y)] c -y, is a consequence of *4·71, *5·16, and 
*2·21 in Principia. 
1·7 is equivalent to [(x = l)(y = 0») c (x = -y), hence to (x -y) c; (x = -y), which is an 
immediate consequence of *5·1 in Principia. 

1·8 is *4·57 in Principia. 

1·9 is *4·71 in Principia. 
9·01 is equivalent to (q = 1) c [p = (p = q)], hence to q c; [p = (p = q)], which is an 
immediate consequence of *5·501 in Principia. 

26 See Principia, I. 15-21. 
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In thi::; last. note the difference in the scope of the "quantifier" (;1;) on the 

two :;ilies. If the dots be replaced by parentheses, *9·03 'will be 

{[ \.r) • 'P.l:] v P I = {(;l:) • [.px v p 11 

_\ similar difference in the scope of C.l:) or (a.l') all the two sides characterizes 

each the further definitiolls.27 

·04 p. V. (.l') • 'P.r : = • (;r) • p V <p.r. Df. 

-iJ.,9·0.3 (a.l'). 'P.l" • v. p: = • (a,l') • <p.l' V p. Df. 

¥9·0ll p. V. (3:.l') • ipX: = • (a.-e) • ZJ v <p,r. Df. 

~9· 07 • <p.r. v. (3:y) • y;y: = : (;1') : (ay) • ip.?; V Y;y. Dr. 

*9·0S (3'y). Y;y. V. (.l'). ip:C: = : (x): C3:y). y;y v cp.T. Df. 

Besides these definitions, there are four postulates (in addition to those 

which underlie the calculus of elementary propositions). 

·1 H tpX • ;). (3: :::) • cpz. Pp. 

*9·11 f-: <p."!: v <py .;). (3: z) • .pz. Pp. 

·12 'Yhat is impliEtd by a true premiss is true. Pp. 

*9 ·13 In an;-' assertion containing a real yariable, this real yariable may 
be turned into an apparent variable for which all possible values are asserted 

to satisfy the function in question. Pp. 

By our method, everyone of these assumptions, except *9 ·12, is a 
proved proposition. In our notation, 

*9·01 is·-IT.p,r = ~ -.px, which is our theorem 10·1, with-cpx substituted 
for <p.l'. 

*9·02 is -~ !p,r = IT -!p.r, which is our theorem 10 ·12, with -.px substi
tuted for !p.r. 

*9·0;3 is nip'-c + P = ITz(<px + P), which is our theorem 10·32. 

*9·04 is P + IT<p.l' = IT,,(P + cp.r), \yhich is 10·33. 

*9·05 is ~<px + P = ~z(cpx + P), which is 10·3. 

*9·06 is P+ ~<p.r = ~I(P+ <P,);), which is 10·31. 

*9·07 is IT ",X + '1,y;y = ITz};y( <pX + y;y), which is contained in 12·5. 

*9·08 is ~",y+n<pJ.· = IT ,,;::;y(y;y + ipx), which is also contained in 12·5. 

The postulates require explanation. The authors of Principia use 
cpy, <pZ, etc., to represent values of the function <p.r. In other words, where 

we have written <pX" they simply change the letter. This is a valid con-
27 Ibid., r, 135-38. 
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yention (though it often renders proofs confusing) hecause the range of .,:.1: 

is determined by <p, not by x, and x is-convention;:; 
z in <pZ, where 'we should write <p.l'n, is called a "real yariable", J: in i. <;.l' 

and (ax) • cpa:, an "apparent variable". '''lith this explanation, it is 
that: 

*9·1 is <p.t" C ~ <pX, which is 10·21-

*9·11 is <p.t·m + <;1':1.'" C ~ <px, which is an immediate consequence of 10·21, 
b;,>- 5·33. 

*9·13 is ;'If 'whatever value of x, in <p;I:, x" may be, <;I'.1"n, then IT <p.t, " and 
this implication is contained in the equivalence stated by 10·23. 

These principles which are assumed in Principia J1athematica are suf
ficient to gh-e all further propositions concerning functions of one yariable, 
without assuming (;1') • <p:r to be the product of <p.t:, <p.r;), etc. (or <py, if'Z, 

etc.), (ax) • <pX to be the sum of <;.tl, cp.r~, etc. These are simply assumed 
as new primitiye ideas, (x) • <pX meaning" if X for all yalues of x", (a.r) • <pX 

meaning" <pX for some values of x". This procedure obviates all questions 
about the number of values of x in <px-which troubled us-and secures 
th~ universality of theorems im;olving propositional functions without an~' 
discussion or convention coyering the cases in which the values of the yari
able are infinite in number. The proofs in Principia reflect this difference 
of method. They are, in general, what ours might have been if we had 
based all further proofs directly upon 10·23 and the propositions con
necting ~ <;I'X + P with ::::x( <p.l' + P), etc., not making any use, after 10·23, 
of the properties of ITcp;t as a product, or of ~<pX as a sum. 

The theory of functions of two variables, in Principia Jlaihematica, 
requires two further assumptions: 

(x, y) • 'P(x, y) • = : (:r) : (y) • <pC.f, y). Df. 

(ax, y) • 'P(x, y) • = : (ax) : cay) • <,O(.r, y). 

These are identically our assumptions: 

11·06 ITx , II<P(X, y) = TI"TIy<,O(x, y), and 

11·05 :::;'" 1J<'o(x, y) = :::;"~IJ<P(;<::' y). 

Df. 

The difference between the treatment of propositional functions which 
we haye given and the treatment in Principia is not necessarily correlated 
with the difference between our treatment or propo8itiotM and theirs, The 
method by which we ha\'e developed the theory of propositional functions 

20 
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might exactly as well have been based upon the calculus of elementary 
propositions in Principia as upon the Two-Yalued Algebra. A few minor 
alterations v.;ould be sufficient for this change. The different procedure 
for propositional functions, in the two cases, is a difference to be adjudged 
independently, without necessary reference to the defects of the Two
Yalued Algebra which have been pointed out. 

Beyond the important differences which haye been mentioned, there 
are minor and tri"dal divergences between the two systems, due to the 
different use of notation. :L\eglecting these, we may say that the two 
methods give the same results, with the following exceptions: 

1. There are certain complexities in Principia due to the theory of 

types. 
2. In Principia the conditions of significance are explicitly investigated. 
;3. Principia contains a theory of "descriptions", account of which is 

here omitted. 
But none of these exceptions is a necessary difference. They are due to 
the more elementary character of our presentation of the subject. V{e 
may, then, say loosely that the two methods give identical results. 

The calculus of classes and of relations which we have outlined in the 
preceding sections bear a similar relation to the logic of classes and of 
relations in Principia; that is to say, there is much more detail and com
plexity of theory in Principia, but so far as our exposition goes, the two are 
roughly the same. And here there is no important difference of method. 

It should now be clear how the logic of Principia is related to the logic 
we ha ve presented, folklVing in the main the methods of Peirce and Schroder. 
There is much difference of method, and, especially in the case of the cal
culus of propositions, this difference is in favor of Principia. And in 
Principia there is much more of theoretical rigor and consequent complexity: 
also there are important extensions, especially in the theory of "descrip
tions" and the logic of relatives. But so far as the logic which we have 
expounded goes, the two methods give roughly identical results. When 
we remember the date of the work of Peirce and Schroder, it becomes clear 
what is our debt to them for the better developments which have Slllce 
been made. 



CHAPTER Y 

THE SYSTE~I OF STRICT DIPLICATIOX 1 

The systems discussed in the last chapter were all based upon material 
implication, 1) c q meaning exactl~· " The statement, 'p is true and IJ. false,' 
is a false statement". '''Ie have already called attention to the fact that 
this is not the usual meaning of "implies ", Its din:rgence from the 
"implies" of ordinary inference is exhibited in such theorems as "A false 
proposition implies any proposition", and "A true proposition is implied 
by any proposition". 2 

The present chapter intends to present, in outline, a calculus of propo
sitions which is based upon an entirel~' different meaning of .. implies "
one more in accord with the customary uses of that relation in inference 
and proof. '''Ie shall call it the system of Strict Implication. And we shall 
refer to Material Implication, meaning either the Two-Yalued Algebra or 
the calculus of propositions as it appears in Principia Jlathematica, since 
the logical import of these two systems is identical. It will appear that 
Strict Implication is neither a calculus of extensions, like ~Iaterial Impli
cation and the Boole-Schroder _'\'lgebra, nor a calculus of intensions, like 
the unsuccessful systems of Lambert and Castillon. It includes relations 
of both types, but distinguishes them and shows their connections. Strict 
Implication contains ~laterial Implication, as it appears in Prillcipia 

}'lathematica, as a partial-system, and it contains also a supplementary 
partial-system the relations of which are those of inten::>ion. 

The numerous questions concerning the exact significance of implication, 
and the ordinary or "proper" meaning of "implies", will be discussed in 
Section V. 

It will be indicated how Strict Implication, by an extension to propo::>i
tional functions, gives a calculus of classes and class-concepts 'which exhibits 
their relations both in extension and in intension. In this, it provides the 

1 Various studies toward this system have appeared in }.find and the Journal of Phi
losophy (see Bibliography). But the complete system has not pre .... 1ously been printed. 
Vir e here correct, also, certain errors of t,hese earlier papers, most notably with reference to' 
triadic "strict" relations. 

2 For further illustrations, see Chap. II, Sect. I, and Lewis, "Interesting Theorems in 
Symbolic Logic," Jour. Philos" Psych., etc. x (1913), p. 239. 
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calculus of intensions, so often attempted before, so far as such a calculus 

is possible at all. 

1. PRHIITIVE IDEAS, PRnIITIVE PROPOSITIONS, A}.,'1) IMMEDB .. TE CONSE

QUENCES 

The fundamental ideas of the system are similar to those of MacColl's 
Symbolic Logic and 'its Applications. They are as follows: 

1. Propositions: p, q, r, etc. 
2. Segation: -p, meaning "p is false". 
3. Impossibility: -p, meaning "p is impossible", or "It is impossible 

that p be true ".3 
4. T he logical prod~lct: p x q or 1) q, meaning "p and q both", or "p is 

true and q is true". 
5. Equit'alence: p = q, the defining relation. 

S~;stems previously developed, except MacColl's, have only two truth
values, "true" and "false". The addition of the idea of impossibility 
gives us fhoe truth-values, all of which are familiar logical ideas: 

(1) p, "p is true". 
(2) -p, "p is false". 
(3) -p, "p is impossible". 
(4) --p, "It is false that p is impossible"-i. e., tip is possible". 
(5) --p, "It is impossible that p be false "-i. e., "p is necessarily 

true". 

Strictly, the last two should be written -(-p) and -(-p): the parentheses 
are regularly omitted for typographical reasons. 

The reader need be at no pains to grasp --p and --p as simple ideas: 
it is sufficient to understand -p and -p, and to remember that each such 
prefi.'{ affects the letter as alreadY' modified by those nearer it. It should 
be noted that there are also more complex truth-values. - -p is equivalent 
to p, as will be shown, but - - -p, - - -p, - - - -p, etc., are irreducible. 
\Ve shall have occasion to make use of only one of these, - - -p, "It is 
false that it is impossible that p be true"-i. e., "p is possibly false".4 
Each one of these complex truth-nlues is a distinct and recognizable idea, 
though they are seldom needed in logic or in mathematics. 

S We here use a symbol, -, which appears in Principia Mathematica with a different 
meaning. The excuse for this is its typographical convenience. 

• MacCoU uses a single symbol for --p, "p is possibly true" and ---p, "p is possibly 
false". 
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The dyadic relations of propositions cnn be defined in term:< of 
truth-values and the logical product, P'i. 

1·01 C'01Mistency. poq = --(pq). Def. 

-(p q), "It is impossible that p and q both be true" would be "p q 

are inconsistent". Hence - -(p q), "It is possible that p and q both be 
true", represents rep and q are consistent". 

1· 02 Strict Implication. pool q = -(p -q). Dei. 

1·03 Jlaterial Implication. pc q = -(p -q). DeI. 

1·04 Strict Logical Sum. pAq = -(-p-q). Del. 

1 ·05 .:.11 aierial Logical Sum. p + q = -( - p -q). Def. 

1·06 Strict Equivalence. (p = q) = (pool q)(q-lp). DE'f. 

We here define the defining relation itself, because by this procedure we 
establish the connection between strict equh'alence and strict implication. 
Also, this definition makes it possible to deduce expressions of the type, 
p = q-something which could not otherwise be done.s But p = q re
mains a primitive idea as the idea that one set of symbols may be replaced 
by another. 

1·07 .M aterial Equivalence. (p == q) = (p c q) (q c p). DeI. 

These eight relations-the seven defined above and the primitive rela
tion, p q-divide into two sets. p q, p c q, p + q, and p == q are the relations 
which figure in any calculus of Material Implication. \Ye shall refer to 
them as the "material relations". p a q, pool q, P A q, and p = q involve 
the idea of impossibility, and do not belong to systems of ~Iaterial Impli
cation. These may be called the" strict relations". We may anticipate a 
little and exhibit the analogy of these two sets, which results from the 
theorem 

-(p q) = -(p 0 g) 

shortly to be proved. 

Strict relations: 

p -! q = -(p a -g) 

pAg = -(-po-g) 

(p = q) = -(p o-q) x-(g o-p) 

::'.Iaterial relations: 

p cq = -(p -q) 

p + q = -( -p -q) 

(p == q) = -(p -q) x-(q -p) 

• The "circularity" here belongs inevitably to logic. No mathematician hesitates to 
prove the equivalence of two propositions by showing that "If theorem :1, then theorem H, 
and if theorem H, then theorem A" . But to do this he must already know that a reciprocal 
"if . . . then . . ." relation is equivalent to an equivalence. .And the italicized" equivalent 
to" represents a relation which must be assumed. 
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The reader will, very likely, ha ye some difficulty in distinguishing in meaning 
p -i q from p c q, p " q from p + q. The aboye comparison may be of assist
ance in this connection, since it translates these relations in terms of p 0 q 
and p q. 'Ye shall be in no danger of confusing po q, "p is consistent with 
q," with p q, "p and q are both true". 

Both lJ " q and p + q would be read" Either p or q". But P " q denotes 
a necessary connection; p + q a merely factual one. Let 1) represent "To
day is ::.\Ionda~- ", and q, "2 + 2 = 4". Then p + q is true but p" q is 
false. In point of fact, at least one of the two propositions, "Today is 
?lIon day " and "2 + 2 = 4", is true; but there is no necessary connection 
between them. "Either... or . . ." is ambiguous in this respect. Ask 
the members of any company whether the proposition "Either today is 
?lIonday or 2 + 2 = 4" is true, and they will disagree. Some will confine 
"Either . . . or . . ." to the p" q meaning, others will make it include 
the p + q meaning; few, or none, will make the necessary distinction. 

Similarly, the difference between p = q and p == q is that p = q denotes 
an equivalence of logical import or meaning, while p == q denotes simply 
an equh-alence of truth-yalue. As was shown in Chapter II, p == q may be 
accurately rendered "p and q are both true or both false". Here again, 
the strict relation, p = q, symbolizes a necessary connection; the material 
relation, p == q, a merely factual one. 

The postulates of the system are as follows: 

1·1 pq-iqp 

If p and q are both true, then q and 1) are both true. 

1·2 qp-ip 

If q and p are both true, then p is true. 

1·3 p~pp 

If p is true, then p is true and p is true. 

1·4 p(q r) ~ q(p r) 

If p is true and q and r are both true, then q is true and p and r are both 
true. 

1 . 5 P -i -( -p ) 

If p is true, then it is false that p is false. 

1·6 (p -I q)(q ~ r) -1 (p -I r) 

If p strictly implies q and q strictly implies r, then p strictly implies r. 
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1·7 -p ~-p 

If it is impossible that p be true, then p is false. 

1·8 p -l q = -q -l-p 

"p strictly implies q" is equivalent to '" q is impossible' strictl~· im
plies' p is impossible'''. 

The first six of these present no noyeItr except the relation -l. The~' 

do not, so far, distinguish this system from :\Iaterial Implication. But, 
as we shall see shortly, the postulates 1· i and 1· S are principles of trans
formation; they operate upon the other postulates, and on themselves, 
and thus introduce the distinguishing characteristics of the system. Postu
late 1· 7 is obvious enough. Postulate 1· S is equh'alent to the pair, 

(p -l q) ~ (- -p ~ - -q) If p implies q. then' p is possible' implies 
, q is possible'. 

(-p ~ -q) -l (-p ~ -q) If 'p is impossible' implie:s 'q is impossible " 
then' p is false' implies' q is false'. 

These two propositions are more "self-e,·ident" than the postulate, but 
they express exactl~' the same relations. 

(To eliminate parentheses, as far as possible, we make the conyention 
that the sign =, unless in parentheses, takes precedence over any other 
relation; that ~ and c take precedence over A, +, 0, and x; that 1\ 

and + take precedence over 0 and x; and that -l takes precedence over 
c. Thus 

p q + -p -q ~ p c q IS [(p q) + (-p -q)]-i (p c q) 

and pcqr = (pcq)(pcr) IS [pc(qr)] = [(pcq) cr)] 

However, where there is a possibility of confusion, we shall put in the 
parentheses.) 

The operations by which theorems are to be derived from the postulates 
are three: 

1. Substituiion.-A:ny proposition may be substituted for p or q or r, 
etc. If p is a proposition, -p and -p are propositions. If p and q are 
propositions, p q is a proposition. 1'\180, of any pair of expressions related 
by =, either may be substituted for the other. 

2. Inference.-If p is asserted and p ~ q is asserted, then q may be 
asserted. (~ote that this operation is not assumed for material impli. 
cation, pc q.) 

3. Production.-If p and q are separately asserted, p q may be asserted. 
These are the only operations made use of in proof. 
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In order to make clearer the nature of the strict relations, and particu
larly strict implication, we shall 'wish to derive from the postulates their 
correlates in terms of strict relations. This can be done by the use of 
postulate 1-S and its consequences, for by 1·8 a relation of two material 
relations can be transformed into a relation of the corresponding strict 
relations. But as a preliminary to exhibiting this analogr, we must prove a 
number of simple but fundamental theorems. These working principJes 
,,-ill constitute the remainder of this section. 

The first theorem will be proved in full and the proof explained. The 
conyentions exemplified in this proof are used throughout. 

2·1 pq-Jp 

1·6 {pq!p; qp/q; plr}: I·Ixl·2-J(pq-Jp) 

This proof may be read: "Proposition 1· 6, when p q is substituted for p, 

q p for q, and p for r, states that propositions 1·1 and 1· 2 together imply 
(p q -J p) D. The number of the proposition which states any line of proof 
is gi\-en at the beginning of the line. Ne:...-t, in braces, is indication of any 
substitutions to be made. "p q/p" indicates that p q is to be substituted, 
in the proposition cited, for p; "p+ qlr" would indicate that p+ q was to 
be substituted for r, etc. Suppose we take proposition 1· 6, which is 

(p -J q)(q -J r) -J (p -J r) 

and" make the substitutions indicated by {p qlp; q pip; plrl. We then 
get 

(p q -i q p)(q P -i p) -i (p q -J p). 

This is the expression which follows the brace in the above proof. But 
since p q -J q P is 1·1, and q p ~ p is 1· 2, we write 1·1 xl· 2 instead of 
(p q -i q p)(q P -i p). This calls attention to the fact that what precedes 
the main implication sign is the product of two previous propositions. 
Since 1·1 and 1- 2 are separately asserted, their product may be asserted; 
and since this product may be asserted, what it implies-the theorem to be 
proved-may be asserted. The advantage of this way of writing the proofs 
is its extreme brevity. Yet anyone who wishes to reconstruct the demon
stration finds here everything essential. 

2·11 (p = q) -i (p -i q) 

2·1 {p-iqlp; q-iplql: (p-iq)(q~p)-J(p-iq) 
1 . 06 : (p = q) = (p -i q) (q -i p) 
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2·12 (p = q) oi (qoip) 

Similar proof, 1·:2 instead of :2.1. 

2·2 (p-1qH(-q-1-p) 

1·06: 1·8 = [(poiq)-i -qoi-p)][(-q-l-pH -! il) 

:2·1: (1) -l Q.E.D. 

In this last proof, we introduce further abbreviations of proof as follows: 
(1), or (2), etc., is placed after a lemma which has been established, and 
thereafter in the same proof we write or (2). etc., instead of that lemma. 
Also, we shall frequently write" Q.E.D." in the last line of proof instead 
of repeating the theorem to be proyed. In the first line of this proof, the 
substitutions which it is necessary to make in order to get 

1·8 = [(p -1 q) -l ( .... q -1-p)][( .... q -l -l -1 

are not indicated because they are oIn-ious. And in the second line, state
ment of the required substitutions is omitted for the same reason. Such 
abbreviations will be used frequently in later proofs. 

Theorem 2·2 is one of the implications contained in postulate l·S. 
By the definition, 1· 6, any strict equivalence may he replaced by a pair of 
strict implications. By postulate 1·:2 and theorem :2 ·1, either of these 
implications may be taken separately. 

2·21 (-q-l-pH(p-lq) 
1·2: [(1) in proof of 2·2J ~ Q.E.D. 

This is the other implication contained in postulate I·S. 

2·3 (-p ~ q) -,! (-q -,! p) 
1·1 {-q/p; -plq): -q-p-'!-p-q 
2·2 {-q-p!p; -p-q/q}: (IH[-(-p-qH-(-q-p)] 
1·02: (2) = Q.E.D. 

2·4 p-1p 
1·2 {plq}: pp-'!p 
1·6: 1·3x(IHQ.E.D. 

2-5 -(-p) ~ p 
2·4 {-pip}: -p~-p 
2·3 {-plq}: (1) -,! Q.E.D. 

2-51 -(-p) = p 
1·06: 2·5 xl·5 = Q.E.D. 

(1) 

(2) 

(1) 

(1) 
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2·6 (-p..;,-g)..;,(q..;,p) 

2·3 (-q:ql: (-p..;, -g) -', [-(-g) ..;, p] 

2·51: (1) = Q.E.D. 

2·61 (p..;, -g) ..;, (g..;, -p) 
2·6 {-p/pj: [-(-p) ..;, -gH (g..;, -p) 

2·51: (1) = Q.E.D. 

2·62 (p..;, q) -', (-g..;, -p) 

2·61 {-gig}: [p..;,-(-g)H(-q..;,-p) 

2·51: (1) = Q.E.D. 

2·63 (p..;,g) = (-g..;,-p) 

1·06: 2·62 x2·6 = Q.E.D. 

2·64 (p..;,-g) = (q..;,-p) 

1·06: 2·61 x2·3 = Q.E.D. 

(1) 

(1) 

(1) 

Theorems 2·3,2'0, 2'01, and 2·62 are the four forms of the familiar 
principle that an implication is converted by changing the sign of both 
terms. 

2·7 (-p..;, -gH (-p..;, -g) 

2·21 {Pig; g!p}: (,...p..;,-g)..;,(g..;,p) 

2'02 {p/q; g/p}: (q ~ p) ~ (-p ~ -g) 

1·6: (1) x (2) ..;, Q.E.D. 

2·71 (-p ~ -g) ..;, (-p ~ -g) 

2'0: (-p~-q) ~ (g~p) 

2·2 {q!p; plq}: (g ~ pH (-p..;, -q) 
1'0: (1) x (2) ~ Q.E.D. 

2·712 (-p..;,-q) = (-p-i-g) 

1·06: 2·71 x2·7 = Q.E.D. 

2·72 (- -p ..;, - -g) ..;, (p -i q) 

2·, {-p!p; -glq}: e- -p -i - -g) -i [-(-p) -i -(-g)] 

2·51: (1) = Q.E.D. 

2·73 (p -i q) -i (,... -p -i - -g) 

2·71 {-p/p; -qlg}: [-(-p) -i -(-q)]-i (- -p -i,... -q) 
2·51: (1) = Q.E.D. 

2·731 (p~q) = (--p~--q) 

1·06: 2·73 x2·72 = Q.E.D. 

2·74 (p ~ q)..;, (- -p ~ - -q) 

2·62 {-q/p; "'p/q}: (-g~-pH(--p-',--q) 
1'0: 2·2 x (1)..;, Q.E.D. 

(1) 

(2) 

(1) 

(2) 

(1) 

(1) 

(1) 
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2·75 (--p-i--q)J,(P-iq) 

2·6 {-pIp; -qiq}: (--p-i--q).;;,(-q.J. 
1·6: (1) x2·21 -i Q.E.D. 

2:76 (p-iq) = (--P-i--q) 

1·06: 2·74 x2·75 = Q.E.D. 

2·77 (P-iq) = (--p-i--q) = (--P-i--q) = (-q-i-p) = (-q-i-p) 
2·76 x2·731 x2·63 x2·712 = Q.E.D. 

"p implies q" is equh'alent to "c p is possible' implies' q is possible'" is 
equivalent to '''p is necessary' implies 'q is necessary'" is equiyalent to 
"'q is false' implies 'p is false'" is equivalent to "'q is impossible' implies 
'p is impossible'''. 

2 . 6-2·77 are various principles for transforming a strict implication. 
These are all summed up in 2·77. The importance of this theorem will be 
illustrated shortly. 

2·8 P q = qp 
1·1 {q!p; plq}: qp-ipq 
1·06: l'lx(l) = Q.E.D. 

2·81 P = pp 

1·2 {plq}: pp-ip 
1·06: 1·3x(1) = Q.E.D. 

2·9 p(g r) = q(p r) 

1·4 {qlp; plq}: qepr) -ip(qr) 
1·06: 1·4 x (1) = Q.E.D. 

2·91 peq r) = (p q)r 
2·8: p(qr) = p(rq) 

2·9: per q) = rep q) 
2·8: rep q) = (p q)r 

(1; 

(1) 

(I) 

The above theorems constitute a preliminary set, sufficient to give 
briefly most further proofs. 

II. STRICT RELATIONS AND MATERLU RELATIONS 

'Ve proceed now to exhibit a certain analogy between strict relations 
and material relations; between truths and falsities on the one hand and 
necessities, possibilities, and impossibilities 011 the other. This analogy 
runs all through the system: it is exemplified by 2·77. 
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1·1 pqoJ,qp 
If p and q are both true, then q 

and p are both true. 

1·2 qpoJ,p 
If q and p are both true, then p 

is true. 

1·3 poJ,pp 
If p is true, then p and pare 

both true. 

1·4 p(q r) oJ, q(p r) 

3·11 poqoJ,qop 
If p and q are consistent, then q 

and p are consistent. 

3 . 12 q 0 P oJ, - -p 
If q and p are consistent, then 

it is possible that p be true. 

3 ·13 - -p oJ, pop 
If it is possible that p be true, 

then p is consistent with itself. 

3 . 14 p 0 (q 1') oJ, q 0 (p r) 

The correspondence exhibited in the last line seems incomplete. But 
we should note with care that while 

p(q r) = q(p r) = (p q)r 

and anyone of these may be read "p, q, and l' are all true", po (q or) 
i~ not "p, q, and r are all consistent". po(qor) means "p is consistent 
with the proposition 'q is consistent with r'''. Let p = "Today is Tues
day"; q = "Today is Thursday"; r = "Tomorrow is Friday". Then 
q 0 r is true. And it happens to be Tuesday, so p is true. Since p and 
q 0 r are both true in this case, they must be consistent: po (q 0 r) is true. 
But" p, q, and r are all consistent" is false. "Today is Tuesday" is incon
sistent with "Today is Thursday" and with "Tomorrow is Friday". 
Suppose we represent" p, q, and r are all consistent" by p 0 q 0 r. Then 
as a fact, po q 0 r will not be equivalent to po (q 0 r). Instead, we shall 
have 

po q 0 r = po (q r) = q 0 (p r) = (p q) 0 r 

"p, q, and r are all consistent" is equivalent to "p is consistent with the 
proposition 'q and r are both true"', etc. vVe may, then, add two new 
definitions: 

3·01 p q r = peq r). Def. 

3·02 poqor=po(qr). De£. 

3·02 is typical of triadic, or polyadic. strict relations: when parentheses 
are introduced into them, the relation inside the parentheses degenerates 
into the corresponding material relation. In terms of the new notation of 
3·01 and 3·02, the last line of the above table would he 

pqr-iqpr poqoroJ,qopor 

which exhibits the analogy more clearly. 
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\Ye must now pro,'e the theorems in the right-hand 

3·11 poq-iqop 

2·74 {qp/p; qP.'q}; l·l-i[--(pqH--(q 

1·01: (1) = Q.E.D. 

3 ·12 q 0 P -i - -p 

2·74 {qp,'p; p.'I]): 1·2-i[--(qp)-i--p] 

1· 01: (1) = Q.E.D. 

3·13 - -p -i pop 

2·74 {pp/p}: 1·3-i[--p-i--(pp)] 

1· 01: (1) = Q.E.D. 

3 ·14 P 0 (qr H q 0 (p r) 

(1) 

(1) 

2·74 {ZJ(qr)/zJ; q(pr);'qj: l· .. H--[p(qr)]-i--[q(p (1) 
1·01: (1) = Q.E.D, 

(In the above proof, the whole of what 1· -:I: i:5 ::ltated to imply should 
be enclosed in a brace. But in such cases, since no confusion will be oc
casioned thereby, we shall hereafter omit the brace.) 

3·15 po(qr) = (pq)or = qo(pr) 

2·76: 2·9-i--[p(qr)] = --[q(ZJr)] 
2·76: 2·91-!--[p(qr)] =--[(pq)rl 

1· 01: (2) x (1) = Q.E.D. 

(1) 

(2) 

An exactly similar analogy holds between the material logical sum, 
P + q, and the strict logical sum, p A q. 

3·21 p + q -! q + P 
" At least one of the two, p and 

q, is true" implies "At least one 
of the two, q and p, is true". 

3·22 p -! p+ q 
If p is true, then at least one of 

the two, p and q, is true. 

3·23 p + P -! P 
If at least one of the two; p and 

p, is true, then p is true. 

3·24 p+(q+r)-!q+(p+r) 

3·31 P A q -! q A P 
"Xecessarily either p or q" im

plies" Xecessarily either q or p". 

3·32 --p-ipAq 

If p is necessarily true, then 
necessarily either p or q is true. 

3·33 p A zH - -p 
If necessariI~' either p is true or 

p js true, then p is necessarily true. 

3·34 lJA(Q+r)-!QA(p+r) 

As before, the analogy in the last line seems incomplete, and as before, 
it really is complete. And the explanation is similar. p + (q + r) and 
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q + (p + r) both mean" At least one of the three, p, q, and r, is true". But 
p 1\ ('1 1\ r) would not mean "One of the three, p, q, and r, is of necessity 
true ". Instead, it would mean "One of the two propositions, p and 
'necessarily either '1 or r', is necessarily true". To distinguish pl\('1+1") 

from p 1\ (q 1\ r) is rather difficult, and an illustration just now, before we 
have discussed the case of implication, would probably confuse the reader. 
'Ye shall be content to appeal to his' intuition' to confirm the fact that 
"Xecessarily one of the three, p, '1, and r, is true" is equivalent to "Neces
sarily either p is true or Olle of the two, q and r, is true"-and this last is 
p 1\ (q + r). If we chose to make definitions here, similar to 3·01 and 3·02, 
they would he 

p + q + r = p + ('1 + 1") 
and p 1\ q 1\ r = p 1\ (q + 1') 

Proof of the theorems in the above table is as follows: 

3·21 p+q-iq+p 

1·1 {-q/p; -plq}: -q -p -i -p-'l 
2·62: (1) -i-(-p-q) -i-(-'l-p) 

1·05: (2) = Q.E.D. 

3·22 P -ip+q 

Similar proof, using 1· 2 in place or 1·1. 

3·23 P + P -i P 
Similar proof, using 1· 3. 

3·24 p+(q+1')-iq+(p+r) 

1·4 {-'llp; -p/q; -rlr}: -q(-p -r) -i -p(-q -r) 
:2·62: (1) -i -[-pC -'1 -r)] -i -[-q(-p -r)] 
2·51: (2) = -I-p-[-(-q-r)j} -i-{-q-[-(-p-r)]} 

1·05: (3) = p + -(-'1 -r) -i q + -(-p -r) 
1·05: (4) = Q.E.D. 

3·25 p+ (q+1') = (p+q) +1' = q+ (p+1') 

Similar proof] using 2·9 and 2· 91, and 1· 06. 

3·31 P I\q 'i '1l\p 

1·1 {-'lIp; -plql: -'1 -p -i -p-q 
2·2: (1) 'i -(-p -q) 'i -(-q -p) 
1·04: (2) = Q.E.D. 

3·32 --p-ipl\q 

Similar proof, using 1 ·2 in place of 1· 1. 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 
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3,33 pAp-l--p 

Similar proof, using 1 ·3. 

3·34 pA(q+r)-IqA(p+r) 

1·4 i-q/p; -P!'q; -ri'r): -q(-p-r) -I-p(-q-r) 
2 ·2: (1) -I-(-p(-q -r)]-I-[-q(-p -r)] 

d) 

2·51: (2) = -!-p-[-(-q-r)J} -I-l-q-[-(-p 
1·04: (3) = pA-(-q-r) -IqA-(-p-r) 

1·0t;: (4) = Q.E.D. 

3·35 pA(q+1') = (p+q)Ar = qA(p+r) 

Similar proof, using 2·9 and :2·91, and 1· Oti. 

Again, an exactly similar analog~' holds between material implication, 
p c: q, and strict implication, P -I q. 

3·41 (p c: q) -I (-q c: -p) 

If p materially implies g, then' q 
is false' materially implies 'p is 
false '. 

3·42 -p-l(pc:q) 

If p is false, then p materially 
implies an;y proposition, q. 

3 . 43 (p c: - p) -I -p 

If p materially implies its own 
negation, then p is false. 

3 ·44 [p c: (q c: 1')]-1 [q c: (p c r)] 

2·62 -IIJ)-I (-Ij-l-p)" 

If p strictly implies '7, then' fJ is 
false' strictl;.: implies' ]I is fabe '. 

3·52 -p-l(p-lq) 

If p is impossible (not self-con
sistent, absurd), then p stricdr im
plies any proposition, q. 

3 ·53 (p -I - p) -I - p 

If p strictly implies its own nega
tion, then p is impossible (not self
consistent, absurd). 

3·54 [p-l(qcr)]-I[q-l c 

The comparison of the last line presents peculiarities similar to those 
noted in previous tables. The significance of 3·54 is a matter which can 
be better discussed when we have derived other equivalents of p -I VZ c 

The matter will be taken up in detail further on. 
The theorems of this last table, like those in previous tables, are got 

by transforming the postulates 1·1, 1·2, 1·3, and 1·4. In consideration 
of the importance of this comparison of the two kinds of implication, we 
may add certain further theorems \vhich are consequences of the above. 

3.45 p~(qc:p) 

If p is true, then eyery proposi
tion, q, materially implies p. 

3·55 - -p -I (q -I p) 

If p is necessarily true, then pis 
strictly implied by any proposi
tion, q. 
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3· -16 (-p c p) ~ P 
If P is materiall;y implied by its 

own denial, then p is true. 

3·47 -(pcq)~p 

If p does not materially imply 
any proposition, q, then p is true. 

3·48 -(p c q) ~ -q 

If p does not materially imply q, 
then q is false. 

3 . 56 (-p ~ p) ~ ,., -p 

If p is strictly implied by its own 
denial, then p is necessarily true. 

3·57 -(p ~ q) ~ - "'p 

If p does not strictly imply any 
proposition, q, then p is possible 
(self-consistent) . 

3·58 -(ZH q) ~ -,.,-q 

If p does not strictly imply q, 
then p is possibly false (not neces
sarily true). 

Xote that the main or asserted implication, which we have translated 
"If ... , then ... ", is ahvays a strict implication, in both columns. 

3 . -12 and 3·45-3·48 are among the best knol'i"ll of the "peculiar" the
orems in the system of Material Implication. For this reason, their ana
logues in which the implication is strict deserye special attention. Let us 
first note that - -p ~ (-p ~ p) is a special case of 3·55. This and 3· 56 give 
us at once 

This defines the idea of "necessity". A nece88arily true proposition
e. g., "I am ", as conceived by Descartes-is one whose denial strictly 
implies it. Similarly, p ~ (-p cp) is a special case of 3·45. And this, 
with 3·46, gi,-es 

p = (-p cp) 

A true proposition is one which is materially implied by its own denial. 
This point of comparison throws some light upon the two relations. 

The negath-e of a necessary proposition is impossible or absurd. 
-p ~ (p ~ -p) is a special case of 3·52. This, with 3 ·53, gives 

-p = (p ~ -p) 

And p ~ -p is equivalent to -(p 0 p). Thus an impossible or absurd propo
sition is one \vhich strictly implies its own denial and is not consistent 
with itself. Correspondingly, we get from 3·42 and 3·43 

-p = (p c-p) 

A false proposition is one which materially implies its own negation_ 
It is obyious that material implication, as exhibited in these theorems, 
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is not the relation usually intended <. implie:" ", hH~ it may be IleLurert 

whether the corresponding properties 'or strict implication 11re 

acceptable. 'Ye shall revert to this question later. .:\.t 

sitions sen-e to define more sharply the nature of the two 

Proof of the above theorems is as follows: 

3·41 (p c q) -l hI c-p) 

1·1 jp,'q; -q:p): -qp-lp-q 

:2·62: (1) -l -(p -g) -l-( -I] p) 

2·51: (2) = -(p-'1) -l-[-'l-(-p)] 
1· 03: (3) = Q.E.D. 

3·42 -p -l (p c q) 

1·2 {pig; -'lip}: p-q-lp 

2·62: (1) -l-P-l-(p-g) . 

1·03: (2) = Q.E.D. 

3·43 (pc-p)-l-p 

Similar proof, using 1· ~:l. 

3·44 pc(qcr)-s'1c(pcr) 

1·4 {g/p; p/'1; -r/r}: g(p-r) -sp(g-r) 

2·62: (1) -l-[p(q-r)] -l-[g(p-r)] 

2·51: (2) = -{p-[-(q-r)])-l-['1-[-(p-r)Jl 

1·03: (:3) = pc-(q-r) -sqc-(p-r) 

1·03: (4) = Q.E.D. 

3·45 1H ('1 cp) 
3·42 {-pip; -qiq}: -(-p) -l (-p c-'1) 

3·41: (-p c-q) -l [-(-q) c-(-p)l 

2·51: (2) = (-p c-g) -l (q cp) 

1·6: (1) x (3)-1 -(-pH (q c p) 

2·51: (4) = Q.ED. 

3·46 (-p cp) -l P 
3·43 {-pip}: [-p c-(-p)] -l-(-p) 

2·51: (1) = Q.E.D. 

3·47 -(p c q) -l P 
2·62 {-p!p; pcq/q}: 3·42-l-(pcq)-l-(-p) 

2·51: (1) = Q.E.D. 

3·48 -(p cq) -l-q 

21 

3·45 {qlp; p/ql: q-l(pcq) 

2·62: (1) -l Q.E.D. 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 

(H 

(1) 

(1) 
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3·52 ""p -i (p -i q) 

2·1 {-qjq}: p-q-iP 
1·8: (1) = -p -i ""(p -q) 
1·02: (2) = Q.E.D. 

3·53 (p -i -p) -i"'P 
Similar proof, using 1· 3. 

3·54 [p-i(qcr)]-i[q-i(pcr)] 
1·4 {qlp; plq; -rjr}: q(p-r)-ip(q-r) 
1·8: (1) = ... [p(q -r)] -i ... [q(p -r)] 
2·51: (2) = "'{p-[-(q-r)]} -i""{q-[-(p-r)]} 
1·02: (3) = [p i -(q -r)] -i [q -i -(p -r)] 

1·03: (4) = Q.E.D. 
3 ·55 "" -p -i (q -i p) 

3·52 {-pjp; -qjq}: .... -pi(-p-i-q) 

2·6: (-pi-q) i (qip) 
1·6: (1) x (2) -i Q.E.D. 

3·56 (-p -i p) -i --p 
3·53 {-pip}: [-p i -(-p)H"'-p 
2·51: (1) = Q.E.D . 

. 3 ·57 -(p -i q) -i - ""p 

2·62: 3·52 -i Q.E.D. 
3·58 -(p -i q) -i - ""-q 

2·62: 3·55 -i Q.E.D. 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(1) 

The presence of this extended analogy between material relations and 
strict relations in the system enables us to present the total character of 
the system with reference to the principles of transformation, 1·7 and 1·8, 
in brief all:d systematic form. This will be the topic of the next section. 

III. THE TRANSFORMATION {-/-l 

We have not, so far, considered any consequences of postulate 1· 7, 
""p i -p, "If p is impossible, then p is false". They are rather obvious. 

4·1 ""-P-iP 
1·7 {-pjp}: ""-P-i-(-p) 
2·51: (1) = Q.E.D. 

If p is necessary, then p is true. 
4·12 p-i-,..,p 

2·61 {""pjp; pjq}: 1·7iQ.E.D. 
If p is true, then p is possible. 

(1) 
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4·13 --p~--p 

1·6: 4·1 x4·12"i Q.E.D. 
If p is necessary, then p is possible. 

4·14 pq~poq 

4·12 lpq/p}: pq~--(pq) 
1·01: (1) = Q.E.D. 

4 ·15 (p ~ q) ~ (p c q) 

1·7 {p-qipl: -(p-q) "i-(p-q) 
1·02: (1) = (p ~ q) ~ -(p -q) 
1·03: (2) = Q.E.D. 

4·16 pAg-lp+q 

1·7 {-p-g/p}: -(-p-q)-l-(-p-q) 
1·04: (1) = p A q -l-(-p -q) 

1·05: (2) = Q.E.D. 

4·17 -(p 0 g) -l-(p q) 

2·62; 4·14 = Q.E.D. 

(2) 

(1) 

(2) 

By yirtue of theorem 4 ·15, any strict implication which iii asserted
i. e., is the main relation in the proposition-may be replaced a material 
implication. And by 4·16, any strict logical sum, 1\, which should be 
asserted, may be reduced to the corresponding material relation, +. The 
case of the strict relation" consistent with", 0, iii a little different. It 
follows from 4 ·17 that for eyer;v theorem in the main relation 0 is 
that is, -C ... 0 ... ), there is an exactly similar theorem in which the main 
relation is that of the logical product, that is, -( .. , x ... ). 

It is our immediate object to show that for every strict relation which is 
assertable in the system, the corresponding material relation is also assert
able. It is, then, important to knO\Y how these various relations are present 
in the system. The only relations so far asserted in any proposition are 
-l and =. Since = is expressible in terms of ~,we may take -l as the 

fundamental relation and compare the others with it. 

4·21 p-lg = -pAg 
1·02: p~q = -(p-q) 

2·51: (1) = p ~ q = -H-p) -qJ 
1·04: (2) = Q.E.D. 

4·22 P A q = -p -l q 
4·21 {-pip}: -p -l q = -(-p) I\g 

2·51: (1) = Q.E.D. 

(1) 
(2) 

(1) 
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For ever~· postulate and theorem in which the asserted relation is ~, 
there is a corresponding theorem in which the asserted relation is A, and 

vice versa. 
Consider the analogous relations, e and +. 

4·23 peg = -p+g 
1·03: peq = -(p-g) 
2·51: (1) = peg = -[-(-p) -g] 

1·01: (2) = Q.E.D. 

4·24 p+q=-peq 
4·23 {-p/pl: -p e q = -(-p) + g 

2·51: (1) = Q.E.D. 

(1) 
(2) 

(1) 

For every theorem in which the asserted relation is e, there is a corre
sponding theorem in which the asserted relation is +, and vice versa. 

The exact parallelism between 4·21 and 4·23,4·22 and 4·24, corrob
orates what 4·16 tells us: that wherever the relation A is asserted, the 
corresponding material relation, +, ma;y be asserted. 

4·25 p~g = -(po-g) 
1·02: p-iq = -(p-g) 
2·51: (1) = p ~ q = -[- -(p -g)] 

1·01: (2) = Q.E.D. 

4·26 po g = -(p -i -g) 
4·25 {-g/g}: p -i -g = -[p 0 -(-q)] 

2 ·51: (1) = p -i -q = -(p 0 g) 
2·11: (2) ~ (p -i -q) -i -(p 0 q) 

2 ·12: (2) ~ -(p 0 q) ~ (p ~ -q) 

2·3: (3)~poq~-(P-i-q) 
2 ·61: (4) ~ -(p -i -q) ~ po q 

1·06: (5) x (6) = Q.E.D. 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

For every postulate and theorem in which the relation -i is asserted, 
there is a corresponding theorem in which the main relation is ° but this 
relation is denied: and for every possible theorem in which the relation 0, 

is asserted, there will be a corresponding theorem in which the main relation 
is of but that relation is denied. ° and of are connected by negation. 

An exactly similar relation holds between p q and peg. 

1·03 p eq = -(p-q) 

4·27 P q = -(p e-q) 

Proof similar to that of 4·26, using 1· 03 in place of 1 ·02. 
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The parallelism here corroborates -1·17: for eyer~' :n 

which the relation 0 is denied, there is a theorem in 'which the ('om:

sponding logical product is denied. But the implications of ·f ·1-4·17 are 
not re\-ersibIe, and a theorem in which the relation 0 is (188ertal not 
give a theorem in which any material relation is asserted. To put it nWJU'"" 

' .... ay: of - -p, p, and - -P, the weakest is - -p and it cannot be 
reduced. But the truth-value of any consistency is [- "'l-P 0 q = ~ -,:p 

The reduction of = to the corresponding material relation, ==, is ob\'ious. 

4·28 Hypothesis: p = q. To prow: p == f). 

2· 11: H:;p. -i (p -i q) 

2·12: H~'p. -i (q -i p) 

4·15: (1) -i (p c q) 

4·15: (2) -i (qcp) 

1·07: (:3) x (4) = (p == fJ) 

For ewry theorem in which the reJation is asserted, there is a cor 
responding theorem in which the relation == is asserted. 

,\Ve have now shown at length that, confining attention to the main 

relations in theorems, there are two sets of strict relations which appear 
in the system: (1) relations = I -i, and A which are a.ssertcd, and relations 
o which are denied; (2) relations 0 \vhich are asserted, and relations 
=, -i, and A which are denied. ,\Yherever a relation of the first described 
set appears, it ma;r be replaced by the corresponding material relation. 
Any relation of the second set ,,-ill be equivalent to some relation 0 which 
is asserted-its truth-value wiII be [- -]. Such relations cannot be further 
reduced; they do not give a corresponding material relation. But under 
what circumstances will relations of this second sort appear? Examination 
or the postulates will show that ther can occur as the main relation in the
orems only through some use of 1· i and its consequences, for example, 
p q -i po q, P -i - ,..p, and.., -p -i - "'p. In other words, they call occur only 
where the corresponding material relationi8 already present in the system. 
Hence for every theorem in the system in which a relation of the type 
p 0 q is asserted, there is a theorem in which the corresponding material 
relation, p q, is asserted. 

Consequently, for every theorem in the sJjstern in lchich the main relation 
is strict there is an exactly sillvilar theorem oin which .the main relation i~ 

corresponding material relation. 
,\\Therever strict relations appear as subordinate, or unasserted .• relations 

in theorems, the situation is quite similar, These are reducible to the 
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corresponding material relations through some use of 1· 8 and its conse
quences. ;\ ote particularly theorem 2·77, 

(ZHq) = (--p.;;,--q) = (--p.;;,--q) = (-q.;;,-p) = (-g.;;,,,,p) 

The truth-value of an:r strict relation will, by its definition, be H or [ .... -] 
-or [- -]. And where two such are connected by .;;, or any equivalent rela
tion, they may be replaced by the corresponding relation whose truth-value 
is simply positiye or is H-and this is always a material relation. 

\Ye may now illustrate this reduction of subordinate strict relations: 

4·.3 [(p.;;, g) .;;, (r.;;, 8)]';;' [(p e q) .;;, (r cs)] 
2·7 {p -q/p; r -slq}: [-(p -q) .;;, -(r -s)].;;, [-(p -g) .;;, -(r -s)] (1) 

1·02: (1) = [(p.;;, q) .;;, (r.;;, s»).;;, [-(p -q) .;;, -(r -s)] (2) 

1·03: (2) = Q.E.D. 

4·31 [(pAg).;;,(rAs»).;;,[(p+q).;;,(r+s)] 
Similar proof, (-p -q) in place of (p -g), etc. 

4·32 [(p 0 g) .;;, (r 0 s)] .;;, [(p g) .;;, (r s)] 
2·75 {pq!p; r8!g}: [--(pq).;;,--(rs»).;;,[(pq).;;,(rs)] (1) 

1·01: (1) = Q.E.D. 

4·33 [(p.;;, q) .;;, (H s»).;;, [(p eq) e (r es)] 
4·15: [(p e q) .;;, (r es)].;;, [(p e q) e (r es)] 

1·6: 4·3 x (1).;;, Q.E.D. 

4·34 [(pAg) .;;,(rAs)H[(p+q) e(r+s)] 
Similar proof, using 4·31 in place of 4·3. 

4·35 [(poq).;;,(ros»).;;,[(pq)e(rs)] 

Similar proof, using 4·32. 
Note that as a subordinate relation, p 0 q reduces directly. 

(1) 

In theorems 4·3-4·32, postulate 1·8 only has been used, and the reduc
tion of strict relations to material relations is incomplete. In theorems 
4·33-4·35, postulates 1·8 and 1·7 have both been used, and the reduction 
is complete. In these theorems, dyads of dyads are dealt with. The 
reduction extends to dyads of dyads of dyads, and so on. We may illustrate 
this by a single example which is typical. 

Hypothesis: [(p.;;, g) .;;, (-p A q)].;;, [(p 0 -g) .;;, -(p..;;, q)] 

To prove: [(peg) e (-p+ g)] c[(p-q) c-(pcg)] 

(The hypothesis is true, though it has not been proved.) 

2·71 {p -q/p; p -qlg}: [-(p -g) .;;, -(p -q)].;;, [-(p -g) .;;, -(p -g)] (1) 

1·02,1·03,1·04,1·05, and 2·51: 
(1) = [(pcg).;;,(-p+g)H[(p.;;,g),,;;,(-pAg)] (2) 
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1·6: (2) xHyp.~[(pcqH + -I ° 
2·72 {p -q,'p; P -q/ql: [- -(p -q)-I-

1'01,1·02,1·03, and 2·51: 

(4) = [(p ° -gH -(p -I q)] -I rep -Iii -I 

1·6: (3) x (5) -I [(p c q) -I (-p + q)] -I [(p -q) -I-(p c 

4·33: (6) -I Q.E.D. 

c 

Hi) 

In any theorem in which -p is related to -q, or - -p to - -q, or - -p to 
- -q, - may be replaced by -. This follo'ws immediately from 2·77. lYe 
illustrate briefly the reduction in those cases in whieh -r, or - -r, or - -r, 
is related to po q, or p A q, or p -I q. 

4·36 (poq-l--r)-I(pq-lr) 

2·75 {pq,!p; rig}: [--(p qH-r]-I (pq-lr) (1) 
1·01: (1) = (poq-l--r) -I (pq-lr) (2) 

4·15: (pg-lrH(pqcr) (3) 

1· 6: (2) x (3) -I Q.E.D. 

4·37 (pAq-l-rH(p+qc-r) 

2·7 {-p-q!p; rlq}: [-(-p-qH-rHH-p-q)-!-rj 

4·15: H-p -q) -I-rJ -I H-p -q) c-rJ 

1·6: (1) x (2) -I [-(-p -q) -I-rJ -I H-p -q) c-r] 

1·04 and 1·05: (3) = Q.E.D. 

(1) 
(2) 

(3) 

A dyad of triadic strict relations, e. g., po (q r) -I q 0 (p r), reduces 
just like a dyad of dyads, because a triadic strict relation is a dyadic strict 
relation-with a dyadic material relation for one member. But a triad 
of dyadic strict relations behaves quite differently_ Such is postulate 1· 6, 

(p -I q)(q -I r) -I (p -I r) 

This does not look like a strict triad, but it is, being equivalent to 

(p -I q) -I [eq -I r) c (p -I r)] 

which obviously has the character or strict triads generally. The sub
ordinate relations in such a triad cannot be reduced by any direct use of 
1·8 and its consequences. Ho\vever, all such relations can be reduced. 
The method will be illustrated shortly by deriving 

(pcq)(qcr)c(pcr) 

from the above. 
What strict relations, then, cannot be reduced to the corresponding 

material relations? The case of asserted relations has already been dis-
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cussed. For subordinate relations, the question admits of a surprisingly 
simple answer. All the relations of the system can be expressed in terms 
of some product and the various truth values-the truth values of - -p, p, 

- -p, -p, and '-p. Let us remind ourselves: 

poq = - -(p q) 

p ~ q = -(p-q) 

pAq = -(-p-q) 

p q = - -(p q) 
p cq = -(p-q) 
p + q = -( -p -q) 

The difference between the truth-value of p and that of -p, between -p 

and - -p, between - -p and -,., -p, does not affect reduction, because --p 
can be regarded as N -(p) or as N(_p); - - -p as - N -(p) or as - N(_p); 
and p is also -(-p). Hence we may group the various types of expression 
which can appear in the system under three heads, according to truth-value: 

H or [--] 

p~q 

p=q 
pAq 

-(po q) 

[ ] or [-] 

pcq 

p==q 
p+q 
pq 
-(p q) 

-(p+ q) 

-(p == q) 
-(pc q) 
-p 
p 

[- -] or [- - -] 

poq 

-(pA q) 
-(p = q) 

-(p ~ q) 
---p 

--p 

In this table, the letters are quite indifferent: replacing either letter by 
any other letter, or by a negative, or by any relation, throughout the table, 
gives a valid result. ~ The blank spaces in the table could also be filled; 
for example, the first line in the third column would be -,., -(p -q). But, 
as the example indicates, the missing expressions are more complex than 
any which are given, and possess little interest. The significance of the 
table is this: If, in any theorem, two expressions which belong in the same 
column of this table are connected, then these expressio1is may be reduced by 
postulate 1·8 and its consequences. For, by 2·77, a relation of any two in 
the same column gives the corresponding relation of the corresponding two 
in either of the other columns. But any theorem which relates expressions 
which belong in different columns of this table is not thus reducible, since 
any such difference of truth-value is ineradicable. This table also sum-
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manzes the consequences of postulate 1· -;: any m the ta lile 
giYes the expression 011 the same line \yith it anti in the next 
right. It follows that expressions in the column to 
expressions on the same line in the column to the right, ;since ~ i:; 

Just as postulate 1· i is the only source of asserted strict relations 
"'hich are not replaceable by the corresponding material 
the only theorems containing irreducible subordinate relations are ('on~ 
sequences of 1· 7. For this postulate is the onl,\' OIle in which 
truth-yalues are related, and is the onl,\' assumed principle h,\' which an 
asserted (or denied) truth-yalue can be altered. But if \w simply sub:,ti~ 
tute - for - in 1· i, it becomes the truism, -p -,! -po _-\5 a consequence, for 
e,'ery proposition in the system which contains strict relations or the truth
nlues, [-], [- -], l- -1, or [- - -], in any form, in such wise that these truth
values cannot be reduced to the simple negatiw, or the :::imple posith'e 
(the truth-value of p), by the use 1·8, the theorem which results if we 
simply substitute - for - in that proposition is a valid theorem. Or, to 
put it more clearly, if less accuratel;:; if any theorem iuyoh'e H, explicit!;-, 
or implicitly, in such wise that it cannot be reduced to H by the use (If 1·8, 
still the result of substituting - for - is valid. For example, 4·13, - -p -,! -- p, 

cannot be reduced by 1·8; - -p and - -p are irreducibly different truth
values. But substituting - for -, v\"e have -(-p) -l-(-p), and hence -i-p) 

c-(-p), or pcp. Propositions such as the pair --p-'!--p and -(-p) 

c-(-p) may be called "pseudo-analogues". If we reduce completely, 50 

far as possible, all the propositions which invoh'e H or strict relations, by 

the use of 1· 7 and 1· 8 and their consequences, and then take the pseudo
analogues of the remaining propositions, we shall find such pseudo-analogues 
redundant. They will all of them already be present as true analogues of 
propositions which are completely reducible. This transformation by 

means of postulates 1· 7 and 1·8, by which strict relations give the cor
responding material relations, may be represented b2'- the substitution 
scheme 

1)cq, P == q, -(p q), p+q, -p, p, -(p) 

p-'!q, p = q, -(poq), pAg, -p, --p, -(--p) 

Vie put -(p 0 q) and -(p q), -(- -p) and -(p), because p 01] as a main retor 
tion in theorems is reducible only when it is denied, and - -p is reducible 
only through its negative. As we have now shown (except for triads of 
d,"ads the reduction of which is still to be illustrated), propositions involving . , 
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expressions below the line are still valid when the corresponding expressions 
aboye the line are substituted. 

The transformation by {-/"'} of all the assumptions and theorems of the 

system of Strict Implication 1clzich can be thus completely reduced, and the 

re,iection of remaining propositions which involve expre88ion8 below the line 

(or the 8ubstitution for them of their pseudo-analogues), give8 preci8ely the 

~ystern of Jlaierialbnplication. 

All the postulates and theorems of Material Implication can be derived 
from the postulates and definitions of Strict Implication: the system of 
Strict Implication contain8 the system of Material Implication. We may 
further illustrate this fact by deriving from previous propositions the 
postulates and definitions of the calculus of elementary propositions as 
it appears in Principia .Mathenwtica.6 

pc. q = -p + q 

is theorem 4·23. 

4·41 pq=-(-p+-q) 

1·05 {-pip; -qlq}: -p+-q = -H-p)-(-q)1 

2·51: (1) = -p + -q = -(p q) 

2·63: (2) = -(-p+-q) = -[-(pq)] 

2·51: (3) = Q.E.D. 
(p == q) = (p c. q)(q cp) 

is the definition, 1· 07. 
4·42 p+pcp 

3·23: p+p~p 
4·15: (1) ~ Q.E.D. 

4·43 qc.p+q 

1 ·2 {-q I p; -pi q}: -p -q ~ -q 
2·61: (1) ~q~-(-p-q) 

1· 05: (2) = q ~ p + q 
4·15: (3) "iQ.E.D. 

4·1/.4 p+qc.q+p 

3·21: p + q "i q + p 
4·15: (1) -1 Q.E.D. 

4·45 p+(q+r)c.q+(p+r) 

3·24: p+(q+r)-1q+(p+r) 

4·15: (1) -1 Q.E.D. 

6 pp. 98-101, 114, 120. 

(Principia, * 1· 01) 

(Principia, *3·01) 
(1) 

(2) 

(3) 

(Principia, *4·01) 

(Principia, *1·2) 
(1) 

(Principia, *1·3) 
, (1) 

(2) 

(3) 

(Principia, *1·4) 
(1) 

(Principia, *1·5) 
(1) 
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For the proof of the last postulate in set in 
certain lemmas are needed which are of interest on their own account. 

4·51 pqer = pe('lel') = 'le(per) 

1·03 {pqI1J; rl'll: pqer = -[(pq)-rJ 

2·91 and 2·9: (1) = p q e r = -[p(q = -[q(p 

2·51: (2) = pqer = -!p-[-(q-r)Jl = -!q-[-(p-r)JI 

1·03: (3) = Q.E.D. 

4·52 pq'H = p~(qer) = 'l-i(pcr) 

1·02 {pq!p; riql: pq~r = -[(pq)-r] 

Remainder of proof, similar to the above. 

4·53 [(pcq)pHq 

2·4 {peq/p}: (pcqHCpcq) 

4·52 {peqjp; p!q; q/r}: (1) = Q.E.D. 
(1) 

It is an immediate consequence of 4· 53 that ., If p is asserted and pc q 
is asserted, then q may be asserted ", for, b~' our assumptions, if p is asserted 
and p c q is asserted, then r (p c q)pJ may be asserted. .-\nd if this is asserted, 
then by 4·53 and our operation of "inference", q can be asserted. But 
note that the relation which nlidates the assertion of q is the relation -l in 
the theorem. This principle, deduced from 4· 53, is required in the system 
of Material Implication (see Principia, *1·1 and *1·11). 

4·54 (-pc-qH'(qcp) 

4·3: 2·21-l Q.E.D. 

4·55 (p-lqH(prcqr) 

1·6 {-rlr}: (p ~ q)(q -l -1') -l (p -l -1') 

4·52: (1) = (p~'l) -l[(q-l-r)c(p-l-r)] 

'1·02 and 2·51: (2) = (p-lq)~[-(qr)c-(pr)] 
4·54: ,..,(qr) c-(pr) -l (prc'lr) 

1·6: (3) x(4) ~Q.E.D. 

4·56 (peq) c(prcqr) 

4·55 (Cpcq)plpJ: 4·53-l[(pcq)p]rcqr 

2·91: (1) = [(pcq)(pr)Jcqr 

4·51: (2) = Q.E.D. 

4·57 p cq = -q c-p 

4·3: 2·62 -l (p c q) -l (-q c -p) 

4·3: 2· 6 of (-q c -p) of (p c q) 

1· 06: (1) x (2) = Q.E.D. 

(1) 

(2) 

(3) 
(4) 

(1) 

(2) 

(1) 
(2) 
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4·58 (peq)(qer)e(per) 
4·56 {-rlr}: (peq) e(p-req-r) 
4·57: (1) = (peq) e[-(q-r) e-(p-r)] 

1·03: (2) = (peq)e[(qer)e(per)] 

4·51: (3) = Q.E.D. 

(1) 

(2) 

(3) 

4·58 is the analogue, in terms of material relations, of 1· 6. The method 
by which we pass from 1· 6 to 4·58 illustrates the reduction of triads of 
strict dyads in general. This reduction begins in the first line of the proof 
of 4·55. Here 1· G is put in the form 

(p -i q) -i [(q -i r) e (p -i r)] 

1 2 3 4 5 

The relation numbered 4 is already a material relation. This is character
istic of strict triads. Relations 3 and 5 are reduced together by some 
consequence of 1·8, in a form in which the asserted relation is material. 
Then, as in 4·56, relations 1 and :2 are reduced together by the use or 4·53 
as a premise. This use of 4·53 is quite puzzling at first, but will become 
clearer if we remember its consequence, "If p is asserted and p e q is asserted, 

, then q may be asserted". This method, or some obvious modification of it, 
applies to the reduction or any triad of strict dyads which the system gives. 

We can now proye the last postulate for Material Implication. 

4·59 (qer) e[(p+q) e(p+r)] (Principia, *1·6) 
4·58 {-pip}: (-peq)(qer)e(-1Jer) (1) 

4·51: (1) = (q e r) e [(-p e q) e (-p e r)] (2) 

4·24: (2) = Q.E.D. 

These are a sufficient set of symbolic postulates for Material Impli
cation, as the deyelopment of that system from them, in Principia Mathe

mat-ica, demonstrates. However, in the system of Strict Implication, those 
theorems which belong also to Material Implication are not necessarily 
derived from the aboye set of postulates. They can be so derived, but the 
transformation {-/ ""} produces them, more simply and directly, from their 
analogues in terms of strict relations. 

IV. EXTENSIONS OF STRICT IMPLICATION. THE CALCULUS OF CONSIST

ENCIES AND THE CALC"GLUS OF ORDINARY INFERENCE 

From the s;ymmetrical character of postulate 1· 8, and from the fact 
that postulate 1·7 is converted by negating both members, i. e., p -1- NP, 



it follows that, since the transformation 
transformation, (-:-1, is possible. And since 
by negating both members, those expressions which are 
by {-/ -} will be transformed through their b;: 
expressions 'which are transformed through their 
be transformed directly b~- [-/-1. Hence we han,' 

f f -(p .;, q), -(p = 
l - i -} = .... c:.._-=:..:.-=-~_.:~ ... ~.: __ . ___ : 

. -(p c'1), -(p == '1), 

This substitution scheme ma~- be verified by reference to 
page 312. The transformation '-I represent" the fact 

:- -; will 

- -p 

in the column to the left, in this table, give expressions in the middle column: 
{-/-} represents the fact that expressions in the middle column friw ex
pressions in the column to the right. 1-.'-1 eliminated striet relations: 
{-/-} eliminates material relations. As in the preyiotls c:a::c, :'0 here, a 
dyad of dyadic relations, or a relation connected with p, -]1. -po l'te., can 
be transformed by 1·8. and its consequence:; when and onl~- the 
connected expressions appear in the same column of that table. Thus 
transformation {-I-} is subject to the same sort of limitation as is /-,-1. 

The transformation {-/-}, eliminating material relations, already 
been illustrated in those tables in Section II, in which theorems ill term" of 
strict relations were compared with analogous proposition:- in term:; of 
material relations. Theorems in the right-hand column of those tables 
result from those in the left-hand column by the transformation: -,-l· 
The proofs of 3·11,3·12,3·13,3·14,3·31, :3·32,3·33,3·34, ;)·52, :1·53, 
and 3· 55 indicate the method of this tran~forma tiol1. Theorem 3·54 indi
cates a limitation of it. As we haye noted, triadic strict relations are not 
expressible in terms of strict dyads alone. Consequently, in the ease of 
triadic relations, the transformation {-/-I cannot be completel;; carried 
out. This is an important limitatio~, since postulate 1· G, which is necessary 
for any generality of proof, is a triadic strict relation. It means that any 
system of logic in which there are no material relations cannot symbolize 
its own operations. Since strict relations are the relations of inten:;ion, 
this is an important observation about calculuses of intension in general. 

The vertical line in the substitution scheme is to indicate that the 
transformation {-/-} is arbitrarily considered to be complete when no 
material relations remain in the expression. p and -]1 will be transformed 
when connected with a material relation which is transformed; when not 
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so connected, p and -p remain. They could be transformed in all cases, 
but the result is needlessly complex and not instructive. 

The system, or partial-system, which results from the transformation 
{-/-l may be called the Calculus of Consistencies. It can be generated 
independently by the following assumptions: 

Let the primitive ideas be: (1) propositions, p, q, r, etc., (2) -p, (3) -p, 

(4) po q, (5) p = q. 

Let the other strict relations be defined: 

I. p A q = -( -p 0 -q) 

II. p -i q = -(p 0 -q) 

For postulates assume: 

III. poq-iqop 

IV. qop~--p 

V. --p~pop 

VI. p = -(-p) 

Assume the operations of "Substitution" and "Inference" as before, 
but in place of "Production" put the following: If p ~ q is asserted and q ~ r 
is asserted, then p ~ r may be asserted. By this principle, proof is possible 
without the introduction into the postulates of triadic relations. 

The system generated by these assumptions is purely a calculus of 
intensions. It is the same which would result from performing the trans
formation {-/-I upon all the propositions of Strict Implication which 
admit of it, and rejecting any which still contain expressions, other than p 

and -p, below the line. It contains, amongst others, all those theorems 
concerning strict relations (except the triadic ones) which were exhibited 
in Section II in comparison with analogous propositions concerning material 
relations. 

More interest attaches to another partial-system contained in Strict 
Implication. If our aim be to create a workable calculus of deductive 
inference, we shall need to retain the relation of the logical product, p q, 
but material implication, p c q, and probably also the material sum, p +,q, 
may be rejected as not sufficiently useful to be worth complicating the 
system with. The ideas of possibility and impossibility also are unnecessary 
complications. Such a system may be called the Calculus of Ordinary 
Inference. The following assumptions are sufficient for it. 
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Primitit'e Ideas: (1) Propositions, p, q, r, etc., 
(5) p = q. 

Definitions: 

A. p Aq = -p -i q 

B. po q = -(p -i -q) 

C. (p=q)=(P-iq)(q-ip) 

[D. p + q = -(-p -q)] Optional. 

Postulates: 

E. (-p -i q) -i (-q -i p) 

F. pq-ip 

G. p-ipp 

H. peq r) -i q(p r) 

1. P-i-(-p) 

J. (p-iq)(q-ir)-i(p-i'r) 

1(. pq-ipoq 

L. (p q -i r s) = (p 0 q -i r 0 s) 

319 

-p, p-iq, p q, 

All of these assumptions are propositions of the system of Strict Impli
cation. A. is 4·22, B. is 4·26, C. is 1·06, and D. is 1·05; E. is 2·3, F. is 
2'1, G. is 1·3, H. is 1·4, I. is 1·5, J. is 1·06, K. is 4·26, and L. is an im
mediate consequence of 4·32 and 4· 35. The Calculus of Ordinary Inference 
is, then, contained in the system of Strict Implication. It consists of aU 
those propositions of Strict Implication which do not involve the relation 
of material implication, pc q [or the material logical sum, p + q]. But 
where, in Strict Implication, we have -p, we shall haw, in the Calculus of 
Ordinary Inference, -(p 0 p) or p -i -po Similarl~' - -p wiII be replaced 
by -(-p 0 -p) or -p -i p, and - -p by pop or -(p -i -p). In other words, 
for' p is impossible' we shall have' p is not self-consistent' or 'p implies 
its own negation'; for 'p is necessary' we shall have 'the negation of p is 
not sell-consistent' or 'the negation of p implies p'; and for' p is possible' 
we shall have 'p is self-consistent' or 'p does not imply its own negation'. 

,The Calculus of Ordinary Inference contains the analogues, in terms of 
p q, p A q, and p -i q, of all those theorems of :Material Implication which 
are applicable to deductive inference. It does not contain the useless and 
doubtful theorems such as "A false proposition implies any proposition ", 
and "A true proposition is implied by any proposition ". As a working 
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system of symbolic logic. it is superior to Material Implication in this 
respect, and also in that it contains the useful relation of consistency, po q. 

On the other hand, it a,"oids that complexity which may be considered an 
objectionable feature of Strict Implication. 

The s~"stem of Strict Implication admits of extension to propositional 
functions by methods such as those exhibited in the last chapter. For 
the working out of this extension, several modifications of this method are 
desirable, but, for the sake of brevity, we shall adhere to the procedure 
which is already familiar so far as possible. In view of this, the outline 
to be given here should be taken as indicatiye of the general method and 
results and not as a theoretically adequate account. Since, as we have 
demonstrated, the system of Material Implication is contained in Strict 
Implication, It follmys that, with suitable definitions of IT cpX and ~ rpx, 

the whole theor~" of propositional functions, as previously developed, may 
be derived from Strict Implication. ITcpx will here be interpreted more 
e:ll:plicitly than before, " cpx is true in all (actual) cases," or " cpx is true of 
ewry;r 'which 'exists"'. And ~cpx will mean" cpX is true in some (actual) 
case ", or "There' exists' at least one x for which cpx is true". The noveltr 
of the calculus of propositional functions, as derived from Strict Implica
tion, will come from the presence, in that system, of -p, - -p, - -p, and the 
strict relations. ''Ie might expect that if cp:i: is a propositional function, 
- cpX ">"QuId be a propositional function. But such is not the case; - rpx is a 
proposition. For example, "It is impossible that 'x is a man but not 
mortal'" is a proposition although it contains a variable. So is " Nothing 
can be both A and not-A", which predicates the impossibility of ";1; is A 
and x is not-A". It would be an error to suppose that all the propositions 
which contain variables are such because they involve the idea ofimpossi
bility, or necessity, but the most notable examples, the laws of mathe
matics, are propositions, and not propositional functions, for precisely this 
reason. 'IYnen stated in the accmate hypothetical form-i. e., as the 
implications of certain assumptions-they are necessary truths. 

Since -cpX is a proposition, - -ipX, - -cpX, and all the strict relations of 
propositional functions will be propositions. If ipX and l/Ix are propositiol"tal 
functions, then '. 

ipX 0 if;x is the proposition - - (cpx x l/Ix) ; 

ipXA1/ix is the proposition-(-ipx x-l/Ix); 

cpx ~ l/Ix is the proposition -(cpx x-l/Ix) 
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"\Ye shall ha ye the law, - If:l.' ~ IT - IfJ:, "If If,t i8 im pO:3sihle, then it is 
false in all cases"". Hence also, :::: 1fJ:' -i - - .p.r, .. If .p.l' is true. 

then <p.?; is possible". The first of these giYe5 us one mo~t important COll

sequel1ce, 
(<pd' oj 1/1:[") oj ITx (<;.1' c lj-.l') 

"If it is impossible that <pJ.~ be true and 1/I:c false, then in no (actual) ea,;e 

is <p.t true but 1/I:c false", or "If (pJ.: strictly implies 1/1.1:, then r;.r 

implies 1/Ix", This connects the noyd theorems of this theory or propo
sitional functions with the better known propositions which result from 
the extension of :\Iaterial Implication. Similarly we shaH ha';e 

( <p:t. A 1/1;1:) -l IIA 1f:1.· + 1/I:r) 

and ::::. (\Cd' x 1/Ix) oj (\C;1: 0 1/I:r) 

If we use z( <pz) to denote the class determined b~' <p.::, that is, the class 
of all x's such that <px is true, then we deri\'"e the logic of classes from this 
calculus of propositional functions, by the same general type of procedure 
as that exhibited in Section III of Chapter I\". If we let a = z(<p:), 

(3 = z(1/Iz), the definitions of this calculus will be as follows: 

"x IS a member of the class a, determined by the function If.:" meanil 
" ipX n is true". 

(a-i{3) = (<px~1/I;t;) 

(a c (3) = IIzC ipX c 1/Ix) 

(a = (3) = (<px = 1/Ix) 

(a == (3) = II",( <pX == 1/Ix) 

-a = x(-ipx), or 

(a x(3) = x('PX x'if;x), 

(a+{3) = x(ipx+'if;x), 

1 = x(rx oj rx) 

o = -1 

-a = X -(x € a) 

or (ex x (3) = .1'[(x € a) X (x E is)] 

or (ex + (3) = x[(x E ex) + (x E ml 

a c (3 is the relation" All members of a are also members of fJ"-a relation 
of extension. It is defined by "In ever~· (actual) case, either If x is false 
or 1/Ix is true"; or "There is no (actual) case in which ipX i~ true and 1/Ix 

false"-II,,(ipxcfx) = IIxC-<px+1/t.1:) = II,-(cpxx-il'x). a-i{3 is the cor
responding relation of intension: it is defined by ":~\ecessarily either <pX is 
false or 1/Ix is true", or "It is impossible that <pX be true and 1/Ix false", 

22 



3'):) A Slln'ey of Symbolic Logic 

that is, (~a' -i 1/;x) = (-~,r A 1/;.1:) = "'(loX x-1/;x). a -i {3 may be correctly 
interpreted "The class-concept of a, that is, cp, contains or implies the 
class-concept of {3, that is, 1/;". That this should be true may not be at 
once clear to the reader, but it will become so if he study the properties of 
a -i [3, and of ~x -i 1/;~"t, in this system. 

Since we ha .... e 

we shall ha \"e also 

( \OX -i 1/;.1:) -i IIi cpx c 1/;x) 

(a -J (3) -i (a C (3) 

If the class-concept of a implies the class-concept of {3, then e .... ery member 
of a will be also a member of {3. The intensional relation, -i, implies the 
extensional relation, c. But the ret'erse does not hold. The old "law" of 
formal logic, that if a is contained in {3 in extension, then {3 is contained in a 

in intension, and .... ice versa, is false. The connection between extension 
and intension is b~' no means so simple as that. 

This discrepancy between relations in extension and relations in inten
sion is particularI;v evident in cases where one of the classes in question is 
the null-class, 0, or the universe of discourse, 1. As was pointed out in 
Chapter IY, we shall have for every "individual", a.', 

X E 1, and -(x E 0) 

Also, for any class, a, we shall ha .... e 

ac1, and OCa 

These last two will hold because, since sx -i SX is always true when significant, 
-(s:l: -i sx) always false, we shall have, for any function, cpX, 

II,,[ cpx c (sa: -J sa')] 
and II.:f-(s."t -i sx) c cpx} 

'Ve shall have these because "A false proposition materially implies any 
proposition ", and" A true proposition is materially implied by any propo
sition." But since it does not hold that" A false proposition strictly implies 
any proposition ", or that "A true proposition is strictly implied by any 
proposition ", we shall not have 

loX -i (sa: -i sa:) 
or -(tx -J sx) -i cpX 

And consequently we shall not have 

a -J 1, or O-ia 

If 'Y is a null class, we shall have" All members of 'Yare also members of [3, 
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whateyer class {3 may be". But we slwll nol ., The 
implies the class concept of /3, whatewr class {3 may be ". 
of a class-concept are not affected b;,-" the fact that the cIass 

The relation, a == {3, is material or extensional 
classes a and t3 consist of identical members"; a = {3 is strict or 
equiYalence, "The class-concept of a is equh'alent to the class-concept of {3". 
It is obyious that 

(a = {3) -l (a == {3) 

but that the reverse does not hold. The relation intensions and 
extensions is ·unsymmetrical, not symmetrical as the medienll 
would haye it. And, from the point of "ie,\" of deduction, relations of 
intension are more po·werful than relations of extension. 

a + (3 and a X t3 are relations of extension-the familial' ., logical sum" 
and "logical product" of two classes. What ahout the corresponding 
relations of intension? This most important thing about them-there are 
none. Consider the equiyalences, 

(aA{3) = ,~(<pxA;/I:r) = ;r[(.rEa)A(xep)} 

and (a 0 (3) = :r(<p.1: 0 ;/I;r) = x[(;r E a) 0 (.1:' € ~)1 

<pX o;/lx is a proposition-the proposition - -('P.1' X ifi.t) , "It is p08sible that 
<pX and ;/Ix both be true". And being a proposition, either it is true of 
every x or it is true of none. So that (X 0 {3, so defined, would be either 
1 or O. Similarly <p:t: A ifia: is a proposition, either true of eyer.': .r or false 
of every x; and (X A t3 would be either 1 or O. Consequently, a A p and 
a 0 t3 are not relations of a and f3 at all. The produet and sum of classes 
are relations of extension, for which no analogous relations of intension 
exist. This is the clue to the failure of the continental successors of Leibniz. 
They sought a calculus of classes in intension: there IS no slIch calculus, unless 
it be confined to the relations a -l {3 and a = {3. Holland reall~' came in 
sight of this fact when he pointed out to Lambert the difficulties of logical 
"multiplication" and logical" division". 7 

The presentation of the calculus of propositional functions and calculus 
of classes here outlined,-and of the similar calculus of relations,-would 
involve man V subtle and vexatious problems. But we have thought it 
worth while ;0 indicate the general results which are possible,\vithout dis
cussing the problems. But there is one important problem which involves 
the whole question of strict implication, material implication, and formal 

7 See above, p. 35. 
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implication, which must be discussed-the meaning of "implies". This 

is the topic of the next section. 

Y. THE l\IEAXIKG OF "hlPLIES" 

It is impossible to escape the assumption that there is some definite 
and "proper" meaning of "implies". The ,yord denotes that relation 
"which is present when we "validly" pass from one assertion, or set of 
assertions, to another assertion, without any reference to additional "evi
dence". If a s~'stem of symbolic logic is to be applied to such valid infer
ence, the meaning of ., implies" which figures in it must be such a "proper" 
meanmg. 'Ye should not hastily assume that there is only one such 
meaning, but "\ye necessaril~' assert that there is at least one. This is no 
more than to sa~': there are certain ways of reasoning that are correct or 
valid, as opposed to certain other "ways which are incorrect or invalid. 

Current pragmaticism in science, and the passing of "self-evident 
axioms" in mathematics tend to confuse us about this necessity. Pure 
mathematics is no longer concerned about the truth either of postulates or 
of theorems, and definitions are always arbitrary. vVhy, then, may not 
symbolic logic have this same abstractness? "What does it matter whether 
the meaning of "implies" which figures in such a system be "proper" or 
not, so long as it is entirely clear? The ans\yer is that a system of symbolic 
logic may haye this kind of abstractness, as yrill be demonstrated in the next 
chapter. But it cannot be a criterion of 'L'alidinference unless the meaning, 
or meanings, of "implies" which it involves are "proper". There are 
two methods by which a system of symbolic logic may be developed: the 
non-logistic method exemplified by the Boole-Schroder Algebra in Chapter 
II, or the logistic method exhibited in Principia .Mathematica and in the 
development of Strict Implication in this chapter. The non-logistic method 
ialt'es ordinary logic for granted in order to state its proofs. This logic which 
is taken for granted is either "proper" or the proofs are invalid. And if 
the logic it takes for granted is not the logic it develops, then we have a 
most curious situation. A s~'mbolic logic, logistically developed-i. e., 
without assuming ordinary logic to validate its proofs-is peculiar among 
mathematical systems in that its postulates and theorems have a double 
use. They are used not only as premises from 1chich further theorems are 
deduced, but also as rules of inference by which the deductions are made. 
A system of geometry, for example, uses its postulates as premises only; 
it gets its rules of inference from logic. Suppose a postulate of geometry 
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to be, perfectl~, acceptable as an abstract mathematical 
false of "our space". Then the theorems which spring from thi" a~"Hmp
tion may be likewise false of "our space". But :ltill the po:-mlate will 
truly imply these theorems. Howe\"cr, if a postulate of 
used as a rule of inferencc, be false, then not only will somc of the 
be false, but some of the theorems will be inralidlp inferred. The u,;e of 
the false postulate as a premise will introduce false theorems; its use (1:': a 
rule of inference will produce inL'alid proofs. "Abstractne::;s" in mathe-
matics has always meant neglecting any que~tioll of truth or in 
postulates or theorems; the peculiar case of symbolic logic ha~ far 
been overlooked. But we are hardl~' l'ead~' to speak of a "good" abstract 
mathematical system whose proofs are arbitrarily im·alid. rntil we arc, 
it is requisite that the meaning of "implies ,. in an~' s;'I·"tem or s~'mholic 
logic shall be a "proper" one, and that the theorem:l-u~ed (1" of 
inference-shall be trlle of this meaning. 

Unless" implies" has some" proper" meaning, there is no criterion of 
validity, no possibility eYen of arguing the question whether there is one or 
not. And yet the question What is the" proper" meaning of .. implies ,.~ 
remains peculiarly difficult. It is difficult, first, because there is no common 
agreement which is sufficiently self-conscious to decide, for example, about 
"material implication" or "strict implication ". Enn those who reel quite 
decided in the matter are easil;; confused by the subtletie" of the problem. 
And, second, it is difficult because argument on the topic is Il!'eessaril;,l' 
petitio pinc':pl:i. One must make the Socratic presumption that one's 
interlocutor already knows the meaning of "implies ", and agree" with 
one's self, and needs only to be made aware or that fact. One must ::1Up
pose that the meaning in denotation is clear to all, as the meaning of "cat" 
or "life" is clear, though the definition remains to be determined. If two 
person~ should really disagree about "implies "-should huye different 
"logical sense "-there would be nothing to hope for from their argument. 

In consideration of this peculiar involution of logical questions, the 
best procedure is to exhibit the alternatives in some detail. 'When the 
nature of each meaning of "implies", and the consequences of taking it to 
be the "proper" one have been exhibited, the case rests. 

vVe have already drawn attention, both in this chapter and in Chapter II. 
to the peculiar theorems which belong to all systems based on material 
implication. We may repeat here a few of them: 

(1) A false proposition implies any proposition; -p c: (p c: q) 
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(2) A true proposition is implied by any proposition; q c (p c q) 

(3) If 'p does not imply q, then p is true; -(p c q) c p 

(4) If p does not imply q, then q is false; -(1) c q) c-q 

(5) If p does not imply q, then p implies that q is false; 
-(p c q) c (p c -q) 

(6) If p does not impl~' q, then' p is false' implies q; -(p c q) c (-p c q) 

(7) If p and q are both true, then p implies q and q implies p; 

p q c (p cq)(q cp) 

(8) If 1) and q are both false, then p implies q and q implies p; 

-p -q c (p c q) (q c p) 

These sufficiently characterize the relation of material implication. It is 
obyiously a relation between the truth-yalues of propositions, not between 
any supposed content or logical import of propositions. "p materially 
implies q" means "It is false that p is true and q false". -"VI these the
orems, and an infinite number of others just as "peculiar" follow necessarily 
from this definition. The one thing which this relation has in common 
with other meanings of "implies "-a most important thing of course-is 
that if p is true and q is false, then p does not materially imply q. 

As has been said, there are any number of such "peculiar" the'orems 
in any calculus of propositions based on material implication.s These the
orems do not admit of any application to valid ·inference. In a system of 
material implication, logistically deyeloped, there is nothing to prohibit 
their being used as rules of inference, but when so used they give theorems 
which are eyen more peculiar and quite as useless. If we apply these 
theorems to non-symbolic propositions, we get startling results. "The 
moon is made of green cheese" implies "2 + 2 = 4",-because q c (p c q). 

Let q be "2 + 2 = 4" and p be "The moon is made of green cheese". 
Then, since "2 + 2 = 4" is true, its consequence above is demonstrated. 
"If the puppy's teeth are filled with zinc, tomorrow will be Sunday". 
Because the puppy's teeth are not filled with zinc, and, an;.'W'ay, it happens 
to be Saturday as I write. A false proposition implies any, and a true 
proposition is implied by any.9 

There are, then, in the system of Material Implication, a class of propo
sitions, which do not admit of any application to valid inference. And 

8 Every theorem gives others by substitution, as well as by being used as a ru1e of 
inference. And there are ways whereby, for any such theorem, one other which is sure to 
be "peculiar" also can be derived from it. And also, it can be devised so that no result of 
one shall be the chosen resu1t of any other. Hence the number is infinite. 

9 Lewis Carroll wrote a Symbolic Logic. I shall never cease to regret that he had not 
heard of material implication. 
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all the other, non-"peculiar", theorems or }.Iaterial find their 
analogues in other systems. Hence the presence of these peculiar and U:;€'

less theorems is a distinguishing mark of s;ystems based upon material 
implication. 

There can be no doubt that the reason wh;; the relation or material 
implication is the basis of every calculus of propositions except ::\IacColl's 
and Strict Implication is a historical one. Boole developed his algebra for 
classes; he then discoyered that it could also be interpreted so as to co\'er 
certain relations of propositions. Peirce modified Boole's algebra by intro
ducing the relation of inclusion, ,yhich 'iye have symbolized by c. a c b 
has all the properties of the relation between a and b when e\-er,:-- member of 
a is also a member of b. It has one notable peculiarity; if a is 11 <:laiS:> ,,-hich 
has no members-a "zero ') class-then for any class .r:, a c.r. Xow the 
idea of "zero)) in any branch of mathematics seems a little more of an 
arbitrary com'ention than the other numbers. The arithmetical fact that ° < 8 seems "queer" to children, and it would, most likely, have seemed 
" queer" to an ancient Roman. Once 0 is defined, its "queer" properties, 
as well as the obvious one, 8 + 0 = 8, are ineyltable. It is similar with 
the" null class". a 0 = 0, "That which is both a and nothing is nothing", 
is necessary. And (a b = a) = .(a c b), '" That which is both a and b, 
is a' is equivalent to 'All a is b''') leads to the necessary consequence 
o c a, If there are no sea serpents, then " All sea serpents are arthropods" 
necessarily follows. This consequence seems more'" queer" and arbitraQ' 
because it is a relation of extension with no analogue in intension. The 
concept "sea serpent" does not imply the concept "arthropod"-as has 
been pointed out, 0 -i a does not hold. And in our ordinary logical thinking 
we pass from intension to extension and vice versa without noting the 
difference, because the relations of the two are so generally analogous. 
But once we make the necessary distinction of relations in extension from 
relations in intension, it is clear that 0 c a in extension is a necessary conse
quence of the concept of the null-class. Entirely similar remarks apply to 
the proposition a c 1, except that "a is contained in eveQ-thing" does not 
seem so "queer". 

Boole suggested that the algebra of classes be reinterpreted as a calculus 
of propositions by letting a, b, c, etc., represent the times when the proposi
tions A, B, 0, etc., are true. Then Peirce added the postulate which 
holds for propositions but not for classes (or for propositional functions), 
a = (a = 1). A propos-ition is either true in all cases, or true in none. 
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The class of cases in which any proposition is true is either 0 or 1. This 
gi\'es the characteristic property of the Two-Valued Algebra. If we add 
to this the interpretation of a c b, "All cases in which A is true are cases in 
which B is true ", or loosel~' "If A, then B", we have the source of the 
peculiar propositions of ::\Iaterial Implication: For 0 c b.. a c 1, 0 cO, 
o c 1, and 1 c 1 follow from the laws which are thus extended from classes 
to propositions. A false proposition [= 0] implies b. And a implies any 
true proposition [= 1]. Of any two true propositions [= 1] each implies 
the other. Of an~' two false propositions [= OJ each implies the other. 
And any false proposition implies any true one. "A false proposition 
materially implies an~' proposition" means precisely "If there are no 
cases in which .A is true (if a, = 0) then all cases in which A is true are 
also cases in which B is true". It does not mean "B can be inferred from 
any false proposition". "A true proposition is materially implied by any 
proposition" means only, "If B is true [= 1], then the cases in which A is 
true are contained among the cases (i. e., all cases) in which B is true". 
It does not mean" Any true proposition can be inferred from A". Inference 
depends upon meaning, logical import, intension. a c b is a relation purely 
of extension. Is this material implication, a c b, a relation which can 
validly represent the logical nexus of pr09f and demonstration? 

Formal implication II",( <{!xc 1/IX) is defined in terms of material implication. 
It means "For ever~' value of x, <{!x materially implies ifJx". Choose any 
value of x, say for convenience z, and unless <{!z is false, 'ifIz is true. Cer
tainly this relation approximates more closely to the usual meaning of 
"implies". But the precisely accurate interpretation of IIi <{!x c ifJJ,~) 

depends upon what is meant by the "values of x". 1Ve have spoken of 
them as "cases" or "individuals" .• It makes a distinct difference whether 
the" cases" comprehended by II,,( !p."t C ifJ;r) are all the possible cases, all 
conceit'able individuals, or only all actual cases, all individuals which e.'t:ist 
(in the universe of discours~). Either interpretation may consistently be 
chosen, but the consequences of the choice are important. Let us survey 
briefly the more signincant considerations on this point. 

In the mst place, supposing that the second choice is made and II". be 
taken to signify "for all x's which exist", what shall we mean by "exist"? 
This is entirely a matter of convenience, and logicians are by no means at 
one in their use of the term. But any meaning of "exist" which connnes 
it to temporal and physical reality or . to what is sometimes called "the 
factual" is inconvenient because, for example, we may wish to distinguish 
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the status of CUl'\"es without tangents in mathematics the ~tat\l" or 
the square of the circle. This distinction is usually made tlwt 
the former "exist", since the general mathematical idea 01 a CllTY!' 

admits such cases, and their equations may be giyen; while the sqmm: nf 
the circle is demonstrably impossible. Again, it is inconvenient to ~a:\ that 
Apollo exists in Greek mJihology, whereas the god .-\.gni doe:; 110t. Xow 
the god Agni is not inconceiyable in Greek m~-thology; we find no reeol'd 
of him, that is all. Similarly, while the usual illustrations of mathematical 
"non-existence" are impossibilities, there is still a difference between what 
"does not exist" in a mathematical system and what is impossihle. Sup
pose we haye an "existence postulate" in a set which are consistent 
independent each of the others-the O-postulate in the Boole-SchriSder 
Algebra, for example. Without this postulate, the remainder of set 
generate a system in \\"hich 0 does not e:ri8t. But it is as the con
sistency of this postulate with the others demonstrates. The frequent 
statement that" mathematical existence" is the same as ., po::;sibi1ity" j" a 
very thoughtless one. 

The most convenient use of "exist" in logic is, then, one which makes 
the meaning depend upon the uniwrse of discourse, but one which does 
not, as is sometimes supposed, thereb~" identify the .• existent" and the 
possible. (" Possible" similarly varies its meaning with the unh-erse of 
discourse.) On the other hand, it is inconvenient to use" exi::;t" so widely 
that" existence" is a synonym for" conceivability". This is so ob'dous 
in the most frequent universe of discourse" "phenomena ", that it hardJy 

needs to be pointed out. 
rsing "exists" in this sense, in which "existence" is narrower than 

"possibility" but may, in some universes or discourse, be wider than "the 
factual", it makes a difference whether II" in IIx( <p.l.' Co ..p.r) denotes only 
existent x's or all possible x's. All American silyer coins dated 1915 have 
milled edges. Let cp.t be "x is an American silver coin dated 1915 ", and 
let ..px be "x has a milled edge". There is no necessity about milled edges 
for silver coins, unless one speak in the "legal" uniYerse of discourse. For 
this illustration, IIicpx Co -.px) will be true if TIz denote only actual .r'si 
false if it denote all possible X'8. One illustration is as good as a hundred; 
if TI,,(cpx Co ..px) refer to all possible x's, TII(<px Co ..p:r) means "It is impos::;ible 
that cpx be true and t/lx false". If TI:r(cpx Co ..px) be confined to actual x's. 
then it signifies a relation of extension, "The class of things of which 'P.t 

is true is contained in the class of things of which ..p;r; is true". 



330 A Slluey of Symbolic Logic 

It might be thought that the meaning of TIx( \?X c t/tx) is sufficiently 
determined by saying that the" yalues of x" in a function, cpx, are all the 
entities for which cp;r, is either true or false. But this is not the case, for 
there is question whether, of an a; "which does not exist, <pX is always true, 
or always false, or sometimes true and sometimes false, or never either 
true or false. Here again, the question is, in part, one of conyention. 
From the point of view of extension, it is obvious that if <pX can be predi
cated at all of an:t· which does not exist, it will always be false. (Predicating 
something, \?, of an "individual", x, which does not exist, should be dis
tinguished from asserting that an empty class, a, which exists though it 
has no members, is included in some other, a c b. "The King of France is 
bald" is an example of the former; "All sea serpents have green \vings", 
of the latter.) And the point of view of extension is frequently that of 
common sense. In this sense, ";1; is a man" is false of my non-existent twin 
brother, and even identical propositions such as. "My twin brother is my 
twin brother" are false of the non-existent. But from the point of view of 
intension, an identical proposition is always true, and <pX may be true or 
it may be false of a non-existent x. If the point of view of extension be 
taken with reference to propositional functions, then <pX is either not
significant or false of the non-existent, and -.f;x is similarly not-significant 
or false. If ip;C and -.f;x are not significant of the non-existent, then TI",( ipX 

c -.f;.r) means "For every existent x, ip;'C materially implies 1f;x". If ipX 

and -.f;x are significant and false of the non-existent, then ip;r, c 1f;x is true 
of aery non-existent x, since of two false propositions, each materially 
implies the other. Hence on this interpretation, ITa;( <pX c -.f;;r,) is significant 
for all possible x's and true in case every existent x is such that <pX c -.f;x. 
Hence its meaning will still be accurately rendered by "For every e:k';'stent 
x, ip;r, materially implies -.f;x". If the point of view of intension be taken 
with reference to propositional functions, or if it be left open, then TI",( <pX 

c1f;x) may mean "For every possible x, ipX materially implies -.f;x", or we 
may, by convention, still confine it to the meaning" For every existent x, 
<pX materially implies -.f;x".l 0 

10 We would gladly have spared the reader these details, but we dared not. If logicians 
do not consider one another's views, who will? In this connection we are reminded of a 
passage in Lewis Carroll's Symbolic Logic (pp. 163-64) anent the controversy concerning 
the existential import of propositions: 

"The writers, and editors, of the Logical text-books which run in the ordinary 
grooves-to whom I shall hereafter refer by the (I hope inoffensive) title 'The Logi
cians '-take, on this subject, what seems to me to be a more humble position than is 
at all necessary. They speak of the Copula of a Proposition 'with bated breath" 
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The ground being now somewhat cleared, we return to 
considerations which are really more imporhmt. 'What are ('Ol!SC

quences of taking IIz( ipX C -.f;x) in one or the other meaning~ The fir6t 
and most important is this. It is a desideratum that we should able to 
deriye the calculus of classes from the calculus of propositional functions. 
And in this calculus or classes, the inclusion relation or dasses Q; c!3 or 
z( ipz) c z( -.f;z) can be defined by 

z( ipz) c z( -.f;z) = IIx( 'f,l: C 1/;:/.') 

or by some equh"alent definition. If II.~( 'P' C -.f;.1") mean "For all :I.'"s 
which exist, ipxc-.f;x", then ac[3, or z('fz) cZ(-.f;::), so defined, is the use. 
ful relation or extension, "All the e:xisting things which are members of a 

are also members of f3". Such a relation can represent such propositions as 
"All American silver coins dated 1915 have milled edges". If, on the other 
hand, we interpret IIx( ipee c -.f;x) to mean "For all possible x's, <pl' C -.f;x, 

then two courses are open: (1) ,ve can maintain that \yhate\"er is true of 
all existent things is true of all possible-thus abrogating a useful and 
probably indispensable logical distinction; or (2) we can allow that \yhat 
is true or false of the possible depends upon its nature as conceived or 
defined. If we make the second choice here, the consequence is that 
a c [3, or z( ~z) C z( -.f;z), defin~d by 

z( cpz) c z( -.f;z) = IIxC ipX c -.f;:r) 

or in any equivalent fashion, such as 

a C {3 = II,,(x fa ex € ~) 

IS the relation of intension "The class-concept of a ?'mplies the class
concept of [3". This relation does not s;ymbolize such propositions as 

almost as if it were a living, conscious Entity, capable of declaring for itself what it 
chose to mean and that we, poor human creatures, hud nothing to do but to ascertain 
what was its sovereign will and pleasure, and submit to it. 

"In opposition to this view, I maintain that any writer of a book is fully authorised 
in attaching any meaning he likes to any word or phrase he intends to use. If I find 
an author saying, at the beginning of his book, 'Let it be understood that by the 
word "black" I shall always mean "white", and that by the word "white" I shall 
always mean "black",' I meekly accept his ruling, howeverinjudieious I may think it. 

"And so, with regard to the question whether a Proposition is or is Il?t to be 
understood as asserting the existence of its Subject, I maintain that every "TIter may 
adopt his own rule, provided of course that it is consistent 10ith itself and "ith the 
accepted facts of Logic. 

"Let us consider, one by one, the various views that may logicaUy be held, and 
thus settle which of them may convenierdly be held; after which I shall hold myself 
free to declare which of them I intend to hold." 
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"All American silwr coins dated 1915 have milled edges" or "It rained 
every week in ::"Iarch ", or in general, the frequent uni\'ersaI propositions 
which predicate this relation of extension. 

_-lnd u:lzicheL'er interpretation of II" (rpJ' C 1/;.1') be chosen, we can now 
point out one interesting peculiarity of it. ,Ve quote from Principia 

Jl atlzemat£ca: 11 "In the usual instances of implication, such as '" Socrates 
is a man' implies 'Socrates is a mortal"', we have a proposition of the 
form " 'P.l~ C 1/;.1:" in a case in which "IIx( <p;r c 1/;.r) " is true. In such a case, 
we feel the implication as. a particular case of a formal implication". It 
might be added that'" Socrates is a man' implies' Socrates is a mortal'" 
,is not a formal implication: it is a material implication and a strict impli
cation, but not formal. One may object: "But as a fact, in such cases 
there is a tacit premise of the type' All men are mortal " and this is precisely 
the formal implication, IIx( <p.t C 1/;x) ". Granted, of course. But add this 
premise, and still the implication is strict and material, but not formal. 

"All men are mortal and Socrates is a man" does not formally imply "Soc
rates is mortal" .12 If the "proper" meaning of "implies" is one in which 
"Socrates is a man" really and truly implies" Socrates is mortal", or one 
in which" All men are mortal and Socrates is a man" really and truly 
implies H Socrates is mortal ", then formal implication 'is not that proper 
meaning. Howe\'er much any formal implication may lie behind and 
support silch an inference, it cannot state it. 

One further consideration is worthy of note: If II",( rpx C 1/;x) be restricted 
to ;1;'S which exist, then it will denote such propositions as '" x is an Ameri
can silver coin of 1.915' implies';t has a milled edge"'; '" x is a :l\10nday 
of last ::\Iarch' implies';r is a rainy day' "; "x has horns and divided hoofs' 
implies' x chews a cud'''. In other words it will denote relations which are 
"contingent", and due to "coincidence". It may be doubted v;hethel' 
such relations are "properly" implications. But upon this question the 
reader will very likel~· find himself in doubt. What we regard as the 
reason for this doubt will be pointed out later. 

The strict implication, p -i q, means "It is impossible that p be true 

11 I, p. 21. We render the symbolism of this passage in our own notation. 
L'l It may be objected that the calculus gives the formal implication 

II</>, 0/ /[II,C lOX c tfx) x I"z] c tfz} 

which is the formal implication of t{;z by II" (lOX C tfx) x rpz, which is required. But this is 
not what is required. The variables for all values of which this proposition is asserted are 
tp and tf, not X and z. The reader will grasp the point if he specify tp and tf here, and then 
allow them to vary in his illustration. 
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and q false", or "p is inconsistent with the denial of If". 'Y.i' -1 

means "It is impossible that <pl' be true and 1/;;(' false ". or a 

of cp.t is inconsistent with the denial of ,p.t". Some explanation of' .. im
possible" or "inconsistent" ma .... seem called for terms can 
either of them be explained by the other, but one or the other must he taken 
for granted. Yet the following obseryations ma~' be of as::;istanec: c\n 

assemblage or set of propositions ma~' be such that all of them can be true 
at once. They are mutuall~' compatible, compossible, consistent. There 
may be more than one such set .. ,\Y11ocver denies this on metaphy;:;ical 
grounds must assume the burden of proof. And whether. in fact, the 
possible and the actual, the consistent and the concurrently true-in-fact 
are identical, at least one must admit that our concept of the possible 
differs from our concept of the actual: that we mcan b.y ., consistent" some
thing different from "concurrentl~' true-in-fact ". Any set of mutually 
consistent propositions may be said to define a "possible situation" or 
"case" or "state of affairs". And a proposition may be "true" of more 
than one such possible situation-may belong to more than one such set. 
Whoeyer understands "possible situation" thereby understands ., con
sistent propositions ", and vice Yersa. And whoever understands "im
possible situation" understands also "inconsistent propositions". In 
these terms, we can translate p -{ q by " An~' situation in which p should be 
true and q false is impossible". 

But "situation" as here used should not be confused \yith Boole' s 
"times when A is true". A proposition, once true, is alwa~'s true. A 
proposition may be true of some possible" situations" and false of others, 
but it must be in point of fact either simply true or simply false. This is 
what constitutes the distinction between a proposition and a propositional 
function such as "x is a man". This last is, in point of fact, neither true 
nor false. 18 

Of special interest are the cases of strict implication in which more 
than two propositions are involved. We haye already seen that strict 
triadic relations take the form of strict dyads, one member of which is 
itself a non-strict or material dyad. \Vhere we might expect p -I (q -{ r), 

we have instead p -{ (q c r) or p q -{ r. Instead of 1) 0 (q 0 r) we have 
po (q 1') or (p q) or. 'Ye may now discowr the reason for this-the reason 

13 On the other hand, it is impossible to deny that a proposition llllty be true of some 
"situations" and false of others unless one is prepared to maintain that whatever assertion 
can be refer:ed to different possible "circumstances", is not a proposition. And whooycr 
asserts this must, to be consistent, recognize that there is only one true proposition, the 
whole of the truth, the assertion of all-fact, the Hegelian J dee. 
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not in mathematical-wise but in terms of common sense about inference. 
Suppose that p, q, and the negation of r, form an inconsistent set. They 
cannot all be true of any possible situation. 'Ve have s;ymbolized this by 

-(poqo-r). 

(poqo-r) = -[p 0 (q-r)] = p~-(q-r) = p~ (qer) = pq~r 

If p, q, and -r form an inconsistent set and, in point of fact p and q are both 
true, then r must be true also. So much is quite clear. The inference 
from (p q) to r is strict. But suppose p, q, and -r cannot all be true in 
any possible situation and suppose (in the actual situation) p only is known 
to be true. ,Ye can then conclude that "If q is true, r is true". 

-(p 0 q 0 -r) = p ~ (q e r) 

This inference is also strict, but our symbolic equivalents tell us that thi8 
"If ... , then ... " is not itself a strict implication; it is ger, a 
material implication. That is the puzzle; why is it not strict like the 
other? The answer is simple. If p, g, and -r cannot all be true in any 
possible situation and if p is true of the actual situation, it follows that 
g and -r are not both true of the actual situation, that is, -(q -r), but it 
does not rollow that q and -r cannot both be true in some other pos8ible 
situation (in which p should be ralse)-it does not follow that q and -r are 
inconsistent, that -(q 0 -r). Consequently it does not follow that q ~ r, 
that q strictly implies r. If, then, we begin with an a priori truth (holding 
for all possible situations), that p, q, and -r form an inconsistent set, and 
to this add the (empirical) premise "p is true", we get, as a strict con
sequence, the proposition "If q is true, r is true". But the truth of this 
consequence is confined to the actual situation, like the premise p. If, in 
this case, we go on and infer r from q, our inference may be said to be valid 
because the additional premise, p, required to make it strict, is taken ror 
granted. The inference depends on p q ~ r. Or we may, if we prefer, 
describe it as an inference based on material implication, which is valid 
because it is confined to the actual situation. Much of our reasoning is 
of this type. We state, or have explicitly in mind, only some or the premises 
which are required to give the conclusiop strictly. We have omitted or 
forgotten the others, because they are true and are taken for granted. 
In this sense, much or our reasoning may be said to make use of material 
or rormal implications. This is probably the source of our doubts whether 
such propositions as "'x is an American silver coin dated 1915' implies 
'x has a milled edge"', and '''x has horns and divided hoofs' implies 'x 
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chews a cud'" represent what are "properly" 
such cases, the reasoning is valid only if the missing 
render the implication strict, are capable of being supplied. 

The case where two premises are strictly required for inference i" typi

cal of all those which require more than one. 'Shere three, jJ, I]. and r, 
are required for a conclusion, 8, ,ye have 

p (q r) -18 = P -1 (q r c 8) = p -1 [I] c (r c 

And similar equations hold where four, fh-e, etc., premises are required 
for a conclusion. Only the main implication is strict. In other worth, a, 

strict implication may be complex but is alwa~'s dyadic. 
Another significant propert~· of strict implicatio'n, as oppo~ed to material 

implication or formal implieation, is that if ,Ye haye '''.r. is a man' strictly 
implies 'x is a mortal''', lye have likewise '''Socrates is a man' strictly 
implies' Socrates is a mortal' ", and vice Yersa. Propositions strictl~· impl~· 
each other when and only when any corresponding propositional ilmctiolls 
similarly imply one another. According to this yie,,, of implkation, 
'" Socrates is a man' implies' Socrates is a mortal'" is not simply to 
be the kind of relation upon which most inference depends: it i8 the 
tion upon ,,,hich all inference does depend. Strict implication is the 
symbolic representative of an inference which holds equall~· ,Yell whether 
its terms are propositions or propositional functions. 

One further item concerning the properties of strict implication to 
do with the analogues of the "peculiar" propositions of :\Iaterial Impli
cation. These analogues are themselves somewhat peculiar: 

3·52 -p -1 (p -i q) If 1) is impossible, then p implies any propositioll, q. 

3·55 - -13 -i (q -1 p) If p is necessarily true, then p is implied by any 

proposition, q. 

These two are the critical members in this class of propositions: the re
mainder follow from them and are of similar import. In the" proper" 
sense of "implies", does an absurd, not-seIf-consistent proposition imply 
anything and everything? A part of the answer is contained in the 
observation that "necessar~'" ~nd "impossible" in ever~·-day use are 
commonly hyperbolical and no index. No proposition is "impos:::.ible" 
in the sense of -p except such as imply their own contradiction; and no 
proposition is "necessary" in the sense of - -p unless its negation is self
contradictory. Again, the implications of an absurd proposition are no 
indication of what would be true if that absurd proposition were true. 
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It i~ the nature of an absurd proposition that it is not logically conceh"able 
that it should be true under any possible circumstances. And, finally, 
we can demonstrate that, in the ordinary sense of "implies", an impossible 
proposition implies an~·thing and everything. It 'will be granted that in 
the" proper" sense of "implies", (1) "p and q are both true" implies" q is 
true ". .-\.nd it will be granted that (2) if two premises p and q imply a 
conclusion, r, and that conclusion, r, is false, while one of the premises, 
say p, i:; true, then the other premise, q, must be false. That is, if "All 
men are liars" and" John Blank is a man" together imply" John Blank 
is a liar", but" John Blank is a liar" is false, v.-hile " John Blank is a man" 
is true, then the other premise, " All men are liars ", must be false. And it 
,yill be granted that (3) If the two propositions, p and q, together imply r, 
and r implies 8, then p and q together imply 8. These three principles being 
granted, it follows that if q implies r, the impossible proposition "q is true 
but r false" implies anything and eYer;ything. For by (1) and (3), if q 
implies 1', then "p and q are both true" implies 1', ,But by (2), if "p and q 
are both true" implies r, "q is true but r is false" implies "p is false". 
Hence if IJ implies r, then" q is true butr is false" implies the negation of 
any proposition, p. And since 1) itself may be negative; this impossible 
proposition implies anything, "Today is ?lIonday" implies "Tomorrow 
is Tuesday", Hence "Toda~' is ::\Ionday and the moon is not made of 
green cheese" implies" Tomorrow is Tuesday". Hence" Today is Monday 
but tomorrow is not Tuesday" implies "It is false that the moon is not 
made of green cheese", or "The moon is made of green cheese". 

This may be taken as an example of the fact that an absurd proposition 
implies any proposition, It should be noted that the principles of the 
demonstration are quite independent of anything we have assumed about 
strict implication, though they accord with our assumptions. 

'Ye shall now demonstrate: first, that there are a considerable class of 
propositions which imply their own contradiction and are thus impossible, 
and a class of propositions which are implied b~' their own denial and are 
thus necessaQ"; and second, that an impossible proposition implies any 
proposition, and a necessary proposition is implied by any. These proofs 
will be similarly free from any necessary 'appeal to symbolism, making use 
only of indubitable principles of ordinary logic. 

Any proposition which should witness to the falsity of a law of logic, 
or of any branch of mathematics, implies its own contradiction and is 
absurd. "p implies p" is a la,\" of logic; and may be used as an example. 
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In general, any implication, "p implies q," is shown rabe the fact that 
"p is true and q is false". Thus the la'w "p implies p" would be dbproH'd 
by the discowry of any proposition p such that ., p is true and p j,,; false ". 
This is, then, an impossible proposition. "p is true and p is false 0' implie" 
its o\vn negation, \vhich is "At least one of the tv,o, not-p and p, is true". 
For" p is true and p is false" implies" p is true". And" p is true" implies 
"At least one of the two, p and q, is true 0'. And not-p, "p is false," may 
be this q. Hence" p is true" implies" At least one of the h .... o, p and not-i), 
is true". Hence" p is true and p is false" implies" At least one of the two, 
p and not-p, is true". The negation of "q is true and r is false" is "_:\.t 
least one of the two, rand not-q, is true". If p here replace both q and r, 
we have as the negation of "p is true and 1J is false .... "At least one of the 
two, p and not-p, is true". And it is this which" p is true and 11 is rahe" 
has been shown to imply. 

lVIerely for purposes of comparison, we resume this proof in the symbols 
of Strict Implication: 

p -i p, and p ~ p = -(p -p). Hence (p -p) is an impossible proposition. 
By the principle p q -{ p, we have p -p -i p. (1) 

And by the principle q -{ p + q, we have 11 -i (-p + Ij ). (2) 

By the principle (p -{ q) (q -il') ~ (p -{ r), this gh-es (1) x (2) 

p -p -{ (-p+ p) 

But (-p + p) = -(p -p). Hence p -p -i -(p -p). 

This is only one illustration of a process which might be carried out in 
any number of cases. Take anyone of the laws of Strict Implication and 
transform it into a form which has the prefix, '"". For example, 

P q-i qp = -rep q) -(q p)] 

The impossible proposition thus discovered, in the example [(p q) -(q p)], 

can always be shown to imply its own negation. The reader will easily see 
how this may be done. Such illustrations are quite generally too complex 
to be followed through without the aid of symbolic abbreviation, but only 
the principles of ordinary logic are necessary for the proofs. 

Wherever we find an impossible proposition, we find a necessary propo
sition, its negation. For example, "At least one of the two, p and not-p, 

is true" is a necessary proposition. vYe have just demonstrated that it is 
implied by its own denial. 

(Some logicians have been inclined of late to deny the existence of 
23 
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necessary propositions and of impossible, or self-contradictory, propositions. 
lYe beD" their attention to the above, and request their criticisms.) 

" ,,\Ye shall now prove that every impossible proposition-i. e., every 
proposition which implies its own negation-implies anything and every
thing. If p implies not-p, then p implies any proposition, q. We have 
alread~' shown that if q implies r, then" q is true and r is false" implies any 
proposition. Hence if p implies not-p, "p is true but not-p is false", 
that is, "p is true and p is true ", implies any proposition, q. But p is 
equh'alent to "p is true and p is true". Hence if p implies not-p, p implies 

any proposition, q. 
Any necessary proposition, i. e., any proposition, q, whose denial, not-q, 

implies its own negation, is implied b;r any proposition, r. This follows 
from the abo\'e by the principle that if p implies q, then" q is false" implies 
"p is raIse". In the theorem just proved, "If p implies not-p, then p 
implies any proposition, q", let p be "not-q", and q be "not-r". 'Ve 
then have" If not-q implies q, then not-q implies any proposition, not-r". 
And if not-q implies not-r, then "not-r is false" implies "not-q is false", 
i. e., r implies q. Hence if not-q implies q, then any proposition, r, implies q. 

But "a man convinced against his will is of the same opinion still". 
In what honest-to-goodness sense are the" necessary" principles of logic 
and mathematics implied by any proposition? The answer is: In the 
sense of presuppositions. And what, precisely, is that? Any principle, A, 
may be said to be presupposed by a proposition, B, if in case A were false, 
B must be false. If a necessary principle were false, anything to which 
it is at all relevant would be false, because the denial of such a principle, 
being an impossible proposition, implies the principle itself. And where a 
principle and its negative are both operative in a system, anything which 
is proved is liable to disproof. Imagine a system in which there are con
tradictory principles of proof. That the chaotic results which would ensue 
are not, in fact, yalid, requires as presuppositions the truth of the necessary 
laws of the system. These laws-those strictly" necessary "-are always 
logical in their significance. The logic of "presupposition" is, in fact, a 
very pretty affair-we have no more than suggested its character here. 
The time-honored principles of rationalism are thoroughly sound and 
capable of the most rigid demonstration, however much the historic rational
ists have stretched them to cover what they did not cover, and otherwise 
misused them. 

In this respect, then, in which the laws of Strict Implication seemed 
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possibly not in accord with the" proper ., sense of "implies", we ha \"(' demon
strated that they are, in fact, required by obyiously sound principles. 
though in ways ,yhich it is easy to overlook. 

It may be urged that eyery demonstration "e have given shows not 
only that impossible propositions impl:; anything and necessarr proposi
tions are implied by anything, but also that a false proposition implies 
anything, and a true proposition is implied by an~1:hing. The answer is 
that an impossible proposition is false, of course, and a necessary proposition 
is true. But if anyone think that this validates the doubtful theorems of 
Material Implication, it is incumbent upon him to show that some proposi
tion that is false but not impossible implies anything and eveQ,thing, and 
that some proposition which is true but not necessary is implied b;>;' all propo
sitions. And this cannot be done. 

lYe shall not further prolong a tedious discussion b~' any special plea: 
for the "propriety" of strict implication as against material implication 
and formal implication. Anyone "who has read through so much technical 
and uninteresting matter has demonstrated his right and his ability to 
draw his own conclusions. 



CHAPTER VI 

S\l\IBOLIC LOGIC, LOGISTIC, AL~D MATHEMATICAL 
METHOD 

I. GEXERAL CHARACTER OF THE LOGISTIC METHOD. THE" ORTHODOX" 

'VIEW 

The method of an~· science depends primarily upon two factors, the 
medium in which it is expressed and the type of operations by which it 
is developed. "Logistic" ma~· be taken to denote any development of 
scientific matter which is expressed exclusivel~r in ideographic language and 
uses predominantly (in the ideal case, exclusively) the operations of sym
bolic logic. Though this definition would not explicitly include certain 
cases of what would ~ndoubtedly be called "logistic ", and we shall wish 
later to present an alternative view, it seems best to take this as our point 
of departure. 

"Modern geometry" differs from Euclid most fundamentally by the 
fact that in modern geometry no step of proof requires any principle except 
the principles of logic.1 It was the extra-logical principles of proof in 
Euclidean geometry and other branches of mathematics which Kant 
noted and attributed to the "pure intuition" of space (and time) as the 
source of "synthetic judgments a priori" in sCience. The character of 
space (or of time), as apprehended a priori, carries the proof over places 
where the more general principles of logic-"analysis"-cannot take it. 
Certain operations of thought are, thus, accepted as valid in geometry 
because, geometry is thought about space, and these transformations are 
valid for spatial entities, though they might not be vali~ for other things. 
The principal impetus to the modern method in geometry came from the 
discovery of non-Euclidean s~·stems which must necessarily proceed, to 
some extent, without the aid of such space intuitions, a priori or otherwise. 
And the perfection of the modern method is attained when geometry is 
entirely freed from dependence upon figures or constructions or any appeal 

1 In the opinion of most students, Euclid himself sought to give his proofs the rigorous 
character which those of modern geometry have, and the difference of the two systems is 
in degree of attainment of this ideal. But Euclid's successors introduced methods which 
s~ill further depended upon intuition. 

840 
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to the perceptual character of space. \\"hen geometry is thus 
this appeal to intuition or perception, the ~ethods 'of "proof afe 
those which are independent of the nature of tlze subject matter of the 
that is, the methods of logic, which are valid for any subjeet matter.2 

Coincidently ,vith this alteration of method comes another change
geometry is now abstract. If nothing in the proofs depends upon the fact 
that the terms denote certain spatial entities, then, lc1wtCl'er may be meant 
b T" . t" "I ""t' I"" II I" .. 1 . J' pom , pane, nang e, para e ", etc., If t 1e assumptlOns be 
true, then the theorems will be. Or in any sense in which the assumptions 
can be asserted, in that same sense all the consequences of them can be 
asserted. The student may carry in his mind an\' ima(>e of "trianO'le" 

~.... ....;:, ~ 

or "parallels" which is consistent with the propositions a bout them. ::\Iore 
than this, even the geometrical relations asserted to hold between "points ", 
"lines", etc., may be given an~T denotation which is consistent with the 
properties assigned to them. In general, this means for relations, that any 
meaning may be assigned which is consistent with the type of the relation
e. g.~ transitive or intransitive, symmetrical or unsymmetrical, one-one or 
one-many, etc.-and with the distributions of such relations in the system. 

Essentially the same evolution has taken place in arithmetic, or "alge
bra". Any reference to the empirical character of tally marks or collections 
of pebbles has become unnecessary and naive. The "indefinables" of 
arithmetic are specified, very likely, as "A class, K, of elements, a, b, c, 

etc., and a relation (or' operation ') +". Definitions have come to have 
the character of what Kant called "transcendental definitions"-that is 
to say, they comprehend those properties which differentiate the entit~- to 
be defined by its logical relations, not those which distinguish it for sense 
perception. The real numbers, for instance, no longer denote the possible 
lengths of a line, but are the class of all the "cuts" that can be made (logi-

2 I cannot pass over this topic without a word of protest against the widespread notion 
that the development of modern geometry demonstrates the falsity of Kant's Transcendemal 
Aesth6tik. It does indeed demonstrate the falsity of Kant's notion that such "synthetic" 
principles are indispensable to mathematics. But, in general, it is accurate to say that 
Kant's account is concerned with the source of our certainty about the uwld of nature, 
not with the methods of abstract science which did not exist in his day. Nothing is more 
obvious than that the abstractness of modern geometry comes about through definitely 
renouncing the thing which Kant valued in geometry-the certainty of its applicability 
to our space. Wben geometry becomes abstract, the content of the seience of space splits 
into two distinct subjects: (1) geometry, and (2) the metaphysics of spaee, which is con
cerned with the application of geometry. This second subject has been much discussed 
since the development of modern geometry, usually in the skeptical or "pragmatic" spirit 
(vide Poincare). But it is possible-and to me it seems a fact-that Kant's basic argu
ments are, with qualifications, capable of being rehabilitated as arguments concerning the 
certainty of our knowledge of the phenomenal wCYrld, i. e. as a metaphysics of space. 
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call;y specified) in a dense, denumerable series, of the type of the series of 

rationals. 
Thus abstractness and the rigorously deductive method of development 

have more and more prevailed in the most careful presentations of mathe
matics. TVhen these are completely achieved, a mathematical system becomes 
nothing more nor less than a complex logical structure.3 Consider any two 
mathematical systems which have been given this ideal mathematical form. 
They will not be distinguished by the entities which form their "subject 
matter", for the terms of neither system have any fixed denotation. And 
they will not be distinguished by the operations by means of which they 
are developed, for the operations will, in both cases, be simply. those of 
logical demonstration. 

A word of caution upon the meaning of "operation" is here necessary. 
It is exactly by the elimination of all peculiarly mathematical operations 
that a system comes to haye the rigorously deductive form. For the 
grocer who represents his putting of one sack of sugar with another sack 
by 25 + 25 = 50, [+ 1 is a s;ymbol of operation. For the child who learns 
the multiplication table as a means to the manipulation of figures, [xl 
represents an operation, but in an;y rigorously deductive development of 
arithmetic, in Dedekind's Was sind und ~()as sollen die Zahlen, or Hunting
ton's "Fundamental Laws of Addition and Multiplication in Elementary 
Algebra ", [+ 1 and [xl are simply relations. An operation is something 
done, performed. The only things performed in an abstract deductive system 
are the logical operations-variables are not added or multiplied. But, 
unfortunately, such relations as [+ 1 and [xl are likely to be still spoken 
of as "operations". Hence the caution. 

Since abstract mathematical systems do not differ by any fixed meaning 
of their terms, and since they are not distinguished through their operations, 
they will be different from one another only with respect to the relations 
of their terms, and probably also in certain relations of a higher order
relations of relations. And the relations, being likewise abstract, will 
differ, from system to system, only in type and in distribution in the systems; 
that is, any two systems will differ only as types oj logical order. 

3 M. Pieri, writing of "La Geometrie envisagee comme systeme purement logique", 
says: "Je tiens pour assure que cette science, dans ces parties les plus elevees comme 
dans les plus modestes, va en s'aff'irment et en consolidant de plus en plus comme l'etude 
d'un certain ordre de relations logiques; en s'af'franchissant peu a peu des liens qui l'attachent 
a l'intuition, et en revetant par buite la forme et les qualiMs d'un science ideale purement 
deductive et abstraite, comme l' Arithmetique". (Bibliotheque du congres internationale de 
Philosophie, III, 368.) 
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The connection between abstract or "pure" mathematic::: and lou'i:-stic 
is, thus, a close one. But the two cannot be simDiY identified. J:'c:~ the 
logical operations by which the mathematical s~'stem is generated from 
assumptions may not themselves be expressed in ideographic syrnboL. 
Ordinarily they are not: there are symbols for "four" and "eongruent", 
"t . I" d" I "b h . f ' rlang e an p us , ut t e operatIOns 0 proof are expressed b~' .. It 
... then ... ", "Either ... or ... , " etc. Only when the logical 
operations also are expressed in ideographic symbols do we ha ,'e logistic. 
In other words, all rigorously deductive mathematics gets its principles of 
operation from logic; logi:stic gets its principles of operation from 

logic. Thus logistic, or the logistic development of mathematics, is a name 
for abstract mathematics the logical operations of whose den.lopment 
are represented in the ideographic symbols of symbolic logic. 

Certain extensions of s:,;mbolic logic, as 'we have reviewed it, are needed 
for the satisfactory expression of these mathematical operations-particu
larly certain further developments of the logic of relations, and the theory 

of what are called "descriptions" in Principia Jlathematica. But these 
necessary additions in no wise affeet what has been said of the relation 
bet,veen symbolic logic and the logistic development of mathematics. 

II. Two VARIETIES OF LOGISTIC METHOD: PEAXO'S Formulaire AXD 

Principia lJ1athematica. THE K"'TURE OF LOGISTIC PROOF 

The logistic method is, then, a universal method, applicable to any 
sufficiently coordinated body of exact knowledge, And it gives, in mathe

matics, a most prec~se and compact development, displa~'ing clearl~' the 
type of logical order which characterizes the system. However, there are 

certain variations of the logistic method, and systems so developed may 
differ widely from one another in wa;-s which have nothing directly to do 

with the type and distribution of relations. One most important difference 

has to do with the degree to which the analysis of terms is carried out. 
"Number," for example, may be taken simply as a primitive idea. or it 
may be defined in terms of more fundamental notions. And these notions 

may, in turn, be defined. The length to which such analysis is carried, is 
an important item in determining the character of the system. Correl

atively, relations such as [+ 1 and [Xl may be taken as primith-e, or ther 
may be defined. And, finally, the fundamental propositions which generate 

the system may be simply assumed as postulates, or they may, by the ll.nal;"
sis just mentioned, be derived from those of a more elementary discipline. 
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In ""eneral the analysis of "terms" and of relations and the derivation of 
b , .. 

fundamental propositions go together. And the use of this analytic 
method requires, to some extent at least, a hierarchy of subjects, with 

s~-mbolic logic as the foundation of the whole. 
To illustrate these possible differences between logistic systems, it wiII 

be well to compare two notable de"\-elopments of mathematics: For1nulaire 
de JIathbnatiques4 of Peano and his collaborators, and Principia Mathe
matica of '\Yhitehead and Russell. These two are by no means opposites 
in the respects just mentioned. Principia 1~1 athernatica represents the 
farthest reach of the analytic method, having no postulates and no primitive 
ideas saye those of the logic, iyhile the Formulaire exhibits a partially hier
archic, partially independent, relation of various mathematical branches.5 

For example, in the Formulaire, the following primitive ideas are assumed 
for arithmetic, which immediately succeeds" mathematical logic ". 

:Xo signifies 'number', and is the common name of 0, 1, 2, etc. 

o signifies 'zero'. 
+ signifies 'plus'. If a is a number, a + indicates 'the number suc

ceeding a'. 6 

The primitive propositions, or postulates, are as follows: 7 

1·0 No f CIs 

1·1 DeNo 

1·2 aeNo.;,.a+eXo 

1 . 3 S E CIs • 0 e S : a € 8 • ;, " • a + € 8 : ;, • No E 8 

1 ·4 a, b € No. a + = b + . ;, . a = b 

1·5 aeNos;,.a+-= 0 

The symbol ;, here represents a~biguously "implies" or "is contained 
in "-the relation c of the Boole-Schroder Algebra. This and the idea of 
a class, "CIs ", and the €-relation, are defined and their properties demon
strated in the "mathematical logic". In terms of these, the above propo
sitions may be read: 

4 All our references 'will be to the fifth edition, which is written in the proposed inter
nationa! language,Interlingua, and entitled Formulario lllIathematico, Editio v (Torno v de 
Form11lrxrio completo). 

Ii The independence of various branches in the Formulaire is somewhat greater than a 
superficial examination reveals. Not only are there primitive propositions for arithmetic 
and geometry, but many propositions are assumed as "definitions" which define in that 
'discursive fashion in which postulates define, and which might as well be called postulates. 
Observe, for example, the definitions of + and X, to be quoted shortly. 

6 Section IT, § 1, p. 27. 
7 Ibid. 
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1·0 No is a class, or 'number' is a common name. 
1·1 0 is a number. 

1·2 If a is a number, then the successor of a is a number. 
1·3 If 8 is a class, and if 0 is contained in s., and if, for eyery re, 'a is 

contained in 8' implies' the successor or a is contained in s " then :'\'J is 
contained in 8 (eyery number is a member of the class s). 

(1·3 is the principle of "mathematical induction ".) 

1·4 If a and b are numbers, and if the successor of a = the successor 
of b, then a = b. 

1· 5 If a is a number, then the successor of a =i= O. 
The numbers are then defined in the obyious war: 1 = 0 :2 = 1 +, 

:3 = 2 +, etc.S The relation +., which differs from the primitiye idea, a +, 
is then defined by the assumptions: S 

3·1 a € No.::J. a + 0 = a 
(If a is a number, then a + 0 = a.) 

3·2 a, b € ~ 0 .::J. a + (b +) = (a + b) + 
(If a and b are numbers, then a + 'the successor of b' = 'the successor of 
a + b'.) 

The relation X is defined by: 10 

1·0 a, b, c € No.::J. a X 0 = 0 
1·01 a, b, c € No.::J. a X (b + 1) = (a X b) + a 
It will be clear that, except for the expression of logical relations, such 

as f and ::J, in ideographic symbols, these postulates and definitions are of 
the same general type as any set of postulates for abstract arithmetic. 
A class, No, of members a, b, c, etc., is assumed, and the idea of a +, "suc
cessor of a". The substantive notions, "number" and "zero", the de
scriptive function, "successor of," the relations + and X, are not analJ'sed 

. but are taken as simple notions.u However, the properties which numbers 
ha ve by virtue of being members of a class, i\ 0, are not taken for granted, as 
would necessarily be done in a non-logistic treatise-they are specifically 
set forth in propositions of the "mathematical logic" which precedes. 
And the other principles by which proof is accomplished are similarly 
demonstrated. Of the specific differences of method to which this explicit
ness of the logic leads, we shall speak shortly. 

8 See ibid., p. 29. 
9 Ibid. 
10 See ibid., § 2, p. 32. 
11 Peano does not suppose them to be unanalyzable. He says (p. 27): "Quaesitione 

si nos pate defini No, significa si nos pate scribe aequaIitate de forma, No = expressione 
composito per signos noto ~ ~ ? •••• , quod non est facile". (This was written after the 
publication of Russell's Principles of Mathematics, but before Principia Jfathematioo.) 
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In Principia Mathematica, there are no separate assumptions of arith~ 
metic, except definitions which express equi\'alences of notation and make 
possible the substitution of a single symbol for a complex of symbols. 
There are no postulates, except those of the logic, in the whole ''lork. In 
other words, all the properties of numbers, of sums, products, powers, etc., 
are here proved to be what they are, solely on account of what number is, 
what the relations + and X are, etc. Postulates of arithmetic can be 
dispensed with because the ideas of arithmetic are thoroughly analysed. 
The lengths to which such analysis must go in order to derive all the proper
ties of number solely from definitions is naturally considerable. We should 
be quite unable, within reasonable space, to give a satisfactory account of 
the entities of arithmetic in this manner. In" fact, the latter half of Volume 
I and the first half of Yolume II of Principia Matlzemat£ca may be said to 
do nothing but just this. However, we may, as an illustration, follow out 
the anar:,'sis of the idea of "cardinal number". This will be tedious but, 
with patience, it is highly instructive. 

'We shall first collect the definitions which are involved, beginning with 
the definition of cardinal number and proceeding backward to the definition 
of the entities in terms of which cardinal number is defined, and then to 
the entities in terms of which these are defined, and so on.12 

*100·02 NC = D'Xc. Df 

"Cardinal number" is the defined equivalent of "the domain of (the rela
tion) "Kc". 

*33·01 D = ~R[IX = x{C:3:yl.a::Ryj. Df 

"D" is the relation of (a class) IX to (a relation) R, when IX and R are such 
that IX is (the class) x which has the relation R to (something or other) y. 
That is, "D" is the relation of a class of x's, each of which has the relation. 
R to something or other, to that relation R itself. 

*30·01 R'y=(1X)(xRy). Df 

" R'y" means" the a; which has the relation R to y". 
Putting together this definition of the use of the symbol ' and the 

definition of "D", we see that "D'Nc" is "the x which has the relation 
D to Nc ", and this x is a class IX such that every member of a has the rela-

12 The place of any definition quoted, in Principia, is indicated by the reference number. 
The" translations" of these definitions are necessarily ambiguous and sometimes inaccurate, 
and, of course, any "translation" must anticipate what here follows-but in Principia 
precedes. 
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tion Xc to something or other. "D'R" is "the domain of the relation R", 
If aR" be "precedes", then "D'R" will be "the of all things 

which precede an~,thing". "Cardinal number", "XC." is defined as 
"D'Nc", "the domain of the relation Xc". 

'Ye now turn to the meaning of "Xc", 

*100·01 Kc = sm. Df 

"Nc" is the relation ohhe class of referents of" sm" to "sm "itself. first, 
let us see the meaning of the arrow over" sm ". 

*32·01 R = a p!a = x(.r R y)]. Df 

"R" is "the relation of a to y, where a and yare such that a is the class 

of_x's, each of which has the relation R to y". If "R" be "precedes", 
"R" will be the relation of the class "predecessors of y" to y it~elf. 

Now for "sm". \Ye shall best not stud;<.' its definition but a some\ .... hat 
simpler proposition. 

* 73 . 1 a sm ,6 • = • (a R) • R d ~ 1 • a = D'R • {3 = a' R 

" a sm ,6" is equivalent to "For some relation R, R is a one-to-one relation, 
while a is the domain of Rand ,6 is the converse-domain of R ". 

We have here anticipated the meaning of "a'R ,. and of "1 ~ 1 ". 

*33·02 a=~R[,6=y{cax).xRylJ. Df 

"a" is "the relation of ea class) (3 to ea relation) R, when {3 and Rare 
such that ,6 is the class of y's, for each of which (something or other) :t has 
the relation R to y". Comparing this with the definition of "D" and of 
"D'R" above, we see that "a'R", the converse-domain of R, is the class 

of those things to which something or other has the relation R. If" R" 
be "precedes ", "a'R" will be the class of those things which are preceded 

by something or other. 

*71·03 1 ~ 1 = R(R"a'R c 1. R"D'R c 1). Df 

This involves the meaning of "R", of ", and of "1". 

*32·02 R = ~ x(f3 = yCx Ry)}. Df 

"R" signifies "the relation of ,6 to x, when ,6' and a: are such that p is the 

class of y's to which x has the relation R. 

*37·01 R"fJ = x((ay) .y€,6.xRy}. Df 

" R",6" is "the class of x's such that, for some y, y is a member of fl, and x 

has tIfe relation R to y. In other words, "R"{3" (the R's of the (3's) is the 
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class of thinO's which have the relation R to some member or other of the 
" class (3. If "R" be "precedes", "R"(3" will be the class of predecessors of 

all (any) members of ,8. 
",Yiih the help of this last and of preceding definitions, we can now read 

;,fil·0:3. "1 ~1" is "the class (of relations) R, such that whatever has 
the relation R to any member of the class of things-to-which-anything-has
the-relation-R, is contained in 1; and whatever is such that any member 
of the class of those-things-which-have-the-relation-R-to-anything has the 
relation R to it, is contained in 1. " Or more freely and intelligibly: "1 ~ 1 " 
is the class of relations, R, such that if a R (3 is true, then a is a class of 
one member and {3 is a class of one member: "1 ~ 1" is the class of all 
one-to-one correspondences. Hence" a sm {3" means "There is a one-to
one correspondence of the members of a with the members of (3. "sm" 
is the relation of classes which are (cardinally) similar. 

The analysis of the idea of cardinal number has now been carried out 
until the undefined symbols, except" 1 ", are all of them logical symbols;
of relations, R; of classes, a, (3, etc.; of individuals, x, y, etc.; of propo
sitional functions such as x R y [which is a special case of !p(x, y)]; of 
"<px for some x", (3: x) • !p,l:; the relations E, c, and =; and the idea 
(1 x)(<p.i:), "the x for which <p,?; is true". This last notion occurs in various 
special cases, such as D'R, R"{3, etc. 

"1" is also defined in terms which reduce to these, but the definitions 
im"olved are incapable of precise translation-more accurately, ordinary 
language is incapable of translating them. 

*52·01 

*51·01 

*50·01 

1 = & { (3: x) • a = L ';1; } • 
..... 

L = I. Df 

I = ;f g (x = y). D£l3 

Df 

"I" is the relation of identity; "L" is the class of those things which have 
the relation of identity to something or other; and "1" is the class of such 
classes, i. e., the class of all classes having only a single member. Thus the 
definition of "1" is given in terms of the idea of individuals, x and y, of 
the relation =, of classes, and the idea involved in the use of the arrow 
over I, which has already been analyzed. This definition of 1 is in no 
wise circular, however much its translation may suggest that it is; nor is 
there any circularity involved in the fact that the definition of cardinal 
number requires the previous definition of "1". 

13 Strictly, analysis of 5, which differs from the defining relation, [ ... = .. ; Df), is 
required. But the lack of this does not obscure the analysis, so we omit it here. 
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\Ye have now completely accomplished the analysis of the 
number into constituents all of which belong to mathematical The 
important significance of tIus anal~-sis for the method im-olwd we must 
postpone for a moment to discuss the definition itself. 

If we go back over these definitions, we find that the notion of cardinal 
number can now be defined as follows: "Cardinal number" is the cIa:;:> 
all those classes the members of which have a one-to-one correspondence 
(with members of some other class). "Cardinal number" is the class of 
all the cardinal numbers; and a cardinal number is the class all tho::;e 
classes whose members have a one-to-one correlation ,yith the members or a 
gil-en class. This is definition" in e:-..'tension ", We most frequently think 
of the cardinal number of a class, (x, as a property of the class. Definition 
in extension determines any such propert~- by logically exhibiting the class 
of all those things 'which hare that property. Thus jf a be the class com
posed of Henry, Mary and John, the cardinal number of a will be deter
mined by logically exhibiting all those classes which haye a one-to-one 
correlation with the members of a-i. e., all the classes with three members. 
"3" will, then,- be the class of all classes having three members; "4". the 
class of all classes of four, etc. And" cardinal number" in general will be 
the class of all such classes of classes. 

It may be well to observe here also that, b~- means of ideographic sym
bols, we can represent exactly, and in brief space, ideas which could not 
possibly be grasped or expressed or carried in mind in any other terms . 

. Perhaps the reader has not grasped those presented: we can assure him it 
is not difficult once the symbolism is clear. _-illd if the s~'mbolism appals 
by its unfamiliarity, we would call attention to the fact that the number of 
different symbols is not greater, nor is their meaning more obscure than 
those of the ordinary algebraic signs. It is the persistent accuracy of the 
analysis that has troubled him; far be it from us to suggest that we do not 
like to think accurately, 

So much analysis may appeal to us as unnecessar~' and burdensome. 
But observe the consequences of it for the method, 'Yhen "cardinal 
number" is defined as "D'Nc," all the properties of cardinal number follow 
from the properties of "D" and "K c" and the relation between these 
represented by'. And when these in turn are defined in terms of "sm" 
and the idea expressed by the arrow, and so on, their properties follow from 
the properties of the entities which define them. And finaHy, when all the 
constituents of "cardinal number", and the other ideas of arithmetic 
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have been analvzed into ideas which belong to symbolic logic, all the propo
sitions about cardinal number follow from these definitions. When analysis 
of the ideas of arithmetic is complete, all the propositions of arithmetic 
follow from the definitions of arithmetic together with the propositions of 
logic. Xow in Principia jJJ atlzematica it is found possible to so analyze all 
the ideas of mathematics. Hence the whole of mathematics is proved 
from its definitions together with the propositions of logic. And, except 
the logic, no branch of mathematics needs any primitiM ideas or postulates of 
its own. It is thus demonstrated by this analysis that the only postulates 
and primitiye ideas necessary for the whole of mathematics are the postu
lates and primitive ideas of logic. 

In the light of this, we can understand Mr. Russell's definition of 
mathematics: 14 

"Pure :1Uathematics is the class of all propositions of the form' p im
plies q' where p and q are propositions containing one or more variables, 
the same in the two propositions, and neither p nor q contains any constants 
except logical constants. And logical constants are all notions definable 
in terms of the following: Implication, the relation of a term to the class 
of which it is a member, the notion of such that, the notion of relation, and 
such further notions as may be involved in the general notion of propositions 
of the above form." 

The content of mathematics, on this view, is the assertion that certain 
propositions imply certain others, and these propositions are all expressible 
in terms of "logical constants", that is, the primitive ideas of symbolic 
logic. These undefined notions, as the reader is already aware, need not 
be numerous: ten or a dozen are sufficient. And from definitions in terms, 
:finally, of these and from the postulates of symbolic logic, the whole of 
mathematics is deducible. 

The logistic development of a mathematical system may, like the arith
metic of the Formulaire, assume certain undefined mathematical ideas and 
mathematical postulates in terms of these ideas, and thus differ from an 
ordinary deductive system of abstract mathematics only by expressing the 
logical ideas which occur in its postulates by ideographic symbols and by 
using principles of proof supplied by symbolic logic. Or it may, like 
arithmetic in Principia jJJ athematica, assume no undefined ideas beyond 
those of logic, define all its mathe~atical ideas in terms of these, and thus 
require no postulates except, again, those of logic. Or it ~ay pursue an 

H Principles of Mathematics, p. 3. 
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intermediate course, assuming some of its ideas as primitive but defining 
others in terms of a pre,-iously deYeloped logic, and thus ~ome 
postulates of its own but still dispense with others which would hu,'e 
necessary in a non-logistic treatment. 

But \yhichever of these modes of procedure is adopted, the general 
method of proof in logistic will be the same, and will differ from an~' nOll

logistic treatment. _\ non-logi8tic deyelopment will proceed from postulates 
to theorems by immediate inference or the use of syllogism, or enth::meme. 
or the reductio ad ab8urdum, and such general logical methods. Or it may, 
upon occasion, make use of methods of reasoning the validity of which 
depends upon the subject matter. It may make use of "mathematical 
induction", which requires the order of a discrete series with a first term. 
Or if proofs of consistency and independence of the postulates are offered, 
these will make use of logical principles which are most complex and difficult 
of comprehension-principles of which no thoroughly satisfactory account 
has ever been giyen. The principles of all this reasoning will not be men
tioned; it will be supposed that they are understood, though sometimes 
they are clear neither to the reader nor to the mathematician who uses 
them, and they may even be such that nobody really understands them. 
(This is not to say that such proofs are unsound. Proofs by "mathematical 
induction" were valid before Frege and Peano showed that they are strictly 
deductive in all respects. But in mathematics as in other matters, the 
assurance or recognition of validity rests upon familiarity and upon prag
matic sanctions more often than upon conscious1,,\' formulated principles.) 
As contrasted with this, the logistic method requires that eyery principle 
of proof be explicitly given, because these principles are required to state 
each step of proof. 

The method of proof in logistic is sufficiently illustrated by any e:\.'iended 
proof of Chapter V. Proofs in arithmetic or geometry do not differ in 
method from proofs in the logic, and the procedures there illustrated are 
universal in logistic. An examination of these proofs will show that postu
lates and previously established theorems are used as principles of proof 
by 8ubstitutinq for the variables p, q, r, etc., in these propositions, other 
expressions which can be regarded as values of their variables. The general 

principle 
(p ~ q) -i (-q ~-p) 

can thus be made to state 
(p q ~ p) ~ [-p ~-(p q)} 
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by substituting p q for p and p for q. Or if fJ. € XC be substituted for p 

and p. € D'Xc for q, it states 

Thus any special case which comes under a general logical principle is 
stated by that principle, when the proper substitutions are made. This is 
exactly the manner in which the principles of proof which belong to sym
bolic logic state the various steps of any particular proof in the logistic 
de,-elopment of arithmetic or geometry. 

Returning to our first example, we discowr that in 

(p q -'! p) -i [-p -l -(p q)] 

the first half, p q -'! p, is itself a true proposition. 
proyed as, in fact, it is in the last chapter. lYe 
p q -'! P is stated by'the aboye to imply, that is, 

-p -i -(p q) 

Suppose this already 
can then assert what 

'Ye thus pro"e this new theorem by using p q -'! P as a premise. To use a 
previous proposition as a premise means, in the logistic method, exactly 
this: to make such substitutions in a general principle of inference, like 

(p -l q) -i (-q -i -p) 

that the theorem to be used as a premise appears in the first half of the 
expression-the part which precedes the main implication sign. That 
part of the e:<",})ression which follou:s the main implication sign may then 
be asserted as a consequence of this premise. 

There are two other operations which may be used in the proofs of 
logistic-the operation of substituting one of a pair of equivalent expressions 
for the other, and the operation of combining two previously asserted 
propositions into a single assertion.ls The first of these i~ exemplified 
whenever we make use of a definition. For example, we han>, in the system 
from which our illustration is borrowed, the definition 

ZJ+q = -(-p-q) 

and the theorem 

1) = -(-p) 

15 The operation of combining two propositions,. p and q, into the single assertion, 
p q, is not required in systems based on material implication, because we have 

pqcr=pc(qcr) 
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If in the definition, we substitute -p for p and -I] for ']. it ~tate:; 

-p+-q = -H-p)·-(-q)j 

And then, making the su"bstitutions which the theorem p = 
,ve haye 

-p+-q = -(pq) 

which may be asserted as a theorem. Again, if we return to the theorem 
proyed aboye, 

-p -l-(p q) 

'tve are alloy,;ed, by this last equivalence, to make the substitution in it or 
-p + -q for -(p q). Thus we prove 

-p -! -p+-q 

This sufficiently illustrates the part pla~'ed in proof b~' the substitution of 
equiyalent eX1>ressions. 

"\Ye may now see exactly what the mechanics of the logistic method is. 
The only operations required, or allowable, in proof are the following: 

(1) In some postulate or theorem of symbolic logic, other, and usually 
more complex, propositions are substituted for the variables p, q, r, etc., 
which represent propositions. The postulate or theorem in which these 
substitutions are made is thereby used as a principle of proof which states, 
in this particular case, the proposition \vhich results when these substi
tutions are made. 

(2) The postulate or theorem of logic to be used as a principle of proof 
may, and in most cases does, state that something implies something else. 
In that eYent, we may make such substitutions as will produce an expression 
in which that part which precedes the main implication sign becomes 
identical with some postulate or previouslJ' proved theorem-of logic, of 
arithmetic, of geometry, or ,vhatever. That part of the expression which 
follows the main implication sign may then be separately asserted as a new 
theorem, or lemma, which is thus established. The postulate or previously 
proved theorem which is identical 'with what precedes the main implication 
sign, in such a case, is thus used as a premise. 

It should here be noted that propositions of logic, of geometry, of any 
logistic system, may be used as premises; but only propositions of symbolic 
logic, which state implications, are used as general principles of inference. 

(3) At any stage of a demonstration, one of a pair of equivalent expres
sions may be substituted for the other. 

24 
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(4) If, for example, two premises are required for a certain desired 
consequence, and each of these premises has been separately proved, then 
the two may be combined in a single assertion. 

These are all the operations which are strictly allowable in demonstra
tions by the logistic method. To their simplicity and definiteness is 
attributable a large part of the precision and rigor of the method. Proof 
is here not a process in which certain premises retire into somebody's reason
ing faculty, there to be transformed by the alchemy of thought and emerge 
in the form of the conclusion. The whole operation takes place yisibly in 
the successh-e lines of work, according to definite rules of the simplest 
possible description. The process is as infallible and as mechanical as the 
adding machine-except in the choice of substitutions to be made, for which, 
as the reader may discover by experiment, a certain amount of intelligence 
is required, if the results are to be of interest. 

III. A "HETERODOX:" VIEW OF THE KAT'URE OF J\L-\.THEJl.L-\.TICS A:t-.."D OF 

LOGISTIC 

,\Ye have now surveyed the general character of logistic and have set 
forth what ma~- be called the" orthodox" view of it. As was stated earlier 
in the chapter, the account which has now been given is such as would 
exclude certain systems which would almost certainly be classified as 
logistic in their character. And these excluded systems are most naturally 
allied with another view of logistic, which we must now attempt to set 
forth. The differences between the "orthodox" and this " heterodox" 
yiew have to do principally with two questions: (1) 'Vhat is the nature of 
the fundamental operations in mathematics; are they essentially of the 
nature of logical inference and the like, or are they fundamentally arbitrary 
and e1l..-tra-logical? (2) Is logistic ideally to be stated so that all its assertions 
are metaphysically true, or is its principal business the exhibition of logical 
types of order without reference to any interpretation or application? 
The two questions are related. It will appear"that the systems which the 
preyious account of logistic did not cover are such as have been devised 
from a somewhat different point of departure. One might characterize 
the logistic of Principia Mathematica roughly by saying that the order of 
logic is assumed. and the order of the other branches then follows from the 
meaning of their terms. On the other hand, the systems which remain to be 
discussed might, equally roughly, be characterized by saying that th~y 
attempt to set up a type of logical order, which shall be general and as 
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inclusiye as possible, and to let the meaning of terms npOll their 
properties of order and relation. Thus this ., heterodox" "iew of 
is one which takes it to cowr all inwstigations and dewlopment:-: of types 
of logical order which inyoh-e none but ideographic s;,:mbols and 
by operations which may be stated with precision and generality. 

In any case, it must be granted that the operatiolls the logistic IH<'tilod 

are themselyes pre-logical, in the sense that they underlie the proofs of 
logic as well as of other branches. The assumption of these operations
substitution, etc.-is the most fundamental of all the a5sumptions of 
logistic. It is possible to yie,\' the subject in a wa:, which makes such 
pre-logical principles the fundamentally important thing, and not 
regard as essential the use of symbolic logic as a foundation. The pro
priety of the term logistic for such studie:; may be questioned. But if 
such a different view is consistent and useful, it is of little consequence 
what the method ought to be called. 

vVe see at once that, if such a yiew can be maintained, ::'\Ir. Russell's 
definition of mathematics, quoted aboye, is arbitrary, for by that definition 
any "logistic" deYelopment which is not based upon logic as a foundation 
will not be mathematics at all. As a fact, it will be simplest to present this 
"heterodox" view of logistic by first presenting and explaining the cor
relative view of mathematics. If to the reader we seem here to wander 
from the subject, we promise to return later and draw the moral. 

A mathematical8Y8tem is any set of 8tring8 oJ recognizable marks in u'/dch 
some oJ the strings are talceninitially and the remainder derited thr:,~e 

by operations performed according to rules which are independent of any mean
ing assigned to the marks. That a system should consist of marks instead 
of sounds or odors is immaterial, but it is conyenient to discuss mathe
matics as 10ritten. The string-like arrangement is due simply to our habit:; 
of notation. And there is no theoretical reason why a single mark may not, 
in some cases, be recognized as a "string ". 

The distinctive feature of this definition lies in the fact that it regards 
mathematics as dealing, not with certain denoted things-numbers, tri
angles, etc.-nor with certain symbolized "concepts" or "meanings", 
but solely with recognizable marks, and dealing with them in such wise 
that it is wholly independent of any question as to what the marks repre
sent. This might be called the" external view of mathematics" or "mathe
matics without meaning". It distinguishes mathematics from other sets 
of marks by precisely those criteria which the external observer can always 
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apply. 'Yhatever the mathematician has .in his mind when he develops a 
s~'stem, what he does is to set doml certain marks and proceed to manipulate 
them in ways which are capable of the aboye description. 

This -dew is, in many ways, suggested by gro>ying tendencies in mathe
matics. Systems become" abstract ", entities with which they deal "have 
no properties sa ye those predicated by postulates and definitions", and 
propositions lose their phenomenal reference. It becomes recognized 
that any procedure the only ground for which lies in the properties of the 
things denoted-as "construetions" in geometry-is defeetiye and un
mathematical. Demonstrations must take no advantage of the names 

b:;: which the entities are called. But if ~:Ir. Russell is right, the mathe
matician has giyen over the metaphysics of space and of the infinite only 
to be plunged into the metaphysics or classes and of functions. Questions 
of empirical possibility and factual existence are replaced by questions of 
"logical" possibility-questions about the "existence" or classes, about 
the empty or null-class, about the class of all classes, about" individuals ", 
about" descriptions ", about the relation of a class of one to its only member, 
about the "values" or ,"ariables and the "range of significance" of func
tions, about material and formal implication, about" types" and" system
atic ambiguities" and "hierarchies of propositions". And we may be 
pardoned for wondering if the last state of that mathematician is not ,vorse 
than the first. It is possible to think that these logico-metaphysical 
questions are essentially as non-mathematical as the earlier ones about 
empirical possibility and phenomenal existence. One may maintain that 
nothing is essential in a mathematical system except the tb'pe of order. 
And the type of order may be viewed as a question solely of the distri
bution of certain marks and certain complexes of marks in the system. 
The question of logical meaning, like the question of empirical denotation, 
may be regarded as one of possible applications and not of anything internal 
to the system itself. 

Before discussing the matter further, it may prove best to give an illus
tration. Let us choose a single mathematical system and see what we shall 
make of it by regarding it simply as a set of strings of marks. 

We take initially the following eight strings: 

(p;;;, q) = (-p v q) 

(pxq) = -(-pv-q) 

(p=q) = ((p;;;,q) x (q;;;, p» 

((p vp) ;;;, p) 
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(q;:, (p v 

((pvq);:,(qv 

((pv(qvr));:'(i]v v 

Vi]);:' v 

\Ye must now state rules according to ,...-hieh other strings can be 
from the above. In stating these rules, we shaH refer to and 
these words are to have no connotation; the;-; serye merely ror abbreviation 
in referring to certain marks. 

(1) The marks +, x, ;:" ==, and =, are quods. 
(2) The marks p, q, r, are quids; and any recognizable mark not appear

ing in the above ma~' be taken arbitraril;v as a quid. 
(3) Any expression consisting of two quids, one quod, and the marks 

) and (, in the order (quid quod quid), may be treated as a quid. 
(4) The combination of any quid preceded immediately b~' the mark -

may be treated as a quid. 
(5) Any string in the set may be repeated. 
(0) Any quid which is separated only by the mark = from some other 

quid, in any string in the set, may be substituted for that other quid any
where. 

(7) In any string in the initial set, or in any string added to the list 
according to rule, any quid whatever may be substituted for p or IJ. or r, 
or for any quid consisting of only one mark. \Yhen a quid is substituted 
for any mark in a string, the same quid must also be substituted for that 
same mark wherever it appears in the string. 

(8) The string resulting from the substitution of a quid consisting 
more than one mark for a quid of one mark, according to (7), may be added 
to the list of strings. 

(9) In any string added to the list, according to (S), if that portion of 
the string which precedes an~' mark ;:, is identical with some other string 
in the set, preceded by (, then the portion of that string which follows the 
mark ::> referred to may be separately repeated, with the omission of the 
final mark), and added to the set. 

These rules are unnecessarily awkward. In the illustration, it was 
important not to refer to "propositions ", "relations", "yariables ", "paren
theses," etc., lest it should not be clear that the rules are independent of 
the meanings of the marks. But though cumbersome, they are still precise. 
The original eight strings of marks are, with minor changes of notation, 



358 A Sllney of Symbolic Logic 

definitions and postulates of diyisions *1 to *5 in Principia Mathematica. 
By fonowing the rules giYen, anyone may derive all the theorems of these 
di,-isions and all other consequences of these assumptions, without knowing 
anything about symbolic logic-either before or after. In fact, these 
rules formulate exactI:-' what the authors haye done in proving the theorems 
from the postulates.16 For this reason, it is unnecessary to carry our illus
tration further and actually derive other strings of marks from the initial 
set. The process may be obseryed in detail in Principia Mathematica: 

it is, in all important respects, the same with the process of proof exhibited 

in our Chapter Y. 
The method of deyelopment in Principia M athematica differs from the 

one we ha\'e suggested, not in the actual manipulation of the strings of 
marks, but most fundamentally in that the reasons 'Why-the principles
of their operations are to be found, not in explicitly stated rules, but in 
discussions and assumptions concerning the conceptual content of the 
s:'stem. In fact, the rules of operation are contained in explanations of 
the meaning of the notation-in discussions of the nature and properties 
of" elementary propositions", "elementary propositional functions", and 
so forth. For example, instead of stating that certain substitutions may 
be made for p, q, r, etc., they assume as primitive ideas the notions of 
"elementary propositions" ~p, q, r, etc.-the notion of "elementary 
propositional functions" - lOX, if;z, etc.-and the idea of "negation", indi
cated b~- writing - immediately before the proposition. And in part, the 
rules of operation are contained in certain postulates, distinguished by 
their non-symbolic form: "If p is an elementary proposition, -p is an 
elementary proposition", "If p and q are elementary propositions, p v q 
is an elementary proposition", and "If 'PP and 1/;p are elementary propo
sitional functions which take elementary propositions as arguments, 'PP v 1/;p 

is an elementar:" propositional function. The warrant for the substitution 
of various complexes for p, q, r, etc., is contained in these. The operation 
which requires our complicated rule (9), which states precisely what may 
be done, is covered by their assumptions: "Anything implied by a true 
elementary proposition is true", and "\Vhen cpx can be asserted, where x 
is a real yariable, and 'PX:::> lj;x can be asserted, where x is a real variable, 
then ~x can be asserted, where x is a real variable". '1'0 make the con
nection behveen these and our rule, we must remember that :::> is the 

16 With the single and unimportant exception that they do not add every new string 
which they arrive at, to the list of strings. Many such are simply asserted as lemmas, 
used immediately for one further proof and not listed as theorems. 
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~;;mbol for ,. implies 0', that if "what precedes thi:s 
some other string in the set, that means that what 
asserted, and that the number of 'open' and' close' 
indicate whether the implication in question is the main, or 
cation. 

impli-

'Ye haye chosen this particular system to .iilustrate the requirement~ 
of "mathematics without meaning" ror a special reason, which will a ppeur 
shortly. But the same sort of modification::; would be sufficient to bring 
any good mathematical system into this form; and in most cases such 
modifications would be necessar~·. 

If, for example, the system in question were one of better-known 
algebras, we should probably haw" a class, K. of elements, a, 1;, c, etc.". 
and such assumptions as "If a and b are elements in K, (l + b is an element 
in K". These would do duty as the principles according to which, for 
example, x + y would be substituted for a in any ;;~'mbolic postulate or 
theorem. The changes in such a system would be les5 radicaL hardly 
more than alterations in phraseology, but still nece:;sar~·. 

Reliance upon meanings for the yalidity of the method has obvious 
advantages. It is simple and natural and clear. (So is measuring two 
line-segments with a foot rule to prove equality.) It also has disadvantages. 
Besides the logico-metaphysical questions into which this reliance upon 
meanings plunges liS, there is the disadvantage that it works a certain 
confusion of the form of the system with its content. The clear separation 
of these is the ideal set by'" mathematics without meaning". :\ot onl.Y 
must mathematical procedure be free !rom all appeal to intuition or to 
empirical data; it should also be independent of the meaning of any special 
concepts which constitute the subject matter of the system. :\0 alteration 
or abridgment of mathematical procedure anywhere should be covered by 
the names which are given to the terms. Only those relations or other 
properties which determine a s~'stem as a particular type of order should 
be allowed to make a difference in its mannel' or development. 

To secure complete separation of form from special content, and to 
present the system as purely formal and abstract, means precisely to use 
principles of operation which are capable of statement as rules for the 
manipulation of marks-though, in general, the meticulous a\'oidanee of 
any reference to "meanings" would be a piece of pedantry. The important 
consideration is the fact that the operations of any abstract and really rigorous 
rnatlze1natical system are eapable of forrn"ulation without any referena it) truth 



360 A Suney of Symbolic Logic 

or meanings.J7 'Ye are less interested in any superiority of this "external 
yie,Y of mathematics ", or in the conjectured advantages of such procedure 
as has been suggested, than in its bare possibility. If the considerations here 
presellted are not wholly mistaken, then the ideal of form which requires 

17 It is possible to regard such manipulation of marks, the discovery of sufficiently 
precise rules and of initial strings which will, together, determine certain results, and the 
exhibition of the results which such systems give, as the sole business of the mathematician. 

:Mathematies, so developed, achieves the utmost economy of asserticm. Nothing is 
asserted. There are no primitive ideas. Since no meanings are given to the characters, 
the strings are neither true nor false. Nothing is assumed to be true, and nothing is asserted 
as "proved". It is not even necessary to assert that certain operations upon certain marks 
give certain other marks. The initial strings are set down: the requirements of pure 
mathematics are satisfied if the others are got and recorded. Yet these initial strings and 
the rules of operation determine a definite set of strings of marks-determine unambiguously 
and absolutely a certain mathematical system. 

To many, such a view will seem to exclude from mathematics everything worthy of 
the name. These "ill urge that the modern developments of mathematics have aimed 
at exact analysis into fundamental concepts; that this analysis does, as a fact, bring about 
such simplification of the essential operations as to make possible mechanical manipulation 
of the system without reference to meanings; but that it is absurd to take this shell of 
refined symbolism .for the meat of mathematics. To any such, it might be replied that 
the development of kinematics as an abstract mathematical system does not remove the 
physics of matter in motion from the field of e:-''Perimental investigation; that abstract 
geometry still leaves room for all sorts of interesting inquiry about the nature of our space: 
that for every system which is freed from empirical denotations there is created the separate 
investigation of the possible applications of this system. Correspondingly, for every 
system which is made independent of clas5es, individuals, relations, and so on, there is 
created the separate investigation of the metaphysical status of the classes, individuals, 
and relations in question-of the application of the system of marks to systems of more 
special "concepts", i. e. to systems of logical and metaphysical entities. That we are 
more interested in the applications of a system than in its rigorous development, more 
interested in its "meaning" than in its structure, should not lead to a confusion of meaning 
'I.I)'ith structure, of applications with method of development. 

It may be further objected that this view seems to remove mathematics from the 
field of science altogether and make it simply an art; that the computer would, by this 
definition, be the ideal mathematician. But there is one feature of mathematics, even as a 
system of marks, which is not, and cannot be made, mechanical. Valid results may be 
obtained by mechanical operations, and each single step may be essentially mechanical, 
yet the derivation of "required" or "interesting" or "valuable" results will need an in
telligent and ingenious manipulator. Gulliver found the people of Brobdingnag (?) feed
ing letters into a machine and waiting for it to turn out a masterpiece. Well, master
pieces are combinations achieved by placing letters in a certain order! However mechanical 
the single operation, it will take a mathematician to produce masterpieces of mathematics. 
A machine, or machine-like process, will start from something given, take steps of a deter
mined nature, and render the result, whatever it is; but it will not choose its point of 
departure and select, out of various possibilities, the steps to be taken in order to achieve a 
desired result. Is not just this ingenuity in controlling the destination of simple operations 
the peculiar skill which mathematics requires? The mathematician, like any other sci
entific investigator, is largely engaged upon what are, from the point of view of the finished 
science, inverse processes: he gets, by trial and error, or intuition, or analogy, what he 
presents finally as rigidly necessary. To produce or reveal necessities previously un
noticed-this is the peculiar artistry of his work. 
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that mathematics abstract not only from empirical 
also from logical or metaph~'sical meanings is a whol1y attainal 
And if this is possible, then ::'IIr. Russell's "iew that" 
is the class of an propositions or the form implies ']', etc, ", .is an 
definition, and the ideal of form which it imposes is not a Olll', 

but must take its chances with other such ideals. The 
these will, then, be a matter of choice, dependent upon to 
be gained by one or the other form, There is no a priori rea~on 
systems which are generated b~' "mathematical ,. op{'mtjon,~, ~ome of 
may be peculiar to the system and meaningless in logic, are not as 
" sound" and "good" and eyen "ideal" as systems dc\'eloped the com-
pletely analytical method of Principia Jlathemr!t/ca which all 
operations to those of logic. And" extra-logical" mode~ of dewlopnwnt 
may be just as uniwrsal as the" logical", since symholic logic itself ma~' 
deyeloped by the" extra-logical" method. It was to make dear that 
we chose the particular system \yhich we did for our illustration. 

In fact, symbolic logic, or that branch of it which is deyeloped fir;:t as a 
basis for others, must be deYeloped by operations the yalidit~~ of which is 
presumed apart from the logic so deyeloped. It may, indeed, be the ca~e 
that logic is de,~eloped b~· methods which it validates hy its own theorems, 
when these are proyed; it may thus be "self-critical", or "circular" in a 
sense \yhich means consistency rather than falIacr- But this is not reall~' 
to the point: if the validity of certain operations is presupposed, then that 
\'alidity is presupposed, whether it is after/fard pored yalid or not. There 
is, then, a certain adyantage in the explicit recognition that a s~'stem of 
symbolic logic is merely a set of strings of marks, manipulated by ef:;'rtain 
arbitrary and" eAi:ra-Iogical" principles. It is, in fact, only on this 
that symbolic logic can be abstract. For s~'mbolic logic, as has already 
been pointed out, is peculiar among mathematical systems in that its postu
lates and theorems are used to state proofs, If, then, the proofs are to be 
logically valid, these postulates and theorems must be truf, and the s:'stem 
cannot be abstract. But if the "proofs" are required to be "valid" 0111:.~ 

in the sense that certain arbitrary and extra-logical rules for manipulation 
have been observed, then it matters no more in logic than in any other 
branch whether the propositions be true, or even what they mean. There 
is the same possibility of choice here that there is in the case of other mathe
matical systems-the choice which is phrased most sharply as the alterna
tive between the Russellian view and the" external view of mathematics ",18 

18 It may be noted that if mathematics consists of "propositions of the form 'p im-



362 A Survey of Symbolic Logic 

If we take this "iew of mathematics, or any view which regards arbitrary 
mathematical operations as equally fundamental with the operations of 
logic, we shall then giye a different account of logistic and of its relation 
to logic. ,\Ye shall, in that case, regard symbolic logic as one mathematical 
system, '01' type of order, among others. vVe shall recognize the possibility 
of generating all other t~'pes of order from the order of logic, but we shall 
find no necessity in this proceeding. ,\Ve may, possibly, find some other 
yery general type of order from which the order of logic may be derived. 
And the question of any hierarchic arrangement of systems will then depend 
upon com'enience or simplicity or some other pragmatic consideration. 
Logistic will, then, be defined not by any relation to symbolic logic but as 
the study of types of order as such, or as any development of mathematics 
which seeks a high degree of generality and complete independence of 
any particular subject matter. 

IY. THE LOGISTIC METHOD OF KEMPE AND ROYCE 

,\Ve should not care to insist upon the" external view of mathematics" 
and the consequent "iew of logistic which has been outlined. Other con
siderations aside, it seems especially dubious to dogmatize about the ideal 
of mathematical form when there is no common agreement on the topic 
among mathematicians. But we can now answer the questions which 
prefaced this discussion: Are the fundamental operations of mathematics 
those of logic or are they extra-logical? And is logistic ideally to be so 
stated that all its assertions are metaphysically true or is it concerned simply 
to exhibit certain general types of order? The answer is that it is entirely a 
matter of choice, since either view can consistently be maintained and 
mathematics be developed in the light of it.19 This is especially important 
for us, since, as has been mentioned, there are certain studies which would 
most naturally be called logistic which would not be covered by the" ortho
plies q', where p and q are propositions containing one or more variables, etc.", and the 
theorems about "implies" are required to be true if proofs are to be valid, all mathematics 
must be true in order to be valid. On this view, "abstractness" can reside only in the 
range of the variables contained in p and q. 

19 One case in which the "external view of mathematics" is highly convenient, is of 
especial interest to us. There are various symbolic "logics" which differ from one another 
both in method and in content. Discussion of the correctness and relative values of these 
is almost impossible unless we recognize that thE.' order of logic can be viewed quite apart 
from its content-that a symbolic logic may be abstract, just like any other branch of 
mathematics-and thus separate the question of mathematical consistency (of mere ob
servance of arbitrary and precise principles of operation) from questions of applicability 
of a system to valid reasoning. The difficulty of making this separation hampered our 
discussion of "implies" in the last chapter. 
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dox" view, since they are based, not upon logic. but upon an 
to or indusiye of logic. These studies exemplif~' a methotl 
in notable respects both from that of Peano and that ot 
matica. And it seems highly desirable that we should 
tive method without initial prejudice .. 

It is characteristic of this alternatiye method that it seeks to ddine 
initially a field, or class of entities, and an order in this field, which shall be 
mathematically as inclusiye as possible, so that more special orders rna~' be 
speCified by principles of selection amongst the entities. It is distinguished 
from the method follmyed by Peano in the Formulaire by the fad that it 
seeks to get special orders, such as that of geometry, without further 
"existence postulates", and from the method of Principia J1 aille matica h~' 
the attempt to substitute selection lcithin an initial order for analysis (defini
tion by previous ideas) of newl~' introduced terms. The result i" that this 
method is particularly adapted to exhibit the analogies of different speeiul 
fields-the partial identities of various t~'pes of order. 

The application of this method has not been carried out extensh'ely 
enough so that we may feel certain either of its ad yantages or of its limita
tions. The method is, in a certain sense, exemplified whereyer we haye 
various mathematical systems all of which satisfy a giwn set or postulates, 
but each-or, say, all but one-satisfying some one or more of the postulates 
"vacuously". For here we have an ordered field within which other and 
more limited systems are specified by a sort of selection. (" Selection" is 
not the proper word, but no better one has occurred to us.) It is particu
larly in two studies of the relation of geometQ- to logic that the method has 
been consciously followed: 20 in a paper by A. B. Kempe, "On the HeIation 
between the Logical Theory of Classes and the Geometrieal TheoQ- of 
Points, "21 and in Josiah Royce's study, "The Relation of the Princi
ples of Logic to the Foundations of Geometry" .22 'Ye shall hardly wish to 
go into these studies in detail, but something of the mode of procedure and 
general character of the results achieved may be indicated briefly. 

Kempe enunciates the principle that" ... so far as processes of exact 
thought are concerned, the properties of any subject matter depend solely 
on the fact that it possesses 'form '-i. e., that it consists of a number of 

20 Peirce's system of "logical quaternions" (see above, pp. 102-04) also exhibits 
something of this method. 

21 Proc. London Math. Soc., XXI (1890), 147-82. 
22 Trans. Amer. Math. Soc., VI (1905),353-415. 
Some portions of the discussion of this paper and Kempe's are here reprinted from llll 

article, "Types of Order and the System 1:," in Phil. Ret'. for May, 1916. 
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entities, certain indiyiduals, pairs, triads, &c., certain of which are exactly like 
each other in all their relations, and certain not; these like and unlike indi
viduals, pairs, triads, &c., being distributed through the whole system of 
entities in a definite wa;r".23 In illustration of this theory, he seeks to 
derive the order both of logical cl.asses and of geometrical sets of points 
from assumptions in terms of a triadic relation, a c· b, which may be read 
"b is 'between' a and c". The type of this relation may be illustrated as 
follows: Let a, b, c represent areas; then a c· b symbolizes the fact that b 
includes whatewr area is common to a and c, and is itself included in the 
area which comprises what is either a or c or common to both. Or it 
may be expressed in the Boole-Schr6der Algebra as 

(ac)cbc(a+c), or a -b c + -a b -c = 0 

The essential properties of serial order may be formulated in terms of this 
relation. If a c· b and ad· c, then also ad· band b d· c. If b is between 
a and c and c is between a and d, then also b is between a and d, and c is 
between band d.24 

abc d 

Thus the relation gives the most fundamental property of linear sets. 
If a be regarded as the origin 'with reference to which precedence is deter-

23 "On the Relation between, etc.", Zoe. cit., p. 147. 
24 Assuming ac·b to be expressed in the Boole-Schroder Algebra (as above) by 

(a e) c:bc:(a+e) 
this deduction is as follows: 

ac·b is equivalent to (a c) c:b c (a +c). 
ad·c is equivalent to (a d) cc c: (a +d). 

By the laws of the algebra, 
(a c) c b is equivalent to a -b c = O. 
b c: (a + c) is equivalnt to -(a + c) b = -a b -c = O. 
(a d) c c is equivalent to a -c d = O. 
c c: (a + d) is equivalent to -(a + d) c = -a c -d = O. 

Combining these premises, i. e. adding the equations, we have 
a -b c + -a b -c + a -c d + -a c -d = O. 

Expanding each term of the left-hand member with reference to that one of the 
elements, a, b, c, d, not already involved in it, 
a -b c d +a -b c -d + -a b -c d + -a b -c -d + a b -c d +a -b -c d 

+-abc-d+-a-bc-d=O 
By the law "If a +b = 0, a = 0", we get from this, 
(1) a -b d (c + -e) + -a b -d (c + -c) = 0 = a -b d + -a b -d, 

and (2) b -c d (a + -a) + -b c -d (a + -a) = 0 = b -e d + -b c -d. 
(1) is equivalent to (a d) c:b c (a + d), or ad.b 

and (2) is equivalent to (b d) c c c: (b + d), or bd.c.' 
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mined, ae·b will represent "b precedes (,", and Ii ./" 

Since a e·b and a d·c together giyc a d·D. We 

"e precedes d n , then "b precedes d". Hence this 1m" the 
transith-ity of serial order, with the added preci.,;iOll that it retHin~ l'ei'll"<'HCe 
to the origin from which" precedes" is determined. 

The last-mentioned property of this relation makes PV'~"'lJl\:; 
pretation of it for logical classes in whieh it more 
the inclusion relation of ordinar;~; s~'llogistic reasoning. If 
be inhabitants of 2'.Iars whose logical sense coincided with our own--.'O 
that any conclusion which we regarded a~ yalid would seem valid to 
and vice versa~but whose psychology 'vas sOmC\Thllt from ours, 
these JYlartians might prefer to remark that .• b is . between' a and (" ", 
rather than to note that ., All a is b and all b is en. These :\Iartians might 
then carryon successfully all their reasoning in terms of this triadic' betweell' 
relation. For a e· b, meaning 

-ab-c+a-bc = 0 

is a general relation which, in the special case where a is the ., null" cla~s 
contained in every class, becomes the familiar "1; is contained in c" or 
"All b is e". By virtue ofthe transitivity pointed out above, 0 (,·band 0 d·(' 
together give 0 d·b, which is the syllogism in Barbara, "If b is c and all 
e is d, then all b is d". Hence these ::\Iartians would possess a mode of 
reasoning more comprehensiye than our own and including our own as a 
special case. 

The triadic relation of Kempe is, then, a \"Cr~' powerful one, and 
of representing the most fundamental relations not only in logic in 
all those departments of our systematic thinking where uns~'mmetricaI 
transitive (serial) relations are important.~5 In terms of these triads, 
Kempe states the properties of his" base s~'stem ", from whose order the 
relations of logic and geometry both are derived. The" base system" 
consists of an infinite number of homogeneous elements, each haying 'an 
infinite number of equivalents. It is assumed that triads are disposed in 
this system according to the following laws: 26 

25 It should be pointed out that while capable of expressing surh relations, this t,riadic 
relation is itself not necessarily unsymmetrical: ac·b and a/;·c may both be true. But in 
that case, b = c, as may be verified by adding the equations for these two triads. Further, 
for any a and b, ab·a and ab·b always hold--b is always contained in itself. Thus the 
triadic relation represents serial order with the qualification thllt any term ,. Dre:eed,es" 
itself or is "between" itself and any other-an entirely intelligible and e\"en useful con
vention. 

26 See Kempe's paper, loc, cit., pp. 148-19. 
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1. If we have a b·p and c b'g, r exists such that we have a g·r and c p·r. 
2. If we have a b·p and c p 'r, g exists such that we have a g·r and c b ·r.27 

3. If we ha\'e a b·c and a = b, then c = a = b. 
4. If a = b, then we have a c' band be· a, whatever entity of the system 

c may be. 
To these, Kempe adds a fifth postulate which he calls the Law of Con

tinuity: "~o entity is absent from the system which can consistently be 
present". From these assumptions and various definitions in terms of 
the triadic relation, he is able to derive the laws of the symbolic logic of 
classes and fundamental properties of geometrical sets of points. But 
further and most important properties of geometrical sets depend upon the 
selection of such sets within the "base s;rstem" by the law: 28 

If we have 

and 
then 

a'p'q, 
b'p'q, 
a·b·p does not hold; . 
p = q. 

'a· p' g' here represents a relation of a, p, and q, such that some one at 
least of a p. q, a, q. p, p q. a will hold. If we call a b· c a "linear triad", 
then the set or locus selected by the above law will be such that no two 
linear triads of the' points' comprised in it can have two non-equivalent 
'points' in common. Of such a geometric set, Kempe says: 29 "It is 
precisely the set of entities which is under consideration by the geometrician 
when he is considering the system of points which make up flat space of 
unlimited dimensions". 

But there are certain dubious features of Kempe's procedure. As Pro
fessor Royce notes, the Law of Continuity makes postulates 1 and 2 super
fluous. And there are other objections to it also. Moreover, in spite of 
the fact that Kempe has assumed an infinity of elements in the "base set", 
there are certain ambiguities and difficulties about the application of his 
prihciples to infinite collections. 

In Professor Royce's paper, we have no such 'blanket assumption' as 
the Law of Continuity, and the relations defined may be. extended without 
difficulty to infinite sets. We have here, in place of the "base system" 
and triadic relations, the "system ~", the "F -relation" and the "O-rela-

21 If the reader will draw the triangle, abc, and put in the" betweens" as indicated, 
the geometrical significance of these postulates will be evident. I have changed a little 
the order of Kempe's terms so that both 1 and 2 will be illustrated by the same triangle. 

28 See Kempe's paper, Zoe. cit., pp. 176-77. 
29 Ibid., p. 177. 
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tion". The F-relation is a pol~'adic relation such that 
expressible in the Boole-SchrOder .Ugebl."a as 

a b ... -,1' -y ... + -0 -b . , , :r y , ., =;) 

,1'.'/".' l:i 

This is the generalization of Kempe's a c·b, which is P'.oc Tile 
tion is a polyadic s~mmetrical relation which expre;:;ses simult~Ul('ou~ly a 
whole set of equivalent F-relations. . .. ) is expressible as 

abc , . . + -a -b -c . " = 0 

'.Ye haye used the algebra of classes to E'xpress these relations, but in 
Professor Royce's paper, this order is, of course, rewrsed. In terms or ()
relations, the ideas of the logic of classes are defined. and from po:::;tula
tion of certain O-relations, the laws of the symbolic logic of clas:;e;:; are de
riyed. And, in most interesting wa;,\'s which lye cannot here di,;cu;:;,::, the 
order of the system J; is also shown to possess all the fundamental prop!:r
ties of geometric sets of points. The system ~ has a structure :iuch that it 
might be called "the logical continuum", and there are good grounlb 
presuming that types of order in the greatest yariet~· ma~· he specifiC"C! within 
the system simply by selection. In the words of Professor RO~'ce: 30 

"YVherever a linear series is in question, wherever an origin of coijrdi
nates is employed, \vhereyer 'cause and effect', 'ground and con:-:;equencc,' 
orientation in space or direction of tendency in time are in question. the 
diadic asymmetrical relations inyolyed are essentially the same as the rela
tion here symbolized by p -< uq, ['q is "between" yand p'; or, with y 

as origin, 'p precedes q'; or, where y is the null-class, 'p is contained 
in q'; or, in terms of propositions, 'p implies q']. This expression, then, 
is due to certain, of our best established practical. instincts and to some of 
our best fixed intellectual habits. Yet it is not the only expression for the 
relations involved. It is in seyeral respects inferior to the more direct 
expression in terms of O-relations .... '.Yhen, in fact, we attempt to de
scribe the relations of the system z merely in terms or the antec:edent
consequent relation, we not only limit ourseh'es to an arbitrary choice of 
origin [y in p -< !J ql, but miss the power to sur,ey at a glance relationil 
of more than a diadic, or triadic character." 

