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Abstract

Many systems that exhibit nonmonotonic behavior have been described and studied already in the
literature� The general notion of nonmonotonic reasoning� though� has almost always been described
only negatively� by the property it does not enjoy� i�e� monotonicity� We study here general patterns of
nonmonotonic reasoning and try to isolate properties that could help us map the �eld of nonmonotonic
reasoning by reference to positive properties� We concentrate on a number of families of nonmonotonic
consequence relations� de�ned in the style of Gentzen ����� Both proof	theoretic and semantic points
of view are developed in parallel� The former point of view was pioneered by D� Gabbay in ��
�� while
the latter has been advocated by Y� Shoham in ����� Five such families are de�ned and characterized
by representation theorems� relating the two points of view� One of the families of interest� that of
preferential relations� turns out to have been studied by E� Adams in ���� The preferential models
proposed here are a much stronger tool than Adams
 probabilistic semantics� The basic language used
in this paper is that of propositional logic� The extension of our results to �rst order predicate calculi
and the study of the computational complexity of the decision problems described in this paper will be
treated in another paper�

� Introduction

��� Nonmonotonic reasoning

Nonmonotonic logic is the study of those ways of inferring additional information from given information
that do not satisfy the monotonicity property satis�ed by all methods based on classical �mathematical�
logic� In Mathematics� if a conclusion is warranted on the basis of certain premises� no additional premises
will ever invalidate the conclusion�

In everyday life� however� it seems clear that we� human beings� draw sensible conclusions from what
we know and that� on the face of new information� we often have to take back previous conclusions� even
when the new information we gathered in no way made us want to take back our previous assumptions� For
example� we may hold the assumption that most birds �y� but that penguins are birds that do not �y and�
learning that Tweety is a bird� infer that it �ies� Learning that Tweety is a penguin� will in no way make us
change our mind about the fact that most birds �y and that penguins are birds that do not �y� or about the
fact that Tweety is a bird� It should make us abandon our conclusion about its �ying capabilities� though�
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It is most probable that intelligent automated systems will have to do the same kind of �nonmonotonic�
inferences�

Many researchers have proposed systems that perform such nonmonotonic inferences� The best known
are probably	 negation as failure 
��� circumscription 

��� the modal system of 
���� default logic 
����
autoepistemic logic 
��� and inheritance systems 
���� Each of those systems is worth studying by itself�
but a general framework in which those many examples could be compared and classi�ed is missing� We
provide here a �rst attempt at such a general framework� concentrating on properties that are or should be
enjoyed by at least important families of nonmonotonic reasoning systems� An up�to�date survey of the �eld
of nonmonotonic reasoning may be found in 
����

��� Nonmonotonic consequence relations

The idea that the best framework to study the deduction process is that of consequence relations dates back
to A� Tarski 
�
�� 
��� and 
��� �see 
��� for an English translation� and G� Gentzen 
�
� �see 
��� for an English
translation and related papers�� For an up�to�date view on monotonic consequence relations� the reader may
consult 
��� Tarski studied the consequences of arbitrary sets of formulas whereas Gentzen restricted himself
to �nite such sets� In the presence of compactness� the di�erence between the two approaches is small for
monotonic consequence relations� For nonmonotonic relations� many di�erent notions of compactness come
to mind� and the relation between Tarski�s in�nitistic approach and Gentzen�s �nitistic approach is much
less clear� We develop here a �nitistic approach in the style of Gentzen� In 

��� D� Makinson developed� in
parallel with and independently from our e�ort� an in�nitistic view of nonmonotonic consequence relations�
Later e�orts in this direction� by M� Freund and D� Lehmann 
��� have bene�ted from the results presented
here�

D� Gabbay 
��� was probably the �rst to suggest to focus the study of nonmonotonic logics on their
consequence relations� This is a bold step to take since some of the nonmonotonic systems mentioned above
were not meant to de�ne a consequence relation� as was soon noticed by D� Israel in 
���� D� Gabbay asked
the question	 what are the minimal conditions a consequence relation should satisfy to represent a bona �de
nonmonotonic logic� He proposed three	 re�exivity �see equation � in section ����� cut �see equation �� and
weak monotonicity �see equation ��� Weak monotonicity has� since� been renamed cautious monotonicity by
D� Makinson 

�� and we shall follow this last terminology� notwithstanding the fact that D� Makinson has
now opted for the term cumulative monotony� D� Gabbay argued for his three conditions on proof�theoretic
grounds but provided no semantics against which to check them� He also assumed a poor underlying language
for propositions� a language without classical propositional connectives� In 

��� D� Makinson proposed a
semantics for Gabbay�s logic and proved a completeness result� for a poor language� His models have a
de�nitely syntactic �avor� whereas the models presented here seem more truly semantic and more easily
suggest rules of inference�

Independently� Y� Shoham in 
��� and 
��� proposed a general model theory for nonmonotonic inference�
He suggested models that may be described as a set of worlds equipped with a preference relation	 the
preference relation is a partial order and a world v is preferable� in the eyes of the reasoner� to some other
world w if he considers v to be more normal than w� One would then� in the model� on the basis of a
proposition �� conclude� defeasibly� that a proposition � is true if all worlds that satisfy � and are most
normal among worlds satisfying � also satisfy �� Shoham claimed that adequate semantics could be given to
known nonmonotonic systems by using such a preference relation� He assumed a rich underlying language
for propositions� containing all classical propositional connectives� The idea that nonmonotonic deduction
should be modeled by some normality relation between worlds is very natural and may be traced back to
J� McCarthy� It appears also in relation with epistemic logic in 
���� One of the conclusions of this paper will
be that none of the nonmonotonic systems de�ned so far in the literature� except those based on conditional
logic described in 
��� 
�� and 
���� may represent all nonmonotonic inference systems that may be de�ned by






preferential models� The framework of preferential models� therefore� has an expressive power that cannot
be captured by negation as failure� circumscription� default logic or autoepistemic logic� We do not claim
that all this expressive power is needed� but will claim that the systems mentioned above lack expressive
power�

