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Models for Belief Revision 

Raymundo Morado* 

1 Introduction 

These notes on the problems of modelling belief revision 
arose in part from a paper in which Brian Skyrms main- 
tains that probability calculus is the only sensible universal 
non-monotonic logic.1 According to him, a full treatment of 
induction "should be thoroughly probabilistic".2 

*The first part of this paper was discussed at the 1990 SOFIA Con- 
ference, in Campinas, Brazil. The second part was worked in part with 
the help of Jonathan Mills, and presented at the 1989 Interamerican 
Philosophy Congress in Buenos Aires, Argentina. The third part owes 
a lot to discussions I've had with Michael Dunn, Michael Gasser, Gor- 
don Beavers, and meetings of the Indiana University Philosophy/H&PS 
ABD Discussion Group. 

1We say that a relation 0 is monotonic under a function a if 0(a, b) 
entails O(a(a), c(b)). In the case of monotonic reasoning, 0 is the rela- 
tion "is inferred from" and a is any function that adds semantic content. 
In other words, adding information to the premisses increases the infor- 
mation in the conclusion: a -- b = a & c -- b & c. Some people prefer 
the weaker a -- b =t a & c -- b, taking x & y -- y for granted. 

2Skyrms (1990). This paper builds on ideas from Skyrms (1984) and 
Skyrms (1987). 
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In these pages I offer only a passing mention of some of 
the problems and proposed ways to handle a problem fa- 
miliar in the philosophy of induction: that of an epistemic 
subject forced by evidential constraints to modify its beliefs. 
In a very simplified model, this becomes the problem of truth 
maintenance with updates in data base management. In the 
first section I mention some of the criticisms levelled against 
the use of probability theory to deal with non-monotonic 
inferences. In the second section I explore a specific case: 
adding or retracting information from a database that works 
as an analog of a belief system. Here I go into some imple- 
mentation details and I mention a modal interpretation of 
the system states. The third section concludes with a brief 
excursion on the use of relevance logics to model knowledge 
acquisition. 

2 Probabilities and Belief Revision 

For a long time the use of probabilistic models has been a 
point of contention between two different ways of modeling 
belief in artificial intelligence. The probabilistic treatment, 
or similar techniques, yielded spectacular results in the sev- 
enties with the implementation of expert systems. For exam- 
ple, Shortliffe's MYCIN, for which Heckerman put forward a 
probabilistic interpretation of the certainty factors in 1986, 
and Duda's PROSPECTOR which used Bayesian style analysis. 
There is an extensive bibliography on the subject of coherent 
propagation of probabilities in Bayesian inference networks 
(see, for example, Pearl 1987), and some elementary books 
on Artificial Intelligence like Nilsson and Genesereth (1987) 
give a thoroughly probabilistic account of reasoning with un- 
certain beliefs. 

The addition of mechanisms to handle belief revision to 
expert systems is desirable. The standard implementation 
of an expert system is through a set of conditional rules. If 
the evidence matches some of the antecedents, the respective 
rules are triggered and the consequents of them become ac- 
tive. This is a very simple model, but it can take us a long 
way. The rules might be triggered according to a data base of 
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"evidences". But the action commanded by a rule might be 
to modify the data base itself. So, some rules can be viewed 
as functions from and into data bases, which provides us with 
a crude model of belief revision. 

After the success of MYCIN and PROSPECTOR many people 
tried to extend the probabilistic techniques to other areas. 
But they soon found that "the information necessary to as- 
sign numerical probabilities is not ordinarily available", as 
McCarthy and Hayes had warned.3 

This problem of assigning precise numerical values to prob- 
abilities has been addressed in many ways. In 1987 Zadeh 
proposed his Dispositional Logic to explain some uses of ex- 
pressions like usually. If we say that the usual temperature is 
in the sixties, we are not offering a unique value as we would 
with an average, nor are we saying what we expect. We might 
actually expect the average temperature to change for good 
because of the greenhouse effect. Even if Usually is not an 
indication of probability, it can be object of a mathematical 
treatment in the absence of hard numeric data. 

Zadeh proposed to analyze dispositions expressed by the 
phrase "Y is usually S when X is R". Usually signals a dis- 
position, understood as a high conditional probability. Since 
the notion of "high" is fuzzy, usually acts as a fuzzy quanti- 
fier. Let us see an example. The canonical form reads 

(usually) (Y is S if X is R) 

Now, suppose we make a list of objects in our space, and 
assign to each a degree in which the object has each of those 
two properties, S and R: 

Object(l) R = .8 S = .8 
Object(2) R = .6 S = .9 
Object(3) R = .7 S = .3 
etc. 

In this case, the truth of the canonical form will be the 
application of the membership function of the fuzzy quanti- 
fier usually applied to the proportion of objects which have 
property S among those that have property R. 

3McCarthy and Hayes (1969), p. 39. 
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Zadeh intended his system as an attack to other approaches 
to inference from commonsense knowledge, such as default 
reasoning, circumscription, and nonmonotonic reasoning. He 
contended that such approaches based on logic rather than 
probability theory "are symbolic rather than computational 
in nature. What this implies is that such approaches do 
not provide a system for inference from commonsense knowl- 
edge when it is lexically imprecise and/or involves imprecisely 
known probabilities".4 

Another way out of the complaint that we do not know 
the exact probabilities has been to use the Dempster-Shafer 
theory, which can be used to generate measure-propagation 
rules. Basically, it substitutes the probability estimate by a 
pair representing lower and upper bounds on the estimate. 
This replaces exact numbers with a range of possible ones, 
and the size of the range reflects our degree of confidence 
in our own probability attribution. A generalization of this 
approach can be found in Levi (1974) which uses a class of 
probability functions to represent a set of beliefs, instead of a 
single probability function. Assuming that the set is convex 
(closed under "mixtures") it determines a set of associated 
intervals (but not the other way around). Gaerdenfors and 
Sahlin (1982) argued that this should be expanded to include 
a measure of the epistemic reliability of these probability 
functions.5 

Against all this there are complains that the way to deal 
with default reasoning has mostly been, and should continue 
to be, symbolic. In the classical treatments of default rea- 
soning, we might not know anything about to which degree 
of confidence an object X has a certain property Y. Yet we 

4Zadeh (1988), p. 1. Pearl (1987) and Geffner & Pearl (1987) (quoted 
in Etherington (1988) p. 73 have contended that default reasoning can 
be viewed as a kind of qualitative (but not fuzzy) probability. 

5Another interesting case is M.L. Ginsberg who back in 1985 argued 
for the use of probabilities in the study of default reasoning. But two 
years latter he "found McCarthy's arguments increasingly compelling" 
(Ginsberg (1987), p. 7), and eliminated all treatment of probabilities 
from Ginsberg (1987), which he still purported to be "a fairly complete 
and representative collection of the work in nonmonotonic reasoning" 
(Ginsberg (1987), p. 2). 



14. MODELS FOR BELIEF REVISION 

might say that this is so unless something abnormal occurs. 
This is not a numeric evaluation but a qualitative one that 
lends itself to purely symbolic manipulation. For instance, 
some theories of default reasoning would transform the nor- 
mal expert system rule P if Q into P if (Q and --AB), where 
-,AB means that nothing abnormal takes place. This has 
been a old practice in both inductive and abductive studies 
where the clause "other things equal" plays a similar role. 

Let us now ask about the logical properties of such rela- 
tions. The conditional can be weakened by strengthening the 
antecedent. That is, if we know that P if (Q and -AAB), then 
we can generate every default rule of the form P if (Q and 
-AAB and R). This is not only a property of default reasoning 
but also valid in classical logic. Adding information in the 
premisses can only make the previous inference even more 
certain if the reasoning is monotonic. If it is not, the -AAB 
clause should trap any incoherences. For example, P if (Q 
and -AB and -P) sounds absurd. Normally we think that 
only logical truths can be derived from their own negations 
(by reductio). Yet, under the assumption that the normal 
case is to find P whenever we find Q, having Q and -nP is 
already abnormal, and so Q and -iAB and -iP fails and the 
rule should never be activated in the expert system. This 
is attractive because it lets us move from a non-monotonic 
structure to a monotonic one. 

Ginsberg (1987) p. 10, claims that this capacity to generate 
new rules by means of strengthening antecedents, which holds 
for monotonic systems and default reasoning in the symbolic 
approach, fails for the probabilistic one and that this is a 
defect. Suppose that the probability of a Q being P is greater 
than N; it doesn't follow that the probability of being P, for 
a Q which is R, is also greater than N. This fails because 
we have reduced the space of the Q's to the Q's that are R, 
in which it might be more or less likely to be P than in the 
rest of the space. 

It sounds paradoxical that Ginsberg should accuse proba- 
bilistic treatments of non-monotonic inference on the grounds 
that it is only non-monotonic. But the intuition behind this 
seems to be that default reasoning is justified because of a 
secret clause that qualifies all it's conclusions. When we con- 
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clude that Tweety flies based only on the information that 
Tweety is a bird, we do not literally conclude that it flies, 
but only that it flies by default. This implicit qualification 
gives default reasoning it's legitimacy. The addition of the 
conjunct -iAB simply makes explicit this hidden condition. 
Now, is there a similar secret condition that would restore 
monotonicity in the probability approach? Kevin Korb has 
suggested to me the condition of total evidence. As long as 
this condition holds, there is no possibility of rationally up- 
dating the probabilistic conclusion because of the principle 
that such updating would have to be evidence-driven, but 
there is no new evidence to be expected. 

Now, back to the remark in McCarthy and Hayes (1969) 
about the difficulty of having probability estimates, they con- 
cluded that "Therefore, a formalism that required numerical 
probabilities would be epistemologically inadequate" (ib.). 
As it stands, this is a very poor argument. It was fleshed out 
in McCarthy's work on circumscription in 1980. He consid- 
ered the proposal to understand the assumption of normality 
as a probability estimate; perhaps abnormal cases are just 
the ones that are less probable. But this will not do. To 
use the canonical example, a typical bird flies, but it might 
be the case that most birds do not; it is also possible that for 
any randomly selected bird, the probability that it flies falls 
below whatever positive threshold we select. Nutter (1987) 
p. 840, mentions the situation each late spring, when infants 
outnumber adults in the bird population. We might know 
that something is improbable, and yet call it typical. 

McCarthy adds that it is hard to see how we could sub- 
stitute default reasoning with probabilities. Can we talk of 
the conditional probability that Tweety has a broken wing, 
given that we have only been told that Tweety is a bird? 
Also, assumptions are based on our expectations, and so 
cannot be objective probabilities. Are they perhaps the so- 
called "subjective probabilities"? McCarthy thinks not, be- 
cause when we try to reason about a usual missionaries-and- 
cannibals puzzle, "we mentally propose to ourselves the nor- 
mal non-bridge non-sea-monster interpretation before con- 
sidering these extraneous possibilities, let alone their proba- 
bilities". 
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That is, it looks like the sample space is not defined for 
us prior to our calculations. Any computation from a lim- 
ited statement of the facts, as most expert systems will have 
to deal with, seems to bypass probability theory (and fuzzy 
logic, for that matter). The point is not that we can not use 
probabilities when constructing our beliefs; the point is that 
we do not use them, and so, any reconstruction of human 
reasoning in the absence of complete information should be 
prepared (at least in a big proportion of the cases) to do 
without probability estimates. 

3 Non-monotonicity in Logic 
Programming 

A way to get a handle on the problem of belief revision in 
expert systems is to consider the problem of negation. The 
idea is to treat the negation as failure as a report on a model. 
(The epistemic version would be "Not true, as far as we know 
at this point".) But, since new information can be added, 
amounting to a change of model, we need a semantics that 
indexes a previously proved negation to the corresponding 
model if we want to preserve monotonicity (the negation of p 
might be no longer provable, nor its consequences; a different 
approach is the use of non-monotonic logics, circumscription, 
default reasoning, ATMS'S, or censor rules). 

An epistemic subject capable of facing minimal challenges 
in the real world (be it a computer or a human), needs to be 
able to handle incomplete and/or inconsistent descriptions 
about what states of affairs actually hold. This goes beyond 
any deductive powers and belongs rather to the inductive 
construction of a model of reality. The possibility of error 
means that the structure (the logic) of belief revision is non- 
monotonic if we are to avoid inconsistency. The normal way 
to avoid inconsistency is to create expensive Truth Mainte- 
nance Systems on top of our inferential engine (for deductive 
databases) that turn off enough beliefs to restore consistency. 

The use of computers in the study of logic falls mainly 
in two categories: computer assisted instruction (CAI), espe- 
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cially for the teaching of logic, and what is sometimes called 
Computational Logic. Computational logic includes logic pro- 
gramming, theorem-proving, rewrite-rule systems and prod- 
uction-rule systems.6 Logic programming is generally based 
on resolution and unification, which have clear declarative se- 
mantics, control structures like backtracking, normally mod- 
eled as depth-first searches, and side-effects. Side-effects 
pose important problems. While they have clear procedural 
semantics and provide useful or efficient control of computa- 
tions, operations of the like of asserting and retracting are 
hard to put in declarative terms; they seem to detract from 
the purity of logic programming and to have an inherently 
imperative nature. Even more: not only they seem to be 
non-declarative, but also to induce non-monotonicity. Let 
us examine an example: 

Negation can be represented in different ways inside a sys- 
tem with querying capabilities. A data base which includes 
the use of rules is called a deductive database and, from a 
theoretical point of view, it is just a logic program.7 So, we 
can treat the problem of knowledge maintaining in databases 
as a especial case of the general problem of knowledge main- 
taining in theorem proving systems. 

We must distinguish between negation as failure, repre- 
sented in Prolog with not ( ) or with \+ ( ), from negation of 
terms. Negation as failure applies to clauses without purely 
syntactic manipulation of negated terms. We can use nega- 
tive literals like -p in 

--p : -r, -s. 

but it is more effective to use a context dependency to know 
whether a literal is to be taken as negated or not. This helps 
resolution, as pointed out in Mills (1989) p. 5. 

As an example we transform all truth-functional premisses 
into a list of conjuncts of their Conjunctive Normal Form. 
Each conjunct is a clause which has been transformed itself 
into a list containing two lists: the positive atoms and the 
negated ones. So, the premisses become: 

6Gabriel (1984) p. 1. 
7Lloyd (1984) p. 62. 
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[[positives], [negatives]], 
[[positives], [negatives]], 

] 
and now resolution can operate simply by checking occur- 
rences of the same term in the list of positives of one clause, 
and the set of positives of a second one. Our proof is complete 
if we generate the empty clause [ [ ], [ ] ]. 

3.1 DEMONS 

assert and retract pose a problem for the declarative in- 
terpretation of Prolog programs. They can be seen as forcing 
recompilation. The problem with dynamic code is that what 
is true of a predicate at a moment in our computation might 
not be true later, and therefore a predicate subject to asser- 
tion or retraction would be non-logical. 

Assertion and Retraction can be viewed as movements from 
a certain state of the world (or of our knowledge of it) to 
another one. We can define an accessibility relation in terms 
of a binary function that takes an operation (assertion or 
retraction), a possible world, and a set of propositions, and 
returns a possible world. 

We can implement a Prolog system in which each clause 
generates at compile time a clause template. This is handed 
to a demon, that is, a clause specific routine that copies and 
fills the template at run time, relieving the full compiler from 
having to deal with anything but very complex clauses. Such 
demons were first constructed by Overbeek while working 
with Mills in 1985. The demon is sometimes called an as- 
sertive demon because retraction can be implemented based 
on the clauses that were already compiled. We can concen- 
trate on demons that handle simple clauses without more 
than one uninstantiated variable. This avoids having to keep 
symbol tables, allocate permanent variables and do occurs- 
checking. (For complex clauses the demon can still trap into 
the full compiler.) 

Demons are useful to have a meta-logical view of assert 
and retract. An assert or a retract is a meta-operator 
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which changes the universe of discourse of the Prolog com- 
putation. Demons and their templates specify rules for con- 
structing new universes of discourse from contexts and high- 
er-order objects (templates).8 This is a nice illustration of the 
view that a predicate like assert acts not as a function inside 
a normal declarative world, but as a relation among them. 
(Actually, Mills proposes a temporary universe of discourse 
during which the template is instantiated and the procedure 
linked back; but we can abstract from this and think of the 
action of the demon as instantaneous.) 

3.2 MODEL THEORETIC SEMANTICS 

We can think of the work of the demon as a relation be- 
tween possible worlds. A demon is a binary function that 
takes a possible world and a clause and returns a possible 
world. This model theoretic approach resembles the working 
of temporal operators that take a world along the stream of 
time and produce a new world, and can be generalized to all 
the side-effects. For instance, Ashcroft (1976) claims that 
an assignment statement is really an equation between "his- 
tories", and a whole program is simply an unordered set of 
such equations. So, the expression of an assignment as 

I = I + 1 

is misleading. We certainly do not want to say that the value 
of I is its own successor, but that it becomes so. Adding an 
explicit temporal dimension would clarify the semantics. For 
instance, in Lucid 

next I = I + 1 

is read as saying that at each stage in the history of I the 
value of I at the next stage is the current value of I plus 
one.9 

This ideas have been developed for the InTense language. 
InTense is essentially a superset of Prolog. It evolved as an 
extension of W. Wadge's Chronolog by the addition of space 

8Mills (1988), 6.3.5. 
9Ashcroft (1977) p. 520. 
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indices. The basic additions to Prolog are: a built-in treat- 
ment of spatial and temporal dependencies (Chronolog has 
only temporal ones) and multiple infinite streams of formulas 
(instead of static Horn-clauses). 

Modal logic has been used in theories of probability in 
arithmetic and dynamic logic in theories of computation and 
action in general.10 The treatment of time offered here is 
limited to discrete representations (hours, days, etc.), not to 
a continuous one. There are good reasons for this. Besides 
the problem of representing continuous quantities in digital 
computers with finite registers, tense predicate logic of the 
real time line has inherent problems; e.g., it is not effectively 
axiomatizable. 

There is a consideration that might support the use of a 
discrete temporal logic for logic programming. Consider the 
case of self-modifying code. If we encounter a clause like 

assert(assert(p)). 

the demon in charge might have to construct another demon. 
Or, in a procedure like: 

p :-q, r. 
r. 

q :- retract(p :- q). 

we are deleting inside the search tree and might not be able 
to backtrack past it to the parent call. 

We can see a treatment of this problem in the Quintus 
manual, in chapter 14, (version 2.3) where we read that the 
definition of an interpreted procedure that is to be visible to 
a call is effectively frozen when the call is made. That is, 
the retraction does not alter the procedure till after the call 
has been completed, emphasising that the minimum units of 
time in the history of the program are the procedure calls. 
The retraction or assertion does not affect an ongoing query. 
This means that in implementations like Quintus the acces- 
sibility relation is inherently discrete, to witness, in terms 
of procedure calls, and therefore a discrete temporal seman- 
tics like the one offered by InTense is acceptable for these 

l0Benthem (1985) p. 3. 
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cases. Chriss Moss compared recently this situation to the 
classic readers/writers method of ensuring file consistency. 
If you have already started reading (i.e. activated a query) 
then the file (relation) stays the same, but any new readers 
(activations) get the new version. 

InTense programs can be viewed extensionally: ground 
terms restricted (through their intensional parameters) to 
points or possible worlds in a time-space field. The accessi- 
bility relation is given with prefix operators. first signals 
the "root" world, while prev, and next move us along a dis- 
crete temporal axis. (Similar observation hold for the space 
operators initial, prior and rest.) 

Let us see an example in action. The following InTense 
procedure in the file "fib.int" produces an infinite stream of 
Fibonacci numbers: 

drive :- nl, 
fib(X), 
write(fib(X)), 
next drive. 

first fib(O). 
first next fib(l). 
fib(X) :- prev fib(Y), 

prev prev fib(Z), 
X is Y + Z. 

would produce the following session: 

/u2/morado/intense> intense 

ASU I_n_T_e_n.s_e ver.1 (Jan.10,1989) 

Query World < tO=O > 
?- consult(fib). 

Consulting fib.int....consulted. 
yes. 

Query World < tO=O > 
?- drive. 

fib(O) 
fib(l) 
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fib(l) 
fib(2) 
fib(3) 
fib(5) 
fib(8) 
fib(13) 
[till stack overflow] 

And this is a transcript of the traced run of the first Fi- 
bonacci numbers, without all the nl/O, write/i, or builtin 
calls: 

(1) CALL: firstO drive : 

(1) CALL: firstO fib(_73781) : 
(1) EXIT: firstO fib(O): 
fib(O) 

(0) CALL: firstO nextO drive : 

(0) CALL: firstO nextO fib(_73949) : 

(0) EXIT: firstO nextO fib(l) : 
fib(l) 

(-1) CALL: firstO nextO nextO drive : 
(-1) CALL: firstO nextO nextO fibC(74117): 
(0) CALL: firstO nextO fib(_74205) : 
(0) EXIT: firstO nextO fib(l) : 
(0) CALL: firstO fib(_74213): 
(0) EXIT: firstO fib(O) : 

(0) CALL: firstO nextO nextO _74117 is 1 + 0 : 
fib(l) 

(-3) CALL: firstO nextO nextO nextO drive: 
(-3) CALL: firstO nextO nextO nextO fib(_74437) : 

(-2) CALL: firstO nextO nextO fib(_74525): 
(-1) CALL: firstO nextO fib(_74573) : 
(-1) EXIT: firstO nextO fib() : 
(-1) CALL: firstO fib(_74581) : 
(-1) EXIT: firstO fib(O) : 
(-1) CALL: firstO nextO nextO _74525 is 1 + 0 : 
(-3) CALL: firstO nextO fib(_74533) : 
(-3) EXIT: firstO nextO fib(l) : 
(-3) CALL: firstO nextO nextO nextO _74437 is 1 + 1 : 
fib(2) 

and so on. 
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The system "knows" that the same function fib() has 
different values according to its place in the sequence that 
the system maintains. For instance, at a given moment t 
we might assert P, but at time t + n retract it and at time 
t + n + m assert the negation of P. As long as P is not 
independently derivable at t + n + m, there is no danger of 
contradiction. 

But now, how do we know P is not independently deriv- 
able? This problem is computationally undecidable unless 
we severely restrict the expressive powers of the system, a 
problem Truth Maintenance Systems have to face. 

Representation of time and space is by default static in 
most programming languages. A simple implementation of 
InTense in Prolog only requires adding temporal and spatial 
tags to each clause for each absolute temporal operator, plus 
some extra clauses to make explicit the relation between the 
relative ones. 

Inside each world we have monotonicity. Asserting or re- 
tracting just take us to a different world. Since each clause 
is implicitly tagged with the world at which it holds, we do 
not have to worry about the side-effects. Actually, assert 
and retract can be given a declarative interpretation and, 
in this sense, no longer cause any side-effects! As Mitchell 
says, each world in the InTense universe for a program can 
be treated as a separate monotonic system.1l 

3.3 PROBLEMS WITH THE POSSIBLE WORLD 

SEMANTICS 

We have achieved consistency at the price of relativizing our 
results to a given moment in the computation. In terms of a 
theorem prover, the base information DB1 which let us de- 
duce the set T1 of theorems is now replaced with DB2 which 
has an associated set T2 of theorems. (For normal cases Tn 
will be a superset of DBn, but we do not need to presuppose 
completeness of our inference rules here.) The question now 
is: How much of my previous work of theorem proving can 

"Mitchell (1988), p. 12. 
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be consistently carried into the new possible world? That 
is, how to define the intersection C of common theorems be- 
tween T1 and T2? 

The obvious way is to keep an extra field or tag for each 
theorem pointing to the ancestors from which it was deduced. 
If one of the ancestor was affected by the assertion or retrac- 
tion, then we propagate the changes down the proof tree us- 
ing some traversal algorithm like the ones used for GC tags. 
If a full list of ancestors is maintained for each theorem, then 
we can postpone the definition of our new set of theorems 
and evaluate their status by need. The accessibility relations 
could establish guards for the use or previously proved theo- 
rems. The guards would be saying "Do not use if descendant 
of retracted clause". (A further complication will be that 
case when X was obtained through the success of not (Y), be- 
cause an assertion of Y has to be considered as a retraction 
of not (Y).) 

We have talked about using temporal semantics to inter- 
pret changes in the epistemic states of a data base oriented 
system or a theorem prover, as accessibility relations from 
epistemic states to epistemic states, in analogy to the trans- 
formations from possible worlds to possible worlds in modal 
logic. In the standard interpretation, a possible world is a 
set of propositions, informally the ones that are true at that 
world. If we substitute the ontological notion of truth for an 
epistemological notion of "computational provability in the 
system", we can represent sequences of changes in a database 
or the set of valid inferences that a theorem prover can make 
at a given moment, as changes through the space of possible 
worlds. I proposed the language InTense to use temporal in- 
dices for truth maintenance because InTense can keep track 
of the temporal indexings automatically thanks to its built-in 
recognition of discrete sequences. 

4 Relevance logic 

Normally the reason to retract P arises from information to 
the effect that P is false; after all, if we do not retract P, 
later true information could lead us to a contradiction. But 
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we could take another approach, namely to countenance the 
presence of contradictions, while localizing them in such a 
way that even if we can extract all the consequences from a 
contradictory epistemic state, we still avoid collapsing into 
a logically trivial system in which any proposition would be 
provable. 

Belnap12 proposed that minor inconsistencies in its data 
should not be allowed to lead (as in classical logic) to irrele- 
vant conclusions. Instead of discarding contradictory infor- 
mation whenever it is so recognized, we would want to recover 
all the information fed to the computer, perhaps by several 
different sources. 

We want the computer to report anything it has been told, 
even if the information is recognized as false because it is 
contradictory. (This also means that the computer should 
not report it as being true, but rather as being "trusted" 
by the system.) This is a natural way of using negation as 
failure and affirmation as success. 

Based on Belnap's ideas, Melvin Fitting and Mike Dunn 
have been working on different implementations of a Prolog 
extension that allows queries to succeed along two different 
views of data processing. There are two ordering of the data 
that produce different lattice configurations. As a model of 
knowledge acquisition, we use an approximation lattice in 
which the only relations we have are 

* No-info < False 

* No-info < True 

* False < Both 

* True < Both 

to signal that from no information we can go on to asserting 
the truth or falsehood of a proposition, and from any of these 
to registering in the data base that it is both true and false. 

12Belnap, Nuel D., Jr. (1976). "A useful four-valued logic". Mod- 
ern uses of multiple-valued logic; Proceedings of the 1975 International 
Symposium on Multiple-valued Logic. G. Epstein and J. M. Dunn (ed.), 
Reidel. 
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Since this is a partial ordering, the relation is monotonic by 
anti-symmetry. 

As a model of deducibility relations, the lattice is flipped 
on its side and we have the following ordering: 

* False < No-info 

* False < Both 

* No-info < True 

* Both < True 

This is called the Logical Four-valued Bilattice (FOUR). 
The system is so designed that it implements a version 

of relevance logic with the property of being paraconsistent, 
that is, from any given contradiction not everything can be 
deduced. The computer implementation that I am working 
on tries to use semantic tableaux and coupled trees, but it is 
still in the drawing board stage, so I will talk about a more 
mature implementation by Melvin Fitting called Q-Log. 

Q-Log is a logic programming language based on the bi- 
lattice FOUR, and implemented using an SLD generalization 
based on semantic tableaux.l3 The idea is to take a series of 
goals and rules and 

1. Select one goal 

2. Use some rule to resolve with the goal 

3. Repeat 1 until we cannot resolve anymore. 

Let's put it a tad less informally:14 
Given a program P, a set of goals G and a selection func- 

tion S, we can define an "sLD-refutation of P+G using S" as 
a finite SLD-derivation with the same P, F and S, that ends 
in the empty clause. Now, a SLD-derivation is a sequence 

13SLD stands for Selection-function-based Linear resolution for Defi- 
nite clauses. This comes from R.A. Kowalski and D. Kuehner's "Linear 
Resolution with Selection Function", Artificial Intelligence, 2, pp. 227- 
260, 1971. 

141 follow J. W. Lloyd (1984), with minor changes in terminology. 
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G, G1, G2,... of goals produced by substituting the goal in 
Gi selected by S, with the result of resolving it with some 
rule in P. Resolution in turn is unifying the head of the rule 
with the goal selected. The resulting goals are those in the 
tail of the rule after the unifier is applied to them. 

Axioms are written using the syntax: <head> if <body>. 
<head> is atomic, and <body> is any formula built up 
from atoms, including constants true and false, using neg 
(prefix), and, or, otimes and oplus (all infix). The 
guard connective, :, is also allowed in <body>. In addition, 
there is a built-in binary predicate, eq. eq(X, Y) is turned 
into Prolog's X = Y. (X == Y in Quintus) neg eq(X, Y) is 
turned into Prolog's X \= Y (X \== Y in Quintus). A <body> 
must always be present. Axioms are stored in the form of 
Prolog facts: axiom(-). 

A further topic of research is to extend Q-log to true quan- 
tification with coupled trees for greater efficiency. Also, we 
need to work on the justification of this system in terms of its 
plausibility. The problems I have encountered are many and 
insidious, but the most unintuitive ones are related to the 
fact that P v -P fails in 4-valued logic. (This might be con- 
sidered a feature and not a bug by some.) A further reason 
for dismay is the treatment of contradictions. We know that 
(P and Q) is contradictory if P is contradictory or Q is con- 
tradictory. This is a sufficient condition, but not a necessary 
one. For instance, let us follow the trace for (a or neg(a)): 

I ?- query(a or neg(a)). 

** (2) 0 Call (compiled): closes([f a or neg a]) ? 
** (4) 0 Exit (compiled): conjunctive(f a or neg a) ? 
** (5) 0 Exit (compiled): 

components(f a or neg a,f a,f neg a) ? 

** (6) 0 Call (compiled): closes([f a]) ? 
** (6) 0 Fail (compiled): closes([f a]) ? 

** (15) 0 Call (compiled): closes([f neg a]) ? 
** (16) 0 Exit (compiled): negative(f neg a) ? 
** (17) 0 Exit (compiled): component(f neg a,t a) ? 
** (18) 0 Call (compiled): closes([t a]) ? 
** (18) 0 Fail (compiled): closes([t a]) ? 
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** (15) 0 Fail (compiled): closes([f neg a]) ? 

** (2) 0 Fail (compiled): closes([f a or neg a]) ? 

Q-Log No 

Q-log begins by negating it for reductio into [f a or 
neg(a)]. Since this is a conjunctive "Alpha", it has as com- 
ponents f a and f neg(a). But, to close this branch the only 
weapon we are given is to either close [f a] or [f neg(a)], 
each on its own! Since the absurdity of one of the conjuncts 
is not necessary for the absurdity of the conjunction (only 
sufficient), the system is not able to close the branches and 
announces that (a or neg(a)) is not a theorem. 
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