V. S"C':'IUURY A:'>.J) COKCLUSION 

There are, then, in general, three types of logistic procedure. There is, 
first, the" simple logistic method ", as we may call it-the most obvious 

30 "The Relations of the Principles of Logic, etc.," loe. ci:f.., pp. 3&1-82. 
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one, in which the various branches of pure mathematics, taken in the n011-
logistic but abstract form, are simply translated into the logistic terms which 
symbolize ideographically the relations involved in proof. When this 
translation is made, the proofs in arithmetic, or geometry, etc., will be 
simply special cases of the propositions or s~l11bolic logic. But other 
branches than logic will have their own primith'e or undefined ideas and 
their mm postulates in terms of these. 'Ye have used Peano's FOTrnulaire 
as an illustration of this method, although the FOr11wlaire has, to an extent,. 
the characters of the procedure to be mentioned neA't. Second, there is 
the hierarchic method, or the method of complete analysis, exemplified by 
Principia JlatlzclIlatica. Here the calculus of propositions (or implications) 
is first developed, because by its postulates and theorems all the proofs of 
other branches are to be stated. And, further, all the terms and relations 

or other branches are to be so analyzed, i. e., defined, that from their defini
tion and the propositions or the logic alone, v;'ithout additional primitive 
ideas or postulates, all the properties of these terms will follow. And, 
third, there is the method of Kempe and Royce. This method aims to 
generate initiall~' an order which is not only general, as is the order of logic, 
but inclusive, so that the t~'pe of order of various special fields (in as large 
number and variet~· as possible) may be derived simply by selection-i. e., 
by postulates which determine the class which exhibits this special order as 
a selection of members of the initially ordered field. a1 For this third method, 
other types or order will not necessarily be based upon the order of logic: 
in the only good examples which we ha\'e of the method, logic is itself 
derived from a more inclusive order. The sense in which such a procedure 
may still be regarded as logistic has been made clear in what precedes. 

'Yhich of these methods will, in the end, prove most powerful, no one. 
can say at present. The whole subject of logistic is too ne,,\" and. un~ 
developed. But certain characters of each, indicating their adaptability, 
or the lack of it, to certain ends, can be pointed out. The hierarchic or 
completely analytic method has a certain imposing quality which right
fully commands attention. One feels that here, for once, we have got to 
the bottom of things. Any work in which this method is extensively carried 
out, as it is in Principia lrfatlzematica, is certainly monumental. Further, 
the method has the advantage of setting forth various branches of the 
subject investigated in the order of their logical simplicity. And the step 

31 Professor Royce used to say facetiously that the system Z had some of the properties 
of a junk heap or a New England attic. Almost everything might be found in it: the ques
tion was, how to get these things out. 
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from one such division to another based upon it is always ;:uc-h u", to make 
clear the connection between the two. The initial ana!~-ses-definitioll~
which make such steps possible are, indeed, likely to tax our power:;:, 
once the initial analysis is correctly performed, the theorems concerning the 
derh-ed order will be demonstrable by processes which haye 
familiar and even stereotyped. The great disadmniage of this compIe!!:'l:; 
anal;ytic method is its great complexity and the consequent tediotlsneE's 
its application. It is fairly discouraging to realize that the propertie::; 
cardinal number require some four hundred pages of prolegomena-in a 
symbolism of great compactness-for their demonstration. To those 
interests are simpl~' "mathematical" or "scientific" in the ordinary sense, 
it is forbidding. 

The simple logistic method offers an obvious short-cut. It presern·::; 
the notable advantages of logistic in general-the brevity and preci"ioll 
of ideographic symbols, and the consequent assurance of correctness. And 
since it differs from the non-logistic treatment in little saw the introduction 
of the logical s~mbols, it makes possible the presentation of the subject in 
hand in the briefest possible form. 'Yhen successful, it achieves the acme 
of succinctness and clearness. Its shortcoming lies in the fact that, having 
attempted little which cannot be accomplished without logistic, it achieves 
little more than is attained by the ordinary abstract and deductive presenta
tion. For what it is, it cannot be improyed upon; but those who are inter
ested in the comparison of types of order, or the precise analysis of mathe
matical concepts, will ask for something further. 

1\0 one knows how far the third method-that of Kempe and Royce
can be carried, or whether the system ::::, or some other wry inclusiye t~·pe 
of order, 'will be found to contain any large number, or aU, of the various 
special orders in which we are interested. But we can see that, so far as 
it works, this method gives a maximum of useful result with a minimum of 
complication. It avoids the complexities of the completely anal:iic method. 
yet it is certain to disclose whatever analogies exist between yarious systems, 
by the fact that its terms are allowed to denote ambiguously anything which 
has the relations in question, or relations of precisely that type. In another 
important respect, also, advantage seems to lie with this method. One 
would hardly care to invent a new geometry by the anal;ytical procedure; 
it is difficult enough to present one whose properties are already familiar. 
Nor would one be likely to discover the possibility of a new system br 
the simple logistic procedure. With either of these two methods, we need, 

25 
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to know where we are going, or we shall go nowhere. By contrast, the 
third method is that of the pathfinder. The prospect of the novel is here 
much greater. The system ~ may, probably does, contain new continents 
of order whose existence we do not even suspect. And some chance trans
formation may put us, suddenly and unexpectedly, in possession of such 
preyiously unexplored fields. The outstanding difficulty of the method, 
apart from our real ignorance of its possibilities, seems to be that it must 
rely upon devices which are not at all obyious. It may not tax severely 
the analytical powers, but it is certain to tax the ingenuity. Having set 
up, for example, the general order of geometrical points, one may be at a 
loss how to specify "lines" having the properties of Euclidean parallels. 
In this respect, the analytic method is superior. But the prospect of 
generality 'without complexity, which the third method seems to offer, is 
most enticing. 

'Ye have spoken of symbolic logic, logistic and mathematics. It may 
well be questioned whether the method of logistic does not admit of useful 
application beyond the field of mathematics. Symbolic logic is an instru
ment as much more flexible and more powerful than Aristotelian logic as 
modern science is more complex than its medieval counterpart. Some of 
the adyantages which might have accrued to alchemy, had the alchemists 
reduced their speculations to syllogisms, might well accrue to modern sci
ence through the use of symbolic logic. The use of ideographic symbolism 
is capable of making quite the same difference in the case of propositions and 
reasoning that it has already made in the case of numbers and reckoning. 
It is reported that the early Australian settlers could buy sheep from the 
Bushmen only by holding up against one sheep the coins or trinkets repre
senting the price, then driving off that sheep and repeating the process. 
It might be reported of the generality of our thinking that it is possible to 
get desired conclusions only by holding up one or two propositions, driving 
off the immediate consequences, and then repeating the process. Symbolic 
logic is capable of working the same transformation in the latter case that 
arithmetic does in the former. Those unfamiliar with logistic may not 
credit this-but upon this point we hesitate to press the analogy. Certain 
it is, that for the full benefit that symbolic logic is capable of giving, we 
should need to be brought up in it, as we are in the simpler processes of 
arithmetic. What the future may bring in the widespread use of this 
new instrument, one hardly ventures to prophesy. 

Some of the advantages which would be derived from the wider use of 
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logistic in science, one can make out. The logistic method i::; 
wherever a body of fact or of theory approaches that 
systematic character which belongs to mathematical :3~·stem". 
use of it, the same assurance of correctne~s which mathe-
matical portions of scientific subjects may be secured for 
which are not stateable in terms of ordinarr mathematics. 

Dare we make one further suggestion of the possible use of in 
science? Since it seems to us important, we shaH venture it, with all duE' 
apologies for our ignorance and our presumption. _-\ considerable 
seems to be played in scientific inwstigation b;; imaacrll which is more or 
less certainly e::-..'traneous to the real body of scientific la,>,;. The scientist is 
satisfied to accept a certain body of facts-directl~· or indirectly obserwd 
phenomena, "laws," and h~·potheses which. for the time being at Jt'u::'t, 
need not be questioned. But berond this. he find" a use for is neithpf 
directly nor indirectly observed, but sen"es somehm\" to represent the situ
ation. A physicist, for example, will indulge in mechanical models of the 
ether, or mechanical models of the atom which, howe,'er much he may hope 
to verify them, he knows to run be~·ond established fact. The yalue of 
such imagery is, in part at least, its concreteness, The established relation::-, 
simply in terms of mathematics and logic, do not come to possess their full 
significance unless they are vested in something more palpable. A great 
deal of what passes for "hypothesis" and "theoQ-" seems to have. in part 
at least, this character and this value; jf it were not for the greater ., sug
gestiveness" of the concrete, much of this would haye no reason for being. 
Now whoever has worked with the precise and terse formulations or logistic 
realizes that it is capable of performing some of the offices of concrete 
imagery. Its brevity enables more facts to be "seen" at once, thought or 
together, treated as a single thing. And a logistic formulation can be free 
from the unwarranted suggestions to which other imagery is liable. Perhaps 
a wider use of logistic would help to free science from a considerable body of 
"hypotheses" whose value lies not in their logical implications but in their 
psychological "suggestiveness". But the reader "ill take this conjecture 
only for what it is worth. What seems certain is that for the presentation 
of a systematic body of theory, for the comparison of alternative h;ypotheses 
and theories, and for testing the applicability of theory to observed facts, 
logistic is an instrument of such power as to make its eventual use almost 

certain. 
Merely from the point of view of method, the application of logistic to 
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subjects outside the field of mathematics needs no separate discussion. 
For 'When mathematics is no longer vie'Wed as the science of number and 
quantity, but as it is viewed by ::.\lr. Russell or b;r anyone who accepts the 
alternative definition offered in this chapter, then the logistic treatment 
of any subject becomes mathematics. :\Iathematics itself ceases to have 
any peculiar subject matter, and becomes simply a method. Logistic is 
the universal method for presenting exact science in ideographic symbols. 
It is the" universal mathematics" of Leibniz. 

Finis 



APPEXDIX 

T'YO FRAG}IE;\TS FRO}I LEIB;\IZ 

(Translated from the Latin of Gehrhardt's text, Die Pldlosophischen Sclu iftrn !'Oil G. W. 
Leibniz, Band I'll, "Scientia Generali8. CJw.ractcrislica," XIX and LX.) 

These two fragments represent the final form of Leibniz's "universal calculus": their 
date is not definitely known, but almost certainly they were ,,'titlen after 16S5. Of the 
two, LX is in all respects superior, as the reader will see, but XIX also is included because 
it contains the operation of "subtraction" which is dropped in XX. Lcibniz's compre
hension of the fact that + and - (or, in the more usual notation, . 'multiplicat ion " and 
"division") are not simple inverses in this calculus, and his appreciation of the complexity 
thus introduced, is the chief point of interest in XIX. The di~tinction of "subtraction" 
(in intension) and negation, is also worthy of note. It will be observed that, in both 
these fragments, A + B (or A e B) may be interpreted in two ways: (1) As "both A. 
and B" in intension; (2) as "either A. or B", the class made up of the two classes A and B. 
in eJ..'iension. The "logical" illustrations mostly follow the first interpretation, but in XX 
(see esp. scholiwn to defs. 3, 4, 5, and 6) there are examples of the application to logical 
classes in extension. The illustration of the propositions by the relations of line-segments 
also exhibits the application to relations of el;."tension. Attention is specifically called to 
the parallelism between relations of intension and relations of extension in the remark 
appended to prop. 15, in LX. The scholiwn 10 axioms 1 and :2, in LX, is of particular in
terest as an illustration of the way in which Leibniz anticipates later logistic developments. 

The Latin of the text is rather careless, and constructions are sometimes obscure. 
Gehrhardt notes (p. 232) that the manuscript contains numerous interlineations and is 
difficult to read in many places. 

XL""I: 

NON Th"ELEGANS SPECnIEN DE~WNSTRA .• 'mI IN ABSl'RACl'lSl 

Def. 1. Two terms are the same (eadem) if one can be substituted for the other with
out altering the truth of any statement (salva veri/ate). If we have A and B, and A. enters 
into some true proposition, and the substitution of B for A. wherever it appears, results in a 
new proposition which is likewise true, and if this can be done for every such proposition, 
then A and B are said to be the same: and conversely, if A and B are the same, they can 
be substituted for one another as I have said. Terms which are the same are also called 
coincident (coincidentia); A and A are, of course, said to be the same, but if A and B are 
the same, they are called coincident. . 

Dei. 2. Terms which are not the same, that is, terms which cannot always be sub
stituted for one another, are different (dit'6rsa). Corollary. \Yhence also, whatever terms 
are not different are the£ame. 

Charact. 1.2 A = B signifies that A. and B are the same, or coincident. 
Charact. 2.3 A =l= B, or B =l= A, signifies that A and B are different. 
Dej. 3. If a plurality of terms taken together coincide with one, then anyone of the 

plurality is said to be in (inesse) or to be contained in (contineri) that one with which they 

1 This title appears in the manuscript, but Leibniz has aftenvard crossed it out. Al
though pretentious, it expresses admirably the intention of the fragment, as well as of the 
next. 

2 "\Ve ,vrite A = B where the text has A. "" B. 
3 We write A. =l= B where the text has A non"" B. 
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coincide, and that one is called the container. And conyersely, if any term be contained in 
another, then it will be one of a plurality which taken together coincide with that other. 
For example, if A and B taken together coincide with L, then A, or B, will be called the 
inexi.slent (ine:ristens) or the contained; and L will be called the container. However, it 
can happen that the container and the contained coincide, as for example, if (A and B) = L, 
and A and L coincide, for in that case B v;ill contain nothing which is different from A . ... 4 

Scholium. Not every inexistent thing is a part, nor is eyery container a whole-e. g., 
an inscribed square and a diameter are both in a circle, and the square, to be sure, is a certain 
part of the circle, but the diameter is not a part of it. We must, then, add something for 
the accurate explanation of the concept of whole and part, but this is not the place for it. 
And not only can those things which are not parts be contained in, but also they can be 
subtracted (or "abstracted", detrahi); e. g., the center can be subtracted from a circle 
so that all points except the center shall be in the remainder; for this remainder is the locus 
<)f all points within the circle whose distance from the circumference is less than the radius, 
.and the difference of thi .. locus from the circle is a point, namely the center. Similarly the 
locus of all points which are moved, in a sphere in which two distinct points on a diameter 
remain unmoyed, is as if you should subtract from the sphere the axis or diameter passing 
through the two unmoyed points. 

On the same supposition [that A and B together coincide with L], A and B taken 
together are called constituwts (constituentia) , and L is called that which is constituted 
(constit!ltum). 

Charact. 3. A + B = L signifies that A is in or is contained in L. 
Scholiu?n. Although A. and B may haye something in common, so that the two taken 

together are greater than L itself, neyertheless what we haye here stated, or now state, will 
still hold. It will be well to make tbis clear by an example: Let L denote the straight 
line R..Y:, and A denote a part of it, say the line RS, and B denote 
:another part, say the line Xl'. Let either of these parts, RS or ~ __ y __ ~ __ ~ 
Xl', be greater than half the whole line, RX; then certainly it 
,cannot be said that A + B equals L, or RS + XY equals RX. For inasmuch as YS is a 
o()ommon part of RS and XY, RS + Xl' will be equal to RX + SY. And yet it tan truly 
be said that the lines RS and XY together coincide with the line RS.5 

Def.4. If some term M is in A and also in B, it 
is said to be common to them, and they are said to be 
communicating (communicantia).6 But if they have 
nothing in common, as A and N (the lines RS and 
XS, for example), they are said to be non-communi
cating (incommunicantia). 

Def· 5. If A. is in L in such wise that there is another term, N, in which belongs 
everything in L except what is in A, and of this last nothing belongs in N, then A is said 
to be subtracted (detrahi) or taken away (removeri), and N is called the remainder (residuum). 

Charact. 4. L - A = N signifies that L is the container .from which if A be sub
tracted the remainder is N. 

Def· 6. If some one term is supposed to coincide with a plurality of terms which 
are added (positis) or subtracted (remotis), then the plurality of terms are called the con-
8tituents, and the one term is called the thing constituted.7 

4 Lac~ in the text, followed by "significet A, significabit Nihil". 
6 ItalICS ours. 
e Th~ t~xf ~ere has "communicat,ia", clearly a misprint. 
1 Le~bIllZ s Idea seems to be that if A + N = L then L is "constituted" by A and N 

and also if L - A = N then L and A "constitute" N. But it may mean that if L - A = N' 
then A and N "constitute" L. ' 
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Scholium. Thus all terms whi('h are in :mything are eonst.i:uenrs, but tht> r(";"r~t:' 
does not hold; for example, L - A. = X, in which ease L is not in A .. 

Def. 7. Constitution lthat is, addition or subtraction;, is either tm-it or exprE's:;f'll.-
N or - iiI the tacit constitution of .11 itself, as A. or - A in which S is. The exmt>!'i'E'd 
constitution of N is obvious.8 • 

Def. 8. Compensation is the operation of adding and subtracting the :>ame in 
the same e}.--pression, both the addition and the subtraction being expressed :as A ~ J[ 
- 2vIJ. Destruction is the operation of dropping something OIl account of eOmpel15ation, 
so that it is no longer e}.-pressed, and for .11 - .II putting Xothing. 

Axiom 1. If a term be added to itself, nothing new is constituted or A -:-.1 = A. 
Scholium. 'Yith numbers, to be sure, 2 ..;.. 2 makes 4, or two coins adde<! to tm) 

coins make four coins, but in that case the two added are not identical with thl: formpr nvo: 
if they were, nothing new would arise, and it would be as if we should attempt in jl\.;t to 
make six eggs out of three by first counting,3 eggs, then taking away Olle and counting 
the remaining 2, and then taking away one more and counting the remaining l. 

Axiom 2. If the same thing be added and subtracted, then however it emer into the 
constitution of another term, the result coincides with Xothing. Or A. tnowever many 
times it is added in constituting any expression) - A. (however m:.ny times it is subtmded 
from that same e}.--pression) = Xothing. 

Scholium. Hence A - A or (A. + A. -) - A. or A (.4. -:- A), ete. = !\othing. For 
by axiom 1, the e}.-pression in each case reduces to A. - --1 .. 

Postulate 1. Any plurality of terms whatever ran be added to e:onstitute a single 
term; as for example, if we have A. and B, we can write J. -:- B, and call thi~ L. 

Post. 2. Any term, A, can be subtracted from that ill whirh it is, namely A. ~ B 
or L, if the remainder be given as B, which added to A. constitutes the container L-that 
is, on this supposition [that A + B = L] the remainder L - A can be found. 

Scholium. In accordance with this postulate, we shall give, lawr OIl, a method for 
finding the difference between two terms, one of which, .4., is contained in the other, L, 
even though the remainder, which together ,vith .-1 constitutes L, should not be gh'en
that is, a method for finding L - A., or A. + B - A, although A. and L only are given, 
and B is not. 

THEOREM 1 

Terms which are the same lEith a third, are the same u'ith each other. 
lf A. = Band B = C, then A = C. For if in the proposition A. = B (rrue by hyp:, 

C be substituted for B (which can be done by def. 1, since, by hyp., B = el, the result 
is A = C. Q.E.D. 

THEOREM 2 

If one of two terms which are Ihh same be different from a third term, Ihen tllB oiher of the 
two will be different from it also. 

lf A = Band B + e, then A. + e. For if in the proposition B + e (true by hyp.) 
A be substituted for B (which can be done by def. 1, since, by h)--p., A. = B), the result is 
A + e. Q.E.D. 

[Theorem in the margin of the manuscript.] 

Here might be ins~rted the following theorem: TVhatel'er is in one of two coincident 
terms, is in the other also. 

If A is in Band B = e, then al50 A. is in e. For in the proposition A. is in B (true 
by hyp.) let e be substituted for B. 

THEORE~I 3 

If terms which coincide be added I~ the same term, the results will coincide. 
If A = B, then A + C = B + C. For if in the proposition A + C = A + C (true 

8 This translation is literal: the meaning is obscure, but see the diagram above. 
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pcr sc) you substitute B for A in one place (which can be done by def. 1, since A = B), 
it gives A + C = B + C. Q.E.D. 

COROLLARY. If terms which coincide be added to terms which coincide, the results will 
coincide. If.4. = Band L = JJ, then A + L = B + M. For (by the present theorem) 
since L = .11, A. + L = .4. + .11, and in this assertion putting B for A in one place (since 
by hyp .• -1 = B) gives A + L = B + .1[. Q.E.D. 

TREORE:\! 4 

A container of the con/ainer is a container of the contained; or if that in which some
thing is, be itself i~ a third thing, then that which is in it will be in that same third thing
that is, if A. is in Band B is in C, then also A. is in C. 

For A. is in B (by hyp.), hence (by def. 3 or charact. 3) there is some term, which we 
may call L, such that A. + L = B. Similarly, since B is in C (by hyp.), B + M = C, 
and in this assertion putting A + L for B (since we show that these coincide) we have 
A + L + J[ = C. But putting"Y for L + JI (by post. 1) we have A + N = C. Hence 
(by def. 3) A is in C. Q.E.D. 

TREORE:\! 5 

Whatel'cr contaills terms individually contains also that which is constituted of them. 
If A is in C and B is in C, then A. + B (constituted of A and B, def. 4) is in C. For 

since A is in C, there "ill be some term JI such that A. + J,I = C (by def. 3). Similarly, 
since B is in C, B + S = C. Putting these together (by the corollary to tho 3), we have 
.-1 + .11 + B + .V = C + C. But C + C = C (by ax. 1), hence A + .Ill + B + N = C. 
And therefore (by def. 3) A + B is in C. Q.E.D.9 

THEORE:\! 6 

Whatever ·is constituted of terms which are contained, is in that which is constituted of the 
containers. 

If A. is in JI and B is in .V, then A. + B is in J[ + N. For A is in M (by hyp.) and M 
is in .11 + S (by def. 3), hence A. is in .11 + N (by tho 4). Similarly, B is in N (by hyp.) 
and N is in "11 + N (by def. 3), hence B is in 111 + N (by tho 4). But if A is in M + N 
and B is in JI + S, then also (by tho 5) A + B is in J'1 + N. Q.E.D. 

THEOREM 7 

If any term be added to that in which it is, then nothing new is constituted; or if B is in A, 
then A + B = .4.. 

For if B is in .4., then [for some CJ B + C = A (def. 3). Hence (by tho 3) A + B 
= B + C + B = B + C (by ax. 1) = A (by the above). Q.E.D. 

CONVERSE OF THE PRECEDING THEOREM 

If by the addition of any term to another nothing new is constituted, then the term added 
is in the other. 

If.4 + B = A, then B is in.4; for B is in A. + B (def. 3), and A + B = A (by hyp.). 
Hence B is in A (by the principle which is inserted between ths. 2 and 3). Q.E.D. 

THE ORE:\! 8 

If termi! u~hich coincide be subtracted from terms which coincide, the remainders will 
coincide. 

If A = L and B = ][, then A - B = L - 11'1. For A - B = A - B (true per se), 

9 In the margin of the manuscript at this point Leibniz has an untranslatable note. 
the sense of which is to remind him that he must insert illustrations of these propositions in 
common language. 
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and the substitution, on one or the other side, of L for A. and .11 lor B. !!iy"s A - B = L 
. - M. Q.E.D. . - . 

[Note in the margin of the manuscript.] In dealing with concepts. su1fraciiO/l (de
iractio) is one thing, negation another. For example, "non-rational m~n" is ubmnlor 
impossible. But. we may say; An ape is a man except that it is not rational. :They 
are] men except III those respects in which man differs from the bea5ts, as in the ease of 
Grotius's Jumbo1o (Homines nisi qua besliis differt homo, ut ill Jambo Gro/iij. "Zllan" 
- "rational" is something different from "non-rational man". For" man" - "rational" 
= "brute". But "non-rational man" is impossible. "11an" - "animal" - "rational" 
is Nothing. Thus subtractions can give Xothing or simple non-existence--eyen less than 
nothing-but negations can giYe the impossible.ll 

THEoRE~r 9 

(1) From an expressed compensation, the destruction of the term compensated follows, 
provided nothing be destroyed in the compensation which, being tucid:}" repeated, enters 
into a constitution outside the compensatIon [that is, + X - S appearing in an expression 
may be dropped, unless N be tacitly inyolved in some ether term of the expression]; 

(2) The same holds true if whatever is thus repeated occur both in what is added and 
in what is subtracted outside the compensation; 

(3) If neither of these two obtain, then the substitution of destruction for compensa
tion [that is, the dropping of the e:l.-pression of the form + X - .Yj is impos:;ible. 

Case 1. If A. + N - M - N = A - J1, and A, .V, and JI be non-communicating, 
For here there is nothing in the compensation to be destroyed, + X - X, which is also 
outside it in A or Jf-that is, whatenr is added in + X, howeyer many times it is added, 
is in + iV, and whatever is subtracted in -.v, however many times iL is subtracted, is in 
- N. Therefore (by ax. 2) for + N - N we can put Xothing. 

Case 2. If A + B - B - G = F, and whateyer is common both to A. + B [i. e., 
to A. and B] and to G and B, is }vI, then F = A-G. In the first place, Jet us suppose 
that whatever A and G have in common, if they haye anything in common, is E, so that 
if they have nothing in common, then E = ::-rothing. Thus [to exhibit the hypothesis 
of the case more fully] A = E + Q + JJ, B = :,r + "'11, and G = E -:- H + JI, so that 
F = E + Q + 111 + N - N - Jf - H - JI, where all the terms E, Q, .11, .v, and H a..."""e 

non-communicating. Hence (by the preceding case) F = Q - H = E + Q + J[ - E 
-H -.ill =A -G. 

Ca.se 3. If A. + B - B - D = C, and that which is common to A and B does n.ot 
coincide with that which is common to B + D [io e., to Band DJ, then we shall not have 
C = A. - D. For let B = E + F + G, and A. = H + E, and D = K + F, so that these 
constituents are no longer communicating and there is no need for further resolution. 
Then C = H + E + F + G - E - F - G - K - P, th:1t is (by case 1) C = H - K, 
which is not = A - D (since A - D = H + E - K - F), unless we suppose, contrary 
to hypothesis, that E = F-th:1t is that Band .4. have something in common which is also 
common to Band D. This same demonstration would hold eyen if A and D had 
something in common. 

10 Apparently an allusion to some description of an ape by Grotius. 
11 ThIs is not an unnecessary and hair-splitting distinction, but on the contrary, ~r

haps the best evidence of Leibni2;'s accurate comprehension of the logical calculus which 
appears in the manuscripts. It has been generally misjudged by the commentators, because 
the commentators have not understood the logic of intension. The distinction of the 
merely non-existent and the impossible (self-contradictory or absurd) is absolutely essential 
to any calculus of relations in intension. .!\.nd tbis distinction of sub~raction (or in th~ more 
usual notation division) from negation, is equally necessary. It IS by the confusIon of 
these two that'the calculuses of Lambert and Castillon break down. 
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THEORE:lf 10 

A subtracted term and the remainder are non-communicating. 
If L - A. = X, I affirm that A. and X ha.Ye nothing in common. For by the definition 

of "subtraction" and of "remainder", everything in L remains in N except that which is 
in A, and of this l:tst nothing remains in S. 

THEoRE~ 11 

Of that Irhich is in t!Co communicating terms, lI:hatevel' part is common to both and the 
two exciusi1'll parts are three non-communicating terms. 

If A. and B be communicating terms, and A = P + 111 and B = N + 2"1, so that 
whatever is in A. and B both is in :1f, and nothing of that is in P or N, then P, ilI, and N 
are non-communicating. For P, as well as N, is non-communicating with Jl.1, since what
ever is in J1 is in A. and B both, and nothing of this descrip.tion is in P or N. Then P and 
S are non-communicating, otherwise what is common to them would penetrate into A 
and B both. 

PROBLE~I 

To add non-coincident terms to giL'en coincident terms so that the Tesulting terms shall 
coincide. 

If A = A, I affirm that it is possible to find two terms, Band N, such that B =1= N 
and yet A + B = A + N. 

Solution. Choose some term JI which shall be contained in A. and such that, N 
being chosen arbitrarily, J1 is not contained in lY nor l'{ in M, and let B = JI.1 + N. And 
this will satisfy the requirements. Because B = jf + If (by hyp.) and M and N are 
neither of them contained in the other (by hyp.), and yet A + B = A + N, since A + B 
= A. + JI + X and (by tho 7, since, by hyp., J1 is in A.) this is = A. + N. 

THEOREl! 12 

Where non-communicating tErms only are involi;ed, whatever terms added to coincident 
terms give coincident lermsu'ill be themselves coincident. 

That is, if A + B = e + D and A = e, then B = D, provided that A and B, as 
well as e and D, are non-communicating. For A. + B - e = e + D - e (by tho 8); 
but A. + B - e = A + B - A (by hypo that A = e), and A + B - A = B (by tho 9, 
case 1, since A and B are non-communicating), and (for the same reason) e + D - e = D. 
Hence B = D. Q.E.D. 

THE ORE.\{ 13 

In general; if other terms added to coincident terms git'e coincident terms, then the terms 
added are communicating. 

If A and .4. coincide or are the same, and A + B = A + N, I affirm that Band N 
are communicating. For if A. and B are non-communicating, and A and N also, then 
B = N (by the preceding theorem). Hence Band N are communicating. But if A and B 
are ('ommunicating, let A. = P + "~1 and B = Q + _11<1, putting M for that which is common 
to A and B and nothing of this description in P or Q. Then (by ax. 1) A + B = P + Q 
+ J.11 = P + ]I,I + N. But P, Q, and J1 are non-communicating (by tho 11). Therefore, 
if N is non-communicating ",ith A -that is, with P + M -then (by the preceding theorem) 
it results from P + Q + 1"1 = P + J1 + N that Q = N. Hence N is in B; hence Nand 
B are communicating. But if, on the same assumption (namely, that P + Q + M 
= P + Jl + ,V, or A. is communicating with B) N also be communicating with P + 111: 
or A, then either N will be communicating with M, from which it follows that it ",111 be 
communicating with B (which contains M) and the theorem will hold, or, N will be com
municating ",ith P, and in that case we shall in similar fashion let P = G + Hand N = F 
+ H, so that G, P, and Hare non-co=unicating (according to tho 11), and from P + Q 



Tu'o Fragments from LdOlli: 

+ JI = P + JI + X we get G + H + Q + JI = G -:- H -:- JI -:- F T H. H"uce by 
the preceding theorem) Q = F. Hence S (= F T H) and B ; = Q -i- .il; have ","uuu."'!l 

in common. Q.E.D. 
Corollary. From this demonstration we learn the following: If any lerms be lllld,,;! 

to the same or coincident terms, and the results coineide, and if the terms added are eaeh 
non-communicating with that to which it is added, then the terms added ito the same> or 
coincidents] coincide with each other (as appears also from tho 12;. But if one of the 
terms added be communicating with that to which it is added, :'md the other no:, then :of 
these two added terms] the non-communicating one will be contained in the commUnitllting 
one. Finally, if each of the terms is communicating with that to which it is added, then :It 
least they will be communicating with each other (although in another connection it would 
not follow that terms which communicate with a third communieate with etleh other). 
To put it in symbols: A -:- B = A. + X. If A and B tlr€ non-communicating, and .:1 
and N likewise, then B = X. If A. and B are communicating but _-1 and S tlre non-com
municating, then S is in B. And finully, if B communicate, with A. and likt'wise X com
municates with A, then Band P; at least communicate with each other. 

Def. 1. Terms which can be substituted for one another wherever we plea~e without 
altering the truth of any statement (salm ('eritaie), are the same (£adem) or wineidl.ll! 
(coincidentia). For example, "triangle" and "trilateral", for in eyery proposition demon
strated by Euclid concerning "triangle" I "tril:J.teml'· can be substituted without 10,5 of 
truth. 

A = B12 signifies that A. and B are the 
same, or as we say of the straight line Xl' 
and the straight line YX, Xl' = YX, or the 
shortest path of a [point] moving from X to 
Y coincides with that from Y to X. 

Def. 2. Terms which are not the same, that is, terms which cannot always be sub· 
stituted for one another, are different (dil'ersa). Such are "circle" and i'triangle ", or 
"square" (supposed perfect, as it always is in Geometry) and "equilateral quadrangle", 
for we can predicate this last of a rhombus, of which "square" cannot be predicated. 

A =f B13 signifies that A and B are different, as for example, l!_ r_f!_~ 
the straight lines Xl' and RS. 

Prop. 1. If A = B, then also B = -4.. If anything be the same u:ilh another, thtlt 
that other will be th~ same uith it. For since A = B (by hyp.), it follows (by def. 1) that 
in the statement A = B (true by hyp.) B can be substituted for A and A for B; henee we 
haveB = A. 

Prop. 2. If A =f B, then also B =f A. If any toTm be different from another, thell Ihat 
other uiZZ be different from it. Othenvise we should haye B = A, and in consequence tby 
the preceding prop.) A = B, which is contrary to hypothesis. 

Prop. 3. If A = Band B = C, then A = C. Termstl'hich coincide viih a third lerm 
coincide with each other. For if in the statement .4. = B (true by hyp.) C be substituted 
for B (by def. 1, since A = B), the resulting proposition \"\'il! be true. 

Co roll. If A = B andB = C and C = D, then A =; D; and so on. For.-! = B = C, 
hence A = C (by the above prop.). Again, A = C = D; hence (by the above prop.) 
A =D. 

Thus since equal things are the same in magnitude, the consequence is that things 
equal to a third are equal to each other. The Euclidean construction of an equilateral 
triangle makes each side equal to the base, whence it results that they are equal to each 

12 A = B for A '" B, as before. 
13 A =f B for A non co B, as before. 
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other. If anything be moved in a circle, it is sufficient to show that the paths of any two 
successi,oe periods, or returns to the same point, coincide, from which it is concluded that 
the paths of any two periods whatever coincide. 

Prop. 4. If A. = Band B + C, then A. + C. If of two things which are the same with 
each other, one differ from a third, then the other also will differ from that third. For if jn the 
proposition B + C (true by hyp.) A. be substituted for B, we have (by def. 1, since A = B) 
the true proposition A. +" C. 

DEj. 3. A is in L, or L contains .4., is the same as to say that L can be made to coin
cide with a plurality of terms, taken together, of which A is one. 

Def. 4. :'.foreover, all those' terms such that whatever is in them is in L, are together 
called components (componentia) with respect to'the L thus composed or constituted. 

BeN = L signifies that B is in L; and that Band N together compose or constitute 
L.l4 The same thing holds for a larger number of terms. 

Def. 5. I call terms one of which is in the other subalternates (subalternantia), as A 
and B if either A. is in B or B is in A .. 

DEj. 6. Terms neither of which is in the other [I call] disparate (disparata). 
A.xiom 1. BeN = lv' E9 E, or transposition here alters nothing. 
Pos/. 2. ~-\ny plurality of terms, as A and B, can be added to compose a single term, 

A, ffi B or L. 
Axiom 2. A 9 A = A. If nothing new be added, then nothing new results, or 

repetition here alters nothing. (For 4 coins and 4 other coins are 8 coins, but not 4 coins 
and the same 4 coins already counted). 

Prop. 5. If A is in E and A = C, then C is in E. That which coincides with the in
existent, is inexistent. For in the proposition, A is in E (true by hyp.), the substitution 
of C for.4. (by def. 1 of coincident terms, since, by h}"p., A = C) gives, C is in E. 

Prop. 6. If C is in Band A. = B, then C is in A. Whaiev6r is in one of two coincident 
terms, is in the other also. For in the proposition, C is in E, the substitution.of A for C 
(since A = C) gives, A is in E. (This is the converse of the preceding.) 

Prop. 7. A is j:n A. Any term whatever is contained in itself. For A is in A ED A 
(by def. of "inexistent", that is, by def. 3) and A ED A = A (by ax. 2). Therefore (by 
prop. 6), A is in A. 

Prop. 8. If A = E, then A is in B. Of tenns which coincide, the one is in the other. 
This is ob'\'ious from the preceding. For (by the preceding) A is in A-that is (by hyp.), 
in B. 

Prop. 9. If A = E, then A. ED C = E ED C. If terms which coincide be added to the 
same term, the results uill coincide. For if in the proposition, A ED C = A ED C (true 
per se), for A. in one p1ace be substituted B wbich coincides with it (by def. 1), we have 
A. ffi C = E EEl C. 

Bec 

A "triangle" } 
coincide 

B "trilateral" 

A EEl C "equilateral triangle" } 
E EEl C "equilateral trilateral". coincide 

14 In this frag:nel!-t, as distinguished .from xrx;, the. logical or "real" sum is repre
sented by El? Le~bm~ ~as carelessly omItted the clTcle ill many places, but we write $ 
wherever thlS relatIOn IS mtended. 
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Scholium. This proposition cannot be converted-muc!) les::, the two whirh foUow. 
A method for finding an illustration of this fact will be exhibited below, in the probl(>ll1 which 
is prop. 23. 

Prop. 10. If A = Land B = 11-1, then A 6 B = L 6 .II. If lermSlxhich coincide 
be added /0 terms u·hith coincide, the results uill coincide. For since B = .1[, A 6 B = A. e .11 
(by tbe preceding), and putting L for the second A (since, by hyp.,..l. = L) we haye A e B 
= L EB 11-1. 

A "triangle", and L "trilateral" coin
cide. B "regular" coincides with J1 "most 
capacious of equally-many-sided figures with 
equal perimeters". "Regular triangle" coin
cides with "most capacious of trilaterals mak
ing equal peripberies out of three sides". 

Scholium. This proposition cannot be converted, for if A e B = L e J[ and A = L, 
still it does not follow that B = M,-and much less can the following be conyerted. 

Prop. 11. If A = Land B = "',1 and C = S, thm A. e Bee = L EB JI e."",. 
And so on. If there be any number of terms under com,ideratfon, alid an equal mnnbet of 

. them coincide v,'ith an equal n'Umber of others, itrm for term, then Ihal u:Mch 'i,s compowi of the 
former coincides u'ith that u'hich is composed of ihe latter. For (by the preceding, since 
A = Land B = M) we have A. EEl B = L EB ;.1[. Hence, since C = J.Y, we have (again 
by the preceding) A EB B EEl C = L EEl M EEl };. 

Prop. 12. If B is in L, then A EEl B u:ill be in A e L. If the sam6 tum be added to 
what is contained and to what contains ii, the former result is contained 'in the laUer. For 
L = B EB N (by def. of "inexistent"), and .4. e B is in B e 11- e A (by the same), that 
is, A EEl B is in LEBA . 

.deL 
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B "equilateral", L "regular", A. "quad
rilateral". "Equilateral" is in or is attribute 
of "regular". Hence "equilateral quadrilat
eral" is in "regular quadrilateral" or "perfect 
square". YS is in RX. Henee RT e :rS, 
or RS, is in RT e RX, or in RX. 

Scholium. This -proposition cannot be converted; for if _4. EB B is in A. e L, it does 
not follow that B is in L. 

Prop. 13. If L EB B = L, then B is in L. If the addUion of any term to another does 
not alter that other, then the term added is in the other. For B is in L e B (by def. of "in
existent") and L EB B = L (by hyp.), hence (by prop. 6) B is in L. 

RY EB RX = RX. Hence RY is in RX. 
RY is in RX. Hence RYe RX = RX. 
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Let L be "parallelogram" (eYery side of which is parallel to some side),15 B be "quadri
lateral" . 
"Quadrilateral parallelogram" is in the same as "parallelogram". 
Therefore to be quadrilateral is in [the intension of] "parallelogram". 
Re,'ersing the reasoning, to be quadrilateral is in "parallelogram". 
Therefore, "quadrilateral parallelogram" is the same as "parallelogram". 

Prop, 14. If B is in L, then L e B = L, Subalternates compose nothing new; or if 
any term which is in another be added 10 ii, it 1L'ill produce nothing different from that other. 
(Com'crse of the preceding,) If B is in L, then (by def. of "inexistent") L = B EEl P. Hence 
(by prop. 9) L EEl B = B EEl P EEl B, which (by ax. 2) is = B EEl P, which (by hyp.) is = L. 

Prop. 15. If.1 is in Band B is in C, then also .1 is in C. What is contained in the 
contained, is contained in Ihe container. For A, is in B (by hyp.), hence A EEl L = B (by 
def. of "inexistent"). Similarly, since B is in C, B $ i1! = C, and putting A $ L for B 
in this statement (since we hose shown that these coincide), we have A $ L $ M = C. 
Therefore (by def. of "inexistent") A is in C. 

R T S X RT is in RS, and RS in RX. 
Hence RT is in RX. 
A. "quadrilateral", B "parallelogram", 

C "rectangle". 

To be quadrilateral is in [the intension of] "parallelogram", and to be parallelogram 
is in "rectangle" (that is, a figure eyery angle of which is a right angle). If instead of 
concepts per se, we consider indiyidual things comprehended by the concept, and put A 
for "rectangle", B for "parallelogram", C for "quadrilateral", the relations of these can 
be inyerted. For all rectangles are comprehended in the number of the parallelograms, 
and all parallelograms in the number of the quadrilaterals. Hence also, all rectangles are 
contained amongst (in) the quadrilaterals. In the same way, all men are contained amongst 
(in) all the animals, and all animals amongst all the material substances, hence all men 
are contained amongst the material substances. And conversely, the concept of material 
substance is in the concept of animal, and the concept of animal is in the concept of man. 
For to be man contains [or implies] being animal. 

Scholium. This proposition cannot be converted, and much less can the following. 
Coroll. If A EB ,?I; is in B, X also is in B. For N is in A $ N (by def. of "inexistent"). 
Prop. 16. If A, is in Band B is in C and C is in D, then also A is in D. And so on. 

That which is contained in u'hat is contained by the contained, is in the containe?·. For if A 
is in Band B is in C, A. also is in C (by the preceding). "'bence if C is in D, then also 
(again by the preceding) A is in D. 

Prop. 17. If A is in Band B is in A" then A = B. Terms which contain each other 
coincide. For if A is in B, then A EB N = B (by def. of "inexistent"). But B is in A 
(by hyp.), hence A eN is in A, (by prop. 5). Hence (by coroll. prop. 15) N also is in A. 
Hence (by prop. 14) A = A $ N, that is, A. = B. 

RT, N; RS, A; SR $ RT, B. 

To be trilateral is in [the intension of] 
"triangle", and to be triangle is in "trilat
eral". Hence "triangle" and "trilateral" 
coincide. Similarly, to be omniscient is to be 
omnipotent. 

B 

Iii Leibniz uses "parallelogram" in its current meaning, though his language may 
suggest a wider use. 
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Prop. 18. If A. is in Land B is in L, then (1180 A 9 B i8in L. lri,a! is c'-,,'ujli1.iui of 
two, each contained in a third, is ilself contained in thai third. For sin"': A 1, in L .liy l:YD,l. 

~t can be seen that A. EB ]1 = L (by def. of "inexistent "). : ~i:li;e B 1, j'n' i., 
It can be ,seen that B 9 N = L. Putting these together, we ha\'I: ,by prop. HI. ~t '=- .il 
9 B EB N = L EB L. Hence (by ax. 2)16 A @ .11 9 B e.Y = L. Hence ,hy \1d', of 

10 The number of the axiom is giyen in the text as il, a misprint. . 
"inexistent") A. @ B is in L. 

RYS is in RX. 
YST is in RX. 
Hence RT is in RX. 

_4.eill , 

A "equiangular", B "equilateral", A e B ., equiangular equilmeral" or .. regular", 
L "square". "Equiangular" is in [the intension of] "square", and "equilateral" is in 
"square". Hence "regular" is in "square". 

Prop. 19. If A is in Land B is in Land C is in L, thell A. e B 9 C is in L. And 
so on. Or in general, whatev6r contains terms indicirlually, conlain., also u'hat is compos,d of 
them. For A EB B is in L (by the preceding). But also C is in L (by hyp.), henrI" (once 
more by the preceding) A EB B EB C is in L. 

Seholium. It is obvious that these two propositions and similar ones ran be con
verted. For if A EB B = L, it is clear from the definition of "inexistent" that A is in L, 
and B is in L. Likewise, if A EB B EB C = L, it is clear that A. is in L, and B is in L, and 
C is in L,l7 Also that A EB B is in L, and A EB C is in L, and B @ C is in L. And so on. 

Prop. 20. If A is in M and B is in N, then A EB B is in J[ E9 N. If the form" of olle 
pair be in the latilff and the former of another pair be in the latter, then u:hat is composed of lhe 
former in the two cases is in what is composed of the latter in the /U'O ca,~es. For .4 is in J! (by 
hyp.) and M is in M EB N (by def. of "inexistent"). Henee (by prop. 15) A is in Jf e .V 
Similarly, since B is in N and N is in M EB N, then also (by prop. 18) A EB B is in .If e .Y' 

RT is inRY and STis in SX, hence RT 
eST, or RY, is in R"F EB 8X, or in RX.!S 

If A be "quadrilateral" and B H equi
angular", A EB B will be "rectangle". If J1 
be "parallelogram" and .V "regular", .If 9 
N will be "square". ~ow "quadrilateral" 
ib in [the intension ofl "parallelogram ", and 
"equiangular" is in "regular", henee "ree
tangle" (or "equiangular quadrilateral") is 
;n "regular parallelogram or square ". 

Seholiuln. This proposition cannot be converted. Suppose that A. is in Jf and 
A EB B is in M EB N, still it does not follow that B is in N; for it might happen that B as 
well as A is in lvI, and whatever is in B is in JI, and something different in N. Much less, 
therefore, can the following similar proposition be converted. 

Prop.21. If A isinM andBisinN and Cis in P, then A. ED B ED Cis in JI ES N EB P. 

17 To be consistent Leibniz should have written" A EEl B is in L" instead of "A. 9 B 
= L", and" A EB B €Ii C is in L" instead of "A EB B EB C = L"-but note the method 
of the proof. 

18 The text has RY here instead of RX: the correction is obvious. 
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And so on. Tfhataer is composui of terms which are contained, is in what is composed of the 
lxmtainers. For since • ..J. is in .11 and B is in S, (by the preceding). A $ B is in M $ N. 
But a is in P, hence (again by the preceding) A. $ B $ C is in M $ N EEl P. 

Prop. 22. Tleo disparate terms, A. and B, being given, to find a third term, a, different 
from them and such that uith them it composes subalternates A Ej7 a and B EEl a-that is, 
such that although A. and B are neither of them contained in the other, still A EEl C and 
B EEl C shall one of them be contained in the other. 

Solution. If we wish that A. $ C be contained in B EEl C, but A be not contained in B, 
this can be accomplished in the follo'W'ing manner: Assume (by post. 1) some term, D, 
such that it is not contained in A, a,nd (by post. 2) let A. EEl D = a, and the requirements 
are satisfied. 

For A EB C = A $ A EEl D (by construe· 
tion) = A EEl D (by ax. 2). Similarly, B $ C 
= B $ A $ D (by construction). But A 
$ D is in B EEl A EEl D (by def. 3). Hence 
A $ C is in B $ C. IYhich was to be done.I9 

SY and rx are disparate. If RS 6 SY = I'R, then SY EEl YR will be in XY $ YR. 
Let A be "equilateral", B "parallelogram", D "equiangular", and C "equiangular 

equilateral" or "regular", where it is obvious that although "equilateral" and "parallelo· 
gram" are disparate, so that neither is in the other, yet "regular equilateral" is in "regular 
parallelogram" or "square". But, you ask, will this construction prescribed in the problem 
succeed in all cases? For example, let A be "trilateral", and B "quadrilateral"; is it 
not then impossible to find a concept which shall contain A and B both, and hence to 

. find B EEl C such that it shall contain A EEl C, since A and B are incompatible? I reply 
that our general construction depends upon the second postulate, in which is contained 
the assumption that any term and any other term can be put together as components. 
Thus God, soul, body, point, and heat compose an aggregate of these five things. And in 
this fashion also quadrilateral and trilateral can be put together as components. For 
assume D to be anything you please which is not contained in "trilateral", as "circle". 
Then A EEl D is "trilateral and circle",20 which may be called C. But C $ A is nothing 
but "trilateral and circle" again. Consequently, whateyer is in C EEl B is also in "tri
lateral", in "circle", and in "quadrilateral". But if anyone wish to apply this general 
calculus of compositions of "hate,er sort to a special mode of composition; for example 
if one wish to unite "trilateral" and "circle" and "quadrilateral" not only to compose 
an aggregate but so that each of these concepts shall belong to the same subject, then it is 
necessary to obserye whether they are compatible. Thus immoyable straight lines at a 
distance from one another can be added to compose an aggregate but not to compose a 
continuum. 

Prop. 23. Tu'o disparate ttrms, A and B, being giuen, to find a third, C, different from 
them [and such that A EEl B = A $ C].21 

Solution. Assume (by post. 2) C = A $ B, and this satisfies the requirements. 
For since A and B are disparate (by hyp.)-that is (by def. 6), neither is in the other-

19 Leibniz has carelessly substituted L in the proof where he has D in the proposition 
and in the figure. We read D throughout. 

20 Leibniz is still sticking to intensions in this example, however much the language 
may suggest extension. 

21 The proof, as well as the reference in the scholium to prop. 9, indicate that the 
statement of the theorem in the text is incomplete. We have chosen the most conservative 
emendation. 
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therefore (by prop. 13) it is impossible that C = A. or C = B. Hence the,,,,,, three are diff'"r
ent, as. the problem requires. Thus A. e c = A e A e B (by construetion , whii'h .. by 
ax. 2) IS = A $ B. Therefore A e C = A e B. 'Which was to be done. 

Prop. 24. To find a set of terms, of any desired rIll/nlxr, lI'hich differ wel, from tach Clod 
are so related that from them nothing can be composEd lchich is lIC!C, or dijf<1Cld from erc'!J 

one of them [io e., such that they form a group with respect to the operation is J. 
Solution. A.ssume (by post. 1) any terms, of any desired number. whieh shall he 

different from each other, A, B, C, and D, and from these let A. e B = Jl . .11 e C = X. 
and N $ D = P. Then A, B, 1.1,[, X, and P are the terms required. For (by construction, 
M is made from A and B, and hence A., or B, is in Jl, and .1.[ in .v, and Sin P. Hence 
(by prop. 16) any term which here precedes is in any which follows. But if two such are 
united as components, nothing new arises; for if a term be united with itself, nothing new 
arises; L EEl L = L (by ax. 2),22 If one term be united with unother us components, a 
term which precedes will be united mth one which follows; hence a term which is contained 
mth one which contains it, as L 8 N, but L e S = X (by prop. 14).23 And if three are 
united, as L EEl N EEl P, then a couple, L EEl -V;, will be joined with one, P. But the couple, 
L EEl N, by themselves 'will not compose anything new, but one of themselves, namely the 
latter, N, as we have shown; hence to unite a ('ouple, LeX, with one, P, i;;: the same as 
to unite one, N, with one, P, which we haye iust demonstrated to compose nothing new. 
And so on, for any larger number of terms. Q.E.D. 

Scholillm. It would have been sufficient to add each term to the next, which contains 
it, as 1111, N, P, etc" and indeed this mll be the situation, if in our constmction we put 
A = Nothing and let B = ilL But it is clear that the solution which has been gi,'en is of 
somewhat wider application, and of course these problems can be ~oJved in more than one 
way; but to exhibit all their possible solutions would be to demonstrate that no other 
ways are possible, and for this a large number of propositions would need to be proved 
first. But to give an example: five things, A, B, 0, D, and E, can be so related that they 
will not compose an;Yihing new only in some one of the following ways: first, if A is in B 
and B in C and C in D and D in Ei second, if A EEl B = C and C is in D and D in E; third, 
if A EEl B = C and A is in D and B EEl D = E. The five concepts which follow are related 
in the last, or third, way; A "equiangular", B "equilateral", C "regular", D "rectangle", 
E "square", from which nothing can be composed which does not coincide with them, sin('e 
"equiangular equilateral" coincides with "regular", and "equiangular" is in [the intension 
of] "rectangle", and "equilateral rectangle" coincides with ,. square ". Thus "regular 
equiangular" figure is the same as that which is at once "regular" and "regubr equi
lateral", and "equiangular rectangle" is "rectangle", and "regular rectangle" is "square ". 

Scholium to defs. 3, 4, 5, and 6. We say that the concept of the genus iil in the concept 
of the spe':ies; the individuals of the species amongst (in) the individuals of the genus; a 
part in the whole; and indeed the ultimate and indivisible in the continuous, as a point 
is in a line, although a point is not a part of the line. Likewise the concept of the attribute 
or predicate is in the concept of the subject. And in genel"'al this conception is of the 
widest application. We also speak of that which is in something as contained in that in 
which it is. Weare not here concerned 'with the notion of "contmned" in general-with 
the manner in which those things which are "in" are related to one another and to that 
which contains them. Thus our demonstrations cover also those things which comj)OtlCe 
something in the distributive sen.se, as all the species together compose the genus. Hence 
all the inexistent things which suffice to constitute a container, or in which are all things: 
which are in the container, are said to compose that container; as for e:s:ample, A. EEl Bare 
said to compose L if A Band L denote the ~traight lines RB, YX, and RX, for RS e YX 

, " i' ~ = RX. And such parts which complete the whole, I am accustomed to caU 'comte-
grants", especially if they have no common part; if they have a common part, they are 

22 The number of the axiom is omitted in the text. 
23 The number of the prop. is omitted in the text. 

26 
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called "co-members", as RS and RX. 'Whence it is clear that the same thing can be 
composed in many different ways if the things of which it is composed are themselves 
composite. Indeed if the resolution could finally be carried to infinity, the variations of 
composition would be infinite. Thus all synthesis and analysis depends upon the principles 
here laid down. And if those things which are contained are homogeneous with that in 
which they are contained, they are called parts and the container is called the whole. If 
two parts, however chosen, are such that a third can be found having a part of one and a 
part of the other in common, then that which is composed of them is continuous. Which 
illustrates by what small and simple additions one concept arises from another. And I 
call by the name "subalternates" those things one of which is in the other, as the species 
in the genus, the straight line RS in the straight line RX; "disparates" where the opposite 
is the case, as the straight lines RS and YX, two species of the same genus, perfect metal 
and imperfect metal-and particularly, members of the different divisions of the same 
whole, which (members) have something in common, as for example, if you divide "metal" 
into "perfect" and "imperfect", and again into "soluble in aquajortis" and "insoluble", 
it is clear that "metal which is insoluble in aqua jortis" and "perfect metal" are two dispa
rate things, and there is metal which is perfect, or is always capable of being fulminated in 
a cupeI,:' and yet is soluble in aquajortis, as silver, and on the other hand, there is imperfect 
metal which is insoluble in aqua fortis, as tin. 

Scholium to axioms 1 and 2. Since the ideal form of the general [or ideal form in 
general, speciosa generalis1 is nothing but the representation of combinations by means of 
symbols, and their manipulation, and the discoverable laws of combination are various,2S 
it results from this that various modes of computation arise. In this place, however, we 
have nothing to do with the theory of the variations which consist simply in changes of 
order [i. e., the theory of permutationsj, and AB [more consistently, A E& Bj is for us the 
same as BA [or B E& A]. And also we here take no aooount of repetition-that is AA [more 
consistently, A e A] is for us the same as A. Thus wherever these laws just mentioned 
can be used, the present calculus can be applied. It is obvious that it can also be used 
in the composition of absolute concepts, where neither laws of order nor of repetition obtain; 
thus to say "warm and light" is the same as to say "light and warm", and to say "warm 
fire" or "white mi'k", after the fasbion of the poets, is pleonasm; white milk is nothing 
different from milk, and rational man-that is, rational animal which is rational-is nothing 
difierent from rational animal. The same thing is true when certain given things are said 
to be contained in (inexistere) certain things. For the real addition of the same is a useless 
repetition. '''ben two and two are said to make four, the latter two must be different 
from the former. If they were the same, nothing new would arise, and it would be as if 
one should in jest attempt to make six eggs out of three by first counting 3 eggs, then 
taking away one and counting the remaining 2, and then taking away one more and counting 
the remaining 1. But in the calculus of numbers and magnitudes, A or B or any other 
symbol does not signify a certain object but anything you please with that number of 
congruent parts, for any two feet whatever are denoted by 2; if foot is the unit or measure, 
then 2 + 2 makes the new thing 4, and 3 times 3 the new thing 9, for it is presupposed that 
the things added are always different (although of the same magnitude); but the opposite 
is the case with certain things, as with lines. Suppose we describe by a moving [point] 
the straight line, RY E& YX = RYX 01' P E& B = L, going from R to X. If we suppose 
this same [point] then to return from X to Y and stop there, although it does indeed describe 
YX or B a second time, it produces nothing different than if it had described YX once. 
Thus L E& B is the same as L-that is, P EEl B E& B or RY EEl YX EEl XY is the same as 
RY EEl YX. This caution is of much importance in making judgments, by means of 
the magnitude and motion of those things which generate26 or describe, concerning the 

" The text here has ". . . fulminabile persistens in capella": the correction is obvious. 
15" ••• variaeque sint combinandi leges excogitabiles, ••. " "Excogitabiles", 

"discoverable by imagination or invention", is here significant of Leibniz's theory of the 
relation between the "universal calculus" and the progress of science. 

!IS Reading "generant" for "generantur"-a correction which is not absolutely neces-
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magnitude of those things which are generated or described. For care must be taken eit her 
that one [step in the process] shaH not choose the truc'k of another a~ its own-that 1:<. one 
part of the describing operation follow in the path of another--or e15e [if thi~ tihould happen] 
this [reduplication] must be subtracted so that t.he same thing shall not be taken ;00 many 
times. It is clear also from this that'" components", according to the conr'ept whieh we 
here use, can compose by their magnitudes a magnitude greater tlum the magnitude of the 
thing which they compose.2' 'iYnence the composition of things differs widely from rhe 
composition of magnitudes. For example, if there are two parts, A or RB and B or RX, 
of the whole line L or RX, and each of these is greater than half of RX itself-if, for I.,,,,,,mj . .nc, 
RX is 5 feet and RS 4 feet and YX 3 feet--obviously the magnitudes of the parts eompose 
a magnitude of 7 feet, which is greater than thitt of the 'l'hole; and yet the lines R::> and 
YX themselves compose nothing different from RX,-that is, RS e L\:" = RX. Accord
ingly I here denote this real addition bye, as the addition of magnhudes is denoted ..,... 
And finally, although it is of much importance, when it is a question of the actual generation 
of things, what their order is (for the foundations are laid before the house is built), stilI 
in the mental construction of things the result is the same whichever ingredient we consider 
first (although one order may be more convenient than another), hence the order docs no! 
here alter the thing developed. This matter is to be considered in its own time aud proper 
place. For the present, however, RY e rs e SX is the Same as rs e Rr e SX. 

Scholium to prop. 24. If RS and }'X are different, indeed disparate, so that neither 
is in the other, then let RS EEl YX = RX, and RS EEl RX mll be the srlme as YX 9 RX 
For the straight line RX is al'l'ays composed by a process of conception (in notiofliiJus). 
If A is "parallelogram" and B "equiangular" 
-which are disparate terms-let C be A E9 B, 
that is, "rectangle". Then "rectangular 
parallelogram" is the same as "equiangular 
rectangle", for either of these is nothing differ
ent from" rectangle". In general, if 1Iaevius 
is A and Titius B, the pair composed of the 
two men C, then Maevius together with this 
pair is the same as Titius together with this 
pair, for in either case we have nothing more 
than the pair itself. Another solution of 
this problem, one more elegant but less general, 
can be given if A and B have something in 
common, and this common term is given and 
that which is peculiar to each of the terms A and B is 3ls0 given. For let that which is 
exclusively A be M, and that which is exclusively B be N, and let JI E9 S = D and let 
what is common to A and B be P. Then I affirm that A E9 D = B 9 D, for since A = P 
E9 M and B = P E9 N, we have A e D = P E9 M EEl N and also BeD = P e JI E9 N. 
sary since a motion which generates a line is also itself generated; but, as the context shows, 
" ge~erare" and "describere" are here synonymous. 

21 Italics ours. 
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