The main point of this work� therefore� is to characterize the consequence relations that can be de�ned
by models similar to Shoham�s in terms of proof�theoretic properties� To this end Gabbay�s conditions have
to be augmented� The class of models corresponding exactly to Gabbay�s conditions is also characterized�
The elucidation of the relations between proofs and models that is achieved in this paper will allow for the
design of decision procedures tuned to di�erent restrictions on the language of propositions or the knowledge
bases� Such decision procedures �or heuristics� could be the core of automated engines of sensible inferences�
This paper will not propose any speci�c system of nonmonotonic reasoning� Important steps towards such
a system� taken after obtaining the results reported here but before the �nal redaction of this paper� are
reported in 
���� 


� and 

���

At this point it could be useful to state the philosophy of this paper concerning the relative importance of
proof�theory and semantics� We consider� in this paper� the axiomatic systems as the main object of interest
�contrary to the point of view expressed in 

�� for example�� The di�erent families of models described
in this paper and that provide semantics to the axiomatic systems are not considered to be an ontological
justi�cation for our interest in the formal systems� but only as a technical tool to study those systems and
in particular settle questions of interderivability and �nd e�cient decision procedures� Preliminary versions
of the material contained in this paper appeared in 

�� and 
����

��� Conditional logic

In this subsection� the relation between our work and conditional logic will be brie�y surveyed� Since the link�
we claim� is mainly at the level of the formal systems and not at the semantic level� the reader uninterested
in conditional logic may easily skip this subsection�

This work stems from a very di�erent motivation than the vast body of work concerned with conditional
logic and its semantics� �see in particular 
����

�� and 

��� which is surveyed in 
�
�� Two main di�erences
must be pointed at� The �rst di�erence is that conditional logic considers a binary intensional connective
that can be embedded inside other connectives and even itself� whereas we consider a binary relation symbol
that is part of the meta�language� The second di�erence is that the semantics of the conditional implication
of conditional logic is essentially di�erent from ours� In conditional logic the formula � � � is interpreted
to mean if � were �or was� true and the situation were as close as possible� under this hypothesis� to what it
really is� then � would be true� For us � � � means that � is a good enough reason to believe �� or that � is
a plausible consequence of �� The main di�erence is that conditional logic refers implicitly to the actual state
of the world whereas we do not� M� Ginsberg�s 
��� proposal to harness conditional logic to nonmonotonic
reasoning was clearly set with the former semantics in mind� and that explains our disagreements concerning
the desirability of certain rules� e�g�� the rule of Rational Monotonicity �see equation �
����

One of the logical systems� P� studied in this paper turns out to be the �at �i�e� non�nested� fragment of a
conditional logic studied by J� Burgess in 
�� and by F� Veltman in 
���� Because of their richer language� the
semantics proposed in those papers are more complex than ours	 a ternary relation of accessibility between
worlds is used in place of our binary preference relation� Moreover� the semantics of J� Burgess are quite
di�erent from ours in some other aspects� our semantics are closer to F� Veltman�s �private communication
from J� van Benthem� and to those studied by J� van Benthem in 
���� There are some connections between
one of our completeness proofs and theirs� but the restricted language considered here simpli�es the models
and the proof a great deal� Our completeness result cannot be derived from the completeness result of 
��
since the latter concerns a extended language and it is not clear that a proof in the extended language may
be translated in the restricted one�
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This very fragment had been considered by E� Adams in 

� �see also 
�� for an earlier version and
motivation�� E� Adams� purpose was to propose probabilistic semantics for indicative conditionals and not
the study of nonmonotonic logics� Recently J� Pearl and H� Ge�ner 
��� have built upon E� Adams� logics�
our system P� and his motivation in an e�ort to provide a system for nonmonotonic reasoning� For a
gentle introduction� see chapter �� of 
���� The semantics proposed here are not probabilistic� Probabilistic
semantics that are equivalent with a restricted family of models �ranked models� will be described elsewhere�
The preferential models presented in this paper provide a much sharper understanding of the system P than
can obtained by Adams� methods�

��� Plan of this paper

This paper �rst describes the syntax proposed and compares it to more classical nonmonotonic systems�
Five logical systems and families of models are then presented in turn and �ve soundness and completeness
results are proven� The �rst system� C� corresponds to D� Gabbay�s proposal� The second� stronger� system�
CL� includes a rule of inference that seems original� and corresponds to models that seem to be more natural�
None of those systems above assumes� in any essential way the existence of the classical logical connectives�
if one allows a �nite set of formulas to appear on the left of our symbol � � The systems below assume the
classical connectives� The third� stronger� system� P� is the central system of this paper� It has particularly
appealing semantics� The fourth system� CM� is stronger than CL but incomparable with P� It provides
an example of a monotonic system that is weaker than classical logic� The last one of those systems� M� is
stronger than all previous systems and equivalent to classical propositional logic�

� The language� comparison with other systems

��� Our language

The �rst step is to de�ne a language in which to express the basic propositions� We shall assume that a
set L of well formed formulas �thereafter formulas� is given� It is very important� from section � on� to
assume that L is closed under the classical propositional connectives� They will be denoted by �������
and �� Negation and disjunction will be considered as the basic connectives and the other ones as de�ned
connectives� The connective � therefore denotes material implication� Small greek letters will be used to
denote formulas� Since no rule relating to the quanti�ers will be discussed in this paper� the reader may as
well think of L as the set of all propositional formulas on a given set of propositional variables�

With the language L� we assume semantics given by a set U � the elements of which will be referred to
as worlds� and a binary relation of satisfaction between worlds and formulas� The set U is the universe
of reference� it is the set of all worlds that we shall consider possible� If L is the set of all propositional
formulas on a given set of propositional variables� U is a subset of the set of all assignments of truth values
to the propositional variables� We reserve to ourselves the right to consider universes of reference that are
strict subsets of the set of all models of L� In this way we shall be able to model strict constraints� such
as penguins are birds� in a simple and natural way� by restricting U to the set of all worlds that satisfy the
material implication penguin� bird� Typical universes of reference are given by the set of all propositional
worlds that satisfy a given set of formulas�

We shall assume that the satisfaction relation behaves as expected as far as propositional connectives are
concerned� If u � U and �� � � L we write u j� � if u satis�es � and assume	
�� u j� �� i� u �j� ��

� u j� � � � i� u j� � or u j� ��
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The notions of satisfaction of a set of formulas� validity of a formula and satis�ability of a set of formulas
are de�ned as usual� We shall write j� � if � is valid� i�e� i� 	u � U � u j� �� and write � j� � for j� �� ��

We shall also make the following assumption of compactness�	 a set of formulas is satis�able if all of
its �nite subsets are�

Classical theorems of compactness show that if we take L to be a propositional calculus or a �rst order
predicate calculus and U to be the set of all models that satisfy a given set of formulas� then the assumption
of compactness described above is satis�ed� Notice that the set of valid formulas� in our sense� is not� in
general� closed under substitutions�

All that is done in the sequel depends on the choice of L and U � though we shall often forget this
dependence� For this work� the basic language L may well be �xed� but we shall sometimes have to consider
di�erent universes of reference� As noticed above� if � is a set of formulas then the subset of U that contains
only the worlds that satisfy � �this set of worlds will be denoted by U�� is a suitable universe�

If � and � are formulas� then the pair � � � �read if �� normally �� or � is a plausible consequence of
�� is called a conditional assertion �assertion in short�� The formula � is the antecedent of the assertion� �
is its consequent� The meaning we attach to such an assertion� and against which the reader should check
the logical systems to be presented in the upcoming sections� is the following	 if � is true� I am willing to
�defeasibly� jump to the conclusion that � is true� Our choice� then� is to look at normally as some binary
notion� It is clear that e�orts to understand normally as some unary notion� e�g� translating if �� normally
� as N ��� �� or as ��N� for some unary modal operator cannot be expressive enough� Consequence
relations are sets of conditional assertions� Not all such sets� though� seem to be worthy of that name and our
use of the term for any such set is running against a fairly well�established terminology� The term conditional
assertion is taken from 
��� �p� �����

We hope that� by considering nonmonotonic consequence as a meta�notion� but allowing basic propositions
on a rich language� we strike at the right language� It allows a new approach of questions about computational
complexity �see 

�� for some general decidability results�� but this is left for future work�

��� Pragmatics

We shall now brie�y sketch why we think that the study of nonmonotonic consequence relations will be
a bene�t to the �eld of automated nonmonotonic reasoning� The queries one wants to ask an automated
knowledge base are formulas �of L� and query � should be interpreted as	 is � expected to be true� To
answer such a query the knowledge base will apply some inference procedure to the information it has� We
shall now propose a description of the di�erent types of information a knowledge base has�

The �rst type of information ��rst in the sense it is the more stable� changes less rapidly� is coded in
the universe of reference U � that describes both hard constraints �e�g� dogs are mammals� and points of
de�nition �e�g� youngster is equivalent to not adult�� Equivalently� such information will be given by a set
of formulas de�ning U to be the set of all worlds that satisfy all the formulas of this set�

The second type of information consists of a set of conditional assertions describing the soft constraints
�e�g� birds normally �y�� This set describes what we know about the way the world generally behaves� This
set of conditional assertions will be called the knowledge base� and denoted by K�

The third type of information describes our information about the speci�c situation at hand �e�g� it is a
bird�� This information will be represented by a formula�

Our decision to consider the �rst type of information as a separate type is not the only possible way to

�The compactness assumption is needed only to treat consequence relations de�ned as the set of all assertions entailed by
in�nite sets of conditional assertions�
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go� One could� equivalently� treat a formula � of the �rst type as the conditional assertion � � � false� One
could also have decided to introduce all information of the third type as information of the �rst type�

Our inference procedure will work in the following way� to answer query �� In the context of the universe
of reference U � it will try to deduce �in a way that is to be discovered yet� the conditional assertion � � �
from the knowledge base K� This is a particularly elegant way of looking at the inference process	 the
inference process deduces conditional assertions from sets of conditional assertions� Clearly any system of
nonmonotonic reasoning may be considered in this way� So� we may look at circumscription� default logic
and other systems as mechanisms to deduce conditional assertions from sets of conditional assertions� We
shall now brie�y investigate the expressive power of some of those systems in this light�

��� Expressiveness of our language

We shall now compare the expressive power of the language proposed here� i�e� conditional assertions� to
that of previous approaches� Our purpose is to show that circumscription� autoepistemic logic and default
logic all su�er from fundamental weaknesses� either in their expressive capabilities or in their treatment
of conditional information� Let �� � and � be formulas� We shall concentrate on the comparison of two
di�erent conditional assertions� The conditional assertion A is � � � � �� The conditional assertion B is
� � �� � �� i�e� � � �� �� To simplify matters we shall just treat the special case when the formula � is
a tautology� In this case A is � � � and B is true � �� � ��

The assertion A expresses that if �� normally �� Assertion B expresses that Normally� if � is true then
� is true� Those assertions have very di�erent meanings� at least when � is normally false� Assertion A
says that in this exceptional case when � is true� one also expects � to be true� Assertion B� on the other
hand� is automatically veri�ed if � is normally false� In any case it seems that it is perfectly possible that
B does not say anything about cases when � is true �if these are exceptional�� Take for example � to be
it is a penguin and � to be it �ies� If we talk about birds� it seems perfectly reasonable to accept B which
says that normally� either it is not a penguin or it �ies� since normally birds �y �and normally birds are not
penguins� but this remark is not necessary�� Nevertheless� one should be reluctant to accept A which says
penguins normally �y� It seems clear to us� then� that A and B have di�erent meanings and that A does
not follow from B� We agree with Y� Shoham� and this opinion will be supported in the sequel� to say that
B should follow from A� but we do not have to argue that case now� In the main system to be presented in
this paper� P� the assertion A is strictly stronger than B� In the weaker systems C and CT� A and B are
incomparable� In CM� B is strictly stronger than A� and this is one of the reasons we shall reject it as a
system of nonmonotonic reasoning� It is only in M� which is equivalent to classical logic� that A and B are
equivalent�

Let us consider now the expression of A and B� �rst using circumscription� For circumscription� A
would be expressed as	 � � �abnormal � �� In fact� since there would probably be a number of di�erent
abnormalities �oating around� we probably should have written	 � � �abnormal��� � �� but this is not
signi�cant� On the other hand B would be written as	 �abnormal � ��� ��� One immediately notices
that the two formulations are logically equivalent� We conclude that circumscription would need some
additional mechanism to distinguish between A and B� In practise� the user of circumscription would give
di�erent priorities �relative to the priorities of abnormalities of the other assertions of the knowledge base��
to the two abnormalities considered here� but there is no standard procedure to determine priorities�

Let us now use autoepistemic logic� The assertion A would be expressed as	 � �M���� �� On the
other hand B would be expressed as	 M��� �� � ��� ��� Since the modality M is interpreted as
� K� for some epistemic modality K it satis�es	 � �M����M��� ��� We immediately notice that� for
autoepistemic logic� B is strictly stronger than A� This is not what we expect�

Let us try default logic now� The natural translation of A in default logic would be the normal default	
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��� �� ��� whose meaning is if � has been concluded to be true and � is consistent with what has been concluded
so far� conclude that � is true� The assertion B would be expressed as	 �true� �� ���� ��� which means
that in any situation in which � � � is consistent� one should �or could� conclude this last formula to be
true� We immediately see that in all situations in which � has been already concluded to be true� both
defaults act exactly in the same way� which seems very questionable� In situations in which � has been
concluded to be false� the �rst default is inapplicable� whereas the second default may be applied but yields
a trivial result �we do not get any new information from applying it�� Again� both defaults are equivalent�
but� in this case� this seems to �t our intuition� In situations in which neither � nor its negation have been
concluded� the �rst default cannot be applied� For the second default� in certain situations it cannot be
applied either� but in others it may be applied and yields non trivial conclusions� We conclude from this
study that in some situations both defaults are equivalent� in others the second is more powerful than the
�rst one� Again this is not what we expected� A particularly spectacular case of this problem occurs when �
is a logical contradiction� The assertion � � false has a very clear meaning	 it says if �� normally anything�
It expresses the very strong statement that we are willing to disconsider completely the possibility of � being
true� To see that this may express very useful information� just think of � as I am the Queen of England�
Most people would probably be willing to have � � false in their personal knowledge base� As remarked
above� this corresponds to restricting U to those worlds that do not satisfy �� Now� the translation� as
a normal default� of such an assertion� which is	 ��� false� false�� is never applicable since false is never
consistent with anything� Therefore this default gives no information at all� Somehow� all the strength of
our assertion has been lost in the translation�

We hope to have convinced the reader that one should look for formalisms in which the distinction
between A and B is clear and understandable�

� Cumulative reasoning

��� Cumulative consequence relations

We shall� �rst� study the weakest of our logical systems� It embodies what we think� at this moment�
in agreement with D� Gabbay 
���� are the rock�bottom properties without which a system should not be
considered a logical system� This appreciation probably only re�ects the fact that� so far� we do not know
anything interesting about weaker systems� The order of the exposition� roughly from weaker to stronger
systems� is aimed at minimizing repetitions	 rules that may be derived in weaker systems may also be derived
in stronger ones�

We shall name this system C� for cumulative� It is closely related to the cumulative inference studied by
D� Makinson in 

��� and seems to correspond exactly� to what D� Gabbay proposed in 
���� The system C
consists of a number of inference rules and an axiom schema�

De�nition � A consequence relation � is said to be cumulative i� it contains all instances of the Re�
�exivity axiom and is closed under the inference rules of Left Logical Equivalence� Right Weakening�
Cut and Cautious Monotonicity that will be described below�

We shall now describe and discuss the axioms and rules mentioned above and some derived rules� The
purpose of the discussion is to weight the meaning of the axioms and rules when the relation � � � � � � � is
interpreted as if � � � � normally � � ��

�� � �Re�exivity����
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Re�exivity seems to be satis�ed universally by any kind of reasoning based on some notion of conse�
quence� Relations that do not satisfy it� probably express some notion of theory change� It corresponds to
the axiom ID of conditional logic�

The next two rules express the in�uence of the underlying logic� de�ned by the universe U � on the notion
of plausible consequence� Their role is similar to that of the rules of consequence of 
����

j� �� � � �� �

� � �
�Left Logical Equivalence��
�

Left Logical Equivalence expresses the requirement that logically equivalent formulas have exactly
the same consequences and corresponds to rule RCEA of conditional logic� The consequences of a formula
should depend on its meaning� not on its form� In the presence of the other rules of C� it could have been
weakened to	 from � � � � � conclude � � � � ��

The next rule� Right Weakening expresses the fact that one must be ready to accept as plausible
consequences all that is logically implied by what one thinks are plausible consequences� In other words�
plausible consequences are closed under logical consequences� It corresponds to the rule RCK of conditional
logic�

j� �� � � � � �

� � �
�Right Weakening����

Right Weakening obviously implies that one may replace logically equivalent formulas by one another
on the right of the � symbol� Re�exivity and Right Weakening already imply that � � � if � j� ��
All nonmonotonic systems proposed so far in the literature satisfy Re�exivity� Left Logical Equivalence
and Right Weakening�

Our next rule is named Cut because of its similarity to Gentzen�s Schnitt�

� � � � � � � � �

� � �
�Cut����

It expresses the fact that one may� in his way towards a plausible conclusion� �rst add an hypothesis to
the facts he knows to be true and prove the plausibility of his conclusion from this enlarged set of facts and
then deduce �plausibly� this added hypothesis from the facts� This is a valid way of reasoning in monotonic
logic� and� as will be seen soon� its validity does not imply monotonicity� therefore it seems to us quite
reasonable to accept it� Its meaning� it should be stressed� is that a plausible conclusion is as secure as the
assumptions it is based on� Therefore it may be added �this is the origin of the term cumulative� into the
assumptions� There is no loss of con�dence along the chain of derivations� One may well be unwilling to
accept such a principle and think that� on the contrary� no conclusion of a derivation is ever as secure as the
assumptions� Indeed� recently� D� Gabbay 
��� suggested to replace Cut by a weaker rule� In this paper� we
shall study only systems that validateCut� Our conclusion is that there are many interesting nonmonotonic
systems that satisfy Cut� It should be mentioned that some probabilistic interpretations invalidate Cut
�Adams� validates it�� e�g� interpreting a conditional assertion � � � as meaning that the corresponding
conditional probability p�� j �� is larger than some q � ��

It is easy to see that circumscription satis�es Cut� at least when all models that have to be considered
are �nite� In 

��� D� Makinson shows that default logic satis�es Cut too� The following example should
help convince the reader to endorse Cut� Suppose we tell you we expect it will be raining tonight and if it
rains tonight� normally Fireball should win the race tomorrow� Wouldn�t you conclude that we think that
normally� Fireball should win the race tomorrow�
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Our last rule� named Cautious Monotonicity� is taken from D� Gabbay 
���� It corresponds to axiom
A� of Burgess� system S in 
��� The same property is named triangulation in 
����

�� � � �� �

� � � � �
�Cautious Monotonicity����

Cautious Monotonicity expresses the fact that learning a new fact� the truth of which could have
been plausibly concluded should not invalidate previous conclusions� It is a central property of all the
systems considered here� The origin of the term cautious monotonicity will be explained in section ���� The
probabilistic semantics that invalidatesCut also invalidatesCautious Monotonicity� In 

��� D� Makinson
showed that default logic� even when defaults are normal� does not always satisfy Cautious Monotonicity�
Circumscription� though� satis�es it� at least when all models considered are �nite� What are our reasons
to accept Cautious Monotonicity� On the general level� D� Gabbay�s argumentation seems convincing	
if � is reason enough to believe � and also to believe �� then � and � should also be enough to make us
believe �� since � was enough anyway and� on this basis� � was expected� From a pragmatic point of view
Cautious Monotonicity is very important since we typically learn new facts and we would like to minimize
the updating we have to make to our beliefs� Cautious Monotonicity and Cut together tell us� as will
be made clear in lemma �� that if the new facts learned were expected to be true� nothing changes in our
beliefs� This will help minimizing the updating� From a semantic point of view� we want to argue the case
for Cautious Monotonicity on the following example� Suppose we tell you we expect it will be raining
tonight and normally� Fireball should win the race tomorrow� Wouldn�t you conclude that we think that
even if it rains tonight� normally Fireball should win the race tomorrow�

Lemma � The rules of Cut and Cautious Monotonicity may be expressed together by the following
principle� if � � � then the plausible consequences of � and of � � � coincide�

Let us now consider some rules that may be derived in C�

��� Derived rules of C

The �rst rule corresponds to CSO of conditional logic and expresses the fact that two propositions that are
plausible consequences of each other� have exactly the same plausible consequences�

�� � � � � � � � � �

� � �
�Equivalence����

The second rule corresponds to CC of conditional logic and expresses the fact that the conjunction of
two plausible consequences is a plausible consequence�

�� � � �� �

�� � � �
�And����

The third rule amounts to modus ponens in the consequent�

�� � � � � � � �

�� �
�MPC����

�



The fourth rule is perhaps less expected and brought up here to show that C is not as weak as one could
think� It will be put to use in section ����

� � � � � � � � �

� � � � �
���

Lemma � Equivalence� And� MPC and �	� are derived rules of the system C�

Proof � For Equivalence� use �rst Cautious Monotonicity to show that �� � � �� then Left Logical
Equivalence to get � � � � � and then conclude by Cut�

For And� �rst use Cautious Monotonicity to show � � � � �� Then� since � � � � � j� � � �� we
have	 � � � � � � � � �� Using Cut we conclude that � � � � � � � and the desired conclusion is obtained
by one more use of Cut�

For MPC� use And and Right Weakening�

For ���� remark that� since � j� � � �� we have � � � � �� This� with the hypotheses� enables us to apply
Equivalence and conclude�

��� Monotonicity

We shall now justify the term Cautious Monotonicity and introduce four new rules� They cannot be
derived in C� The �rst rule is Monotonicity� or Left Strengthening�

j� �� � � � � �

�� �
�Monotonicity�����

It is clear that both Left Logical Equivalence and Cautious Monotonicity are special cases of
Monotonicity� This explains the name Cautious Monotonicity�

The next rule corresponds to the easy half of the deduction theorem�

�� � � �

� � � � �
�EHD�����

The next two rules have been considered by many�

�� � � � � �

�� �
�Transitivity���
�

�� �

�� � ��
�Contraposition�����

It is easy to �nd apparent counter�examples to each one of the last four rules in the folklore of nonmono�
tonic reasoning� The next lemmas will explain why� Let us notice that� nevertheless� adding the �rst three
of those rules to the system C leaves us with a system� CM� that is strictly weaker than classical monotonic
logic� as will be seen in section �� The next lemmas will describe some of the relations between the rules
above�

Lemma � In the presence of the rules of C� the rules of Monotonicity� EHD� and Transitivity are all
equivalent�

��



Proof � We shall not mention the uses of Re�exivity� Left Logical Equivalence and Right Weak�
ening� Monotonicity implies EHD� using And� EHD implies Monotonicity� Monotonicity implies
Transitivity� using Cut� Transitivity implies Monotonicity�

Lemma 	 In the presence of Left Logical Equivalence and RightWeakening�Contraposition implies
Monotonicity�

Proof � Use Contraposition� then Right Weakening and Contraposition again�

The results of section � show that Monotonicity does not imply Contraposition even in the presence
of the rules of C� Since Monotonicity seems counter�intuitive in nonmonotonic systems� the two lemmas
above show we should not accept EHD� Transitivity or Contraposition�

��� Cumulative models

We shall now develop a semantic account of cumulative reasoning� i�e� reasoning using the rules of the
system C� We shall de�ne a family of models �without any reference to the rules of C� and show how each
model de�nes a consequence relation� We shall then show that each model of the family de�nes a cumulative
consequence relation �this is a soundness result� and that every cumulative consequence relation is de�ned
by some model of the family �this is a completeness result� or a representation theorem��

Let us� �rst� describe the models informally� A model essentially consists of a set of states �they represent
possible states of a�airs� including perhaps the state of mind or knowledge of the reasoner� and a binary
relation on those states� The relation represents the preferences the reasoner may have between di�erent
states	 he could for example prefer the states in which he is rich to the ones in which he is poor� and prefer
the states in which he knows he is rich to those in which he is rich but does not know about it� More
realistically� one could prefer states in which Tweety is a bird and �ies to those in which Tweety is a bird but
does not �y� The reasoner� described by a model� accepts a conditional assertion � � � i� all those states
that are most preferred among all states satisfying �� satisfy �� The reader should notice we have not yet
said what is a state and what formulas are satis�ed by a state�

We shall not de�ne further the notion of a state� but suppose that every state is� in a model� labeled
with a set of worlds �intuitively the set of all worlds the reasoner thinks are possible in this state�� Modal
logicians will identify our labels as S� models� Considering a binary relation on states labeled by sets of
worlds� instead of considering a binary relation on sets of worlds� gives us an additional degree of freedom in
building models	 the same set of worlds may appear at many states �that are not equivalent from the point
of view of the binary relation�� This additional freedom is vital for the representation theorem to hold� and
was missing from Shoham�s account 
����

Some technical de�nitions are needed �rst�

De�nition � Let 
 be a binary relation on a set U � We shall say that 
 is asymmetric i� 	s� t � U such
that s 
 t� we have t �
 s�

De�nition � Let V � U and 
 a binary relation on U � We shall say that t � V is minimal in V i� 	s � V �
s �
 t� We shall say that t � V is a minimum of V i� 	s � V such that s �� t� t 
 s�

The reader has noticed that� though the last de�nitions sound familiar in the case the relation 
 is a
strict partial order� we intend to use them for arbitrary relations�

��



De�nition 	 Let P � U and 
 a binary relation on U � We shall say that P is smooth i� 	t � P � either
�s minimal in P � such that s 
 t or t is itself minimal in P �

We shall use the following lemma� the proof of which is obvious�

Lemma 
 Let U be a set and 
 an asymmetric binary relation on U � If U has a minimum it is unique� it
is a minimal element of U and U is smooth�

De�nition 
 A cumulative model is a triple h S� l�
i� where S is a set� the elements of which are called
states� l 	 S 
� 
U is a function that labels every state with a non
empty set of worlds and 
 is a binary
relation on S� satisfying the smoothness condition that will be de�ned below in de�nition ��

The relation 
 represents the reasoner�s preference among states� The fact that s 
 t means that� in the
agent�s mind� s is preferred to or more natural than t� As will be formally de�ned below� the agent is willing
to conclude � from �� if all most natural states which satisfy � also satisfy ��

De�nition � Let h S� l�
i be as above� If � is a formula� we shall say that s � S satis�es � and write s� �
i� for every world m � l�s�� m j� �� The set� fs j s � S� s� �g of all states that satisfy � will be denoted
by b��

De�nition � 
smoothness condition� A triple h S� l�
i is said to satisfy the smoothness condition i��
	� � L� the set b� is smooth�

The smoothness condition is necessary to ensure the validity of Cautious Monotonicity� It is akin to
the limit assumption of Stalnaker 
��� and Lewis 

��� but it is de�ned in a more general context� Smoothness
is the property called� contrary to mathematical usage� well
foundedness in 
�� and in 

���

We shall now describe how a cumulative model de�nes a consequence relation�

De�nition � Suppose a cumulative model W � hS� l�
i is given� The consequence relation de�ned by W
will be denoted by �W and is de�ned by� � �W � i� for any s minimal in b�� s� ��

De�nition � A triple h S� l�
i is said to be a strong cumulative model i�


� the relation 
 is asymmetric

�� for each formula �� the set b� has a minimum�

It is clear that strong cumulative models are cumulative models� i�e� satisfy the smoothness condition�
The de�nition of cumulative models and the consequence relations they de�ne seems quite natural� i�e�
a preference relation on epistemic states� but one should not forget that the preference relation 
 is not
required to be a partial order and that in triples �even when the set of states is �nite� in which the relation

 is not a partial order� the smoothness condition is� in general� not an easy thing to check�

��� Characterization of cumulative relations

In this section we shall characterize the relation between cumulative consequence relations and cumulative
models� The �rst lemma is obvious�

�




Lemma � Let W � h S� l�
i be a cumulative model� For �� � � L� d� � � � b� � b��

Lemma � 
Soundness� For any cumulative model W � the consequence relation �W it de�nes is a cu

mulative relation� i�e� all the rules of the system C are satis�ed by the relations de�ned by cumulative
models�

Proof � The proof is easy and we shall only treat Cut and Cautious Monotonicity� The smoothness
condition is needed only for dealing with Cautious Monotonicity�

For Cut� suppose all minimal elements of b� satisfy � and all minimal elements of d� � � satisfy �� Any

minimal element of b� satis�es � and therefore satis�es � � �� Since it is minimal in b� and d� � � � b�� it is
also minimal in d� � ��

For Cautious Monotonicity� the smoothness condition is needed� Suppose that � �W � and � �W ��

We have to prove that � � � �W �� i�e�� that� for any s minimal in d� � �� s� �� Such an s is in b�� We shall
prove that it is minimal in b�� By the smoothness condition� if it were not minimal� there would be an s�

minimal in b� such that s� 
 s� But � �W � therefore s�� � and then s� � b� � b�� By lemma � we conclude

that s� is in d� � �� in contradiction with the minimality of s in this set� Therefore s is minimal in b� and�
since � �W �� one concludes	 s� ��

We now intend to show that� given any cumulative relation � � one may build a cumulative model W
that de�nes a consequence relation �W that is exactly � � Suppose� therefore� that � satis�es the rules
of C� All de�nitions will be relative to this relation�

De�nition �� The world m � U is said to be a normal world for � i� 	� � L such that � � �� m j� ��

So� a world is normal for a formula if it satis�es all of its plausible consequences� Obviously� if the
consequence relation we start from satis�es Re�exivity� a normal world for � satis�es ��

Lemma � Suppose a consequence relation � satis�es Re�exivity� Right Weakening and And� and let
�� � � L� All normal worlds for � satisfy � i� � � ��

Proof � The if part follows from de�nition ��� Let us show the only if part� Suppose � �� �� we shall build

a normal world for � that does not satisfy �� Let ��
def
� f��g � f	 j �� 	g� It is enough to show that �� is

satis�able� Suppose not� then� by the compactness assumption� there exists a �nite subset of �� that is not
satis�able and therefore a �nite set D � f	 j � � 	g such that j�

V
��D 	 � �� Now� j� ��

�V
��D 	 � �

�
and� by Re�exivity and Right Weakening � �

�V
��D 	 � �

�
� But� using And one gets � �

V
��D 	�

Then� using MPC �the proof of lemma 
 shows that only And and Right Weakening are needed to derive
MPC�� one concludes � � �� a contradiction�

De�nition �� We shall say that � is equivalent to � and write � � � i� � � � and � � ��

Lemma � � � � i� 	� � � � � � � �� The relation � is therefore an equivalence relation�

��



Proof � The if part follows from Re�exivity and the only if part from Equivalence�

The equivalence class of a formula �� under �� will be denoted by ���

De�nition �� �� � �� i� ��� � �� such that � � ���

It is clear that the de�nition of � makes sense� i�e� does not depend on the choice of the representatives
� and �� The relation � is re�exive but is not in general transitive�

Lemma �� The relation � is antisymmetric�

Proof � Suppose �� � �� and �� � ��� There are formulas ��� ��� � �� and ��� ��� � �� such that	 �� � ��� and
�� � ���� By lemma �� ��� � ��� and ��� � ���� Therefore ��� � ���� and �� � ���

The cumulative modelW will be de�ned the following way	 W
def
� h S� l�
i� where S

def
� L
� is the set of

all equivalence classes of formulas under the relation �� l����
def
� fm j m is a normal world for �g and �� 
 ��

i� �� � �� and �� �� �� �the relation � has been de�ned in de�nition �
�� One easily checks the de�nition of l
does not depend on the choice of the representative � and that 
 is asymmetric�

Lemma �� For any � � L the state �� is a minimum of b��

Proof � Indeed suppose s �� �� and s � b�� This last assumption implies� by the de�nition of b�� that every
world of l�s� satis�es �� Let s � ��� By the de�nition of l� every normal world for � satis�es �� By lemma ��
� � �� and therefore �� � s� Since s �� �� we conclude �� 
 s�

It follows from lemma �� and the fact that 
 is asymmetric that the model W de�ned above is a strong
cumulative model� We may now prove what we wanted to achieve�

Lemma �� � � � i� � �W ��

Proof � Lemmas �� and � imply that the only minimal state of b� is ��� therefore � �W � i� all normal
worlds for � satisfy � and lemma � implies the conclusion�

Theorem � 
Representation theorem for cumulative relations� A consequence relation is a cumu

lative consequence relation i� it is de�ned by some cumulative model�

Proof � The if part is lemma �� The only if part follows from the construction of W and lemma �� �that
shows W is a cumulative model� and lemma �
�

One may remark that the representation result proved is a bit stronger than what is claimed in theorem �	
any cumulative consequence relation is the consequence relation de�ned by a strong cumulative model� It is
now easy to study the notion of entailment yielded by cumulative models�

Corollary � Let K be a set of conditional assertions� and �� � � L� the following conditions are equivalent�
In case they hold we shall say that K cumulatively entails � � ��


� for all cumulative models V such that �V contains K� � �V �

�� � � � has a proof from K in the system C�

��



Proof � From lemma � one sees that 
� implies ��� For the other direction� suppose 
� is not true� The
smallest consequence relation closed under the rules of C that contains K is a cumulative consequence
relation that does not contain � � �� By theorem �� there is a cumulative model that de�nes it� This model
shows property �� does not hold�

Corollary � Let K be a set of conditional assertions� There is a cumulative model that satis�es exactly
those assertions that are cumulatively entailed by K�

The following compactness result follows�

Corollary � 
compactness� K entails � � � i� a �nite subset of K does�

Proof � Proofs are always �nite and therefore use only a �nite number of assumptions from K�

To conclude our study of cumulative reasoning� let us say that the system C provides an interesting
general setting in which to study nonmonotonic reasoning� Weaker systems are probably very di�erent from
systems that are at least as strong as C� The system C is probably too weak to be the backbone of realistic
inference systems and cumulative models are quite cumbersome to manipulate� The next section will propose
nicer models and an additional rule of inference�

� Cumulative reasoning with Loop

��� Cumulative ordered models

The original motivation for the study of the system CL� that will be proposed in this section� stems from
semantic considerations� Later on� a number of results� including the result that will be described in sec�
tion ���� which says that� if one restricts oneself to Horn assertions� then the system CL is as strong as P�
seemed to point out that CL is worth studying�

Looking back on the cumulativemodels of de�nition �� one may wonder why we did not require the binary
relation 
 to be a strict partial order� We could have required it to be asymmetric without jeopardizing the
representation theorem� but the construction of section ��� builds a model in which 
 is not always transitive�
Nevertheless� preferences could probably be assumed to be transitive and� most important� transitivity of

 eases enormously the task of checking the smoothness condition	 if 
 is a partial order �strict�� then
all �nite models �models in which the set of states is �nite� satisfy the smoothness condition� and even all
well�founded models �in which there is no in�nite descending 
�chain� do� Could we have required 
 to be
a partial order� In other terms� are there rules that are not valid for cumulative models in general but are
valid for all cumulative models the preference relation of which is a strict partial order� We shall now give
a positive answer to this last question and exactly characterize this sub�family of cumulative models�

De�nition �� A cumulative ordered model is a cumulative model in which the relation 
 is a strict partial
order�

��� The system CL

The following rule� named Loop after its form� will be shown to be the exact counterpart of transitivity of
the preference relation in the models� It says that� if propositions may be arranged in a loop� in a way each

��



one is a plausible consequence of the previous one� then each one of them is a plausible consequence of any
one of them� i�e� they are all equivalent in the sense of Equivalence�

De�nition �	 The system CL consists of all the rules of C and the following�

�� � �� � �� � �� � � � � � �k�� � �k � �k � ��
�� � �k

�Loop�����

A consequence relation that satis�es all rules of CL is said to be loop�cumulative�

Lemma �� The following is a derived rule of CL� for any i� j � �� � � �k�

�� � �� � �� � �� � � � � � �k�� � �k � �k � ��
�i � �j

����

Proof � It is clear that� because of the invariance of the assumptions under cyclic permutation� the conclusion
of Loop� could as well have been �i�� � �i� for any i � �� � � � � k �addition is understood modulo k � ���
From Equivalence one can then conclude �i � �j� for any i� j � �� � � � � k�

It seems the rule Loop has never been considered in the literature� We feel it is an acceptable principle of
nonmonotonic reasoning� It is particularly interesting that Loop does not mention any of the propositional
connectives�

Lemma �	 Loop is valid in all cumulative ordered models�

Proof � Let W � hS� l�
i be a cumulative ordered model such that �i �W �i�� for i � �� � � � � k �addition
is understood modulo k � �� and let s� � S be a minimal state in c��� We shall show that s�� �k� Since
�� �W ��� the state s� must be in c��� By the smoothness condition� if s� is not minimal in c�� then there
is a state s� minimal in c�� such that s� 
 s�� Similarly� for every i � �� � � � � k there is a state si minimal in
b�i such that si � si�� or si 
 si��� Since 
 is transitive� sk � s� or sk 
 s�� But sk is minimal in c�k and
�k �W ��� we conclude that sk � c��� But s� is minimal in c��� we conclude that sk � s� and s�� �k�

Lemma �
 The rule Loop is not valid in cumulative models�

Proof � Let L be the propositional calculus on the propositional variables p�� p�� p� and U be the set of
all propositional models on those variables� We shall build a cumulative model V � hS� l�
i such that
pi �V pi�� for all i � �� � � � � 
 �addition is modulo �� but p� ��V p�� The set S has four states	 si� for
i � ��� � � � � 
� For every i � �� � � � � 
 we have s�� 
 si and si�� 
 si� Notice that 
 is not transitive� Let
us now describe l� For i � �� � � � � 
� l�si� is the set of all worlds satisfying pi and pi��� and l�s��� is the set
of all worlds satisfying at least two out of the three variables� First we want to show that V satis�es the
smoothness condition� Clearly all subsets of S that contain s�� are smooth since s�� is a minimum in S�
A set that contains at most two elements is always smooth� We conclude that the only subset of S that is

not smooth is A
def
� fs�� s�� s�g� We must show that there is no formula � such that A � b�� Let � be any

formula and let i � �� � � � � 
� If si � b� all worlds of l�si� must satisfy � and by de�nition of l� pi � pi�� j� ��
We conclude that if A � b� then any world that satis�es at least two of the variables satis�es �� We conclude
that b� must therefore also include s���

To see that pi �V pi��� notice that bpi � fsi��� sig and that� since si 
 si��� the only minimal state in
bpi is si that satis�es pi��� The only thing left to check is that p� ��V p�� But we just noticed that the only
minimal state of bp� is s� and clearly s� �� p��
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��� Characterization of loop�cumulative consequence relations

We now want to show that� given any loop�cumulative relation � one may build a cumulative ordered
model V such that �V is equal to � � Suppose � is such a relation and W � hS� l�
i is the cumulative
model built out of � in section ���� Let 
� be the transitive closure of 
� First we shall show that� since
� satis�es Loop� the relation 
� is a strict partial order�

Lemma �� The relation 
� is irre�exive and therefore a strict partial order�

Proof � Suppose ��� 
� ���� Since 
 is asymmetric� it is irre�exive and t here must be some n � � such
that for i � �� � � � � n� ��i 
 ��i�� �addition is modulo n�� From the de�nitions of 
 and �� we see that�
for i � �� � � � � n� there are formulas ��i such that �i � ��i and �i�� � ��i� From lemma �� we conclude that
��i�� � ��i for i � �� � � � � n� By Loopwe see that ��i � ��i�� and therefore ��i�� � ��i and �i � �i��� But this
contradicts the asymmetry of 
� We have shown that 
 is irre�exive� Since it is transitive by construction
it is a strict partial order�

Let us now de�ne V
def
� hS� l�
�i where S� l and 
 are as in the de�nition of W �

Lemma �� In V � for any �� the state �� is a minimum of b�� Therefore V is a strong cumulative ordered
model�

Proof � Lemma �� says �� is a minimum of b� with respect to 
� It is therefore a minimum with respect to
any weaker relation and in particular 
�� Lemma �� implies that 
� is asymmetric and� by lemma �� V
satis�es the smoothness condition�

Lemma �� � � � i� � �V ��

Proof � Lemma �� implies that the only minimal state of b� is ��� therefore � �V � i� all normal worlds for
� satisfy �� and lemma � implies the conclusion�

We may now summarize�

Theorem � 
Representation theorem for loop�cumulative relations� A consequence relation is a loop

cumulative relation i� it is de�ned by some cumulative ordered model�

As in the cumulative case one may study the notion of entailment yielded by cumulative ordered models
and obtain results that parallel corollaries �� 
 and ��

� Preferential reasoning

��� The system P

We shall now consider a system that seems to occupy a central position in the hierarchy of nonmonotonic
systems� It is strictly stronger than CL� but assumes the existence of disjunction in the language of formulas�
We call this system P� for preferential� because its semantics� described in section ��
� are a variation on
those proposed by Y� Shoham in 
���� The di�erences �the distinction we make and he does not between
states and worlds� are nevertheless technically important� as noticed above just before de�nition 
� and as
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will be shown at the end of section ��
� This very system has been considered by E� Adams 

� and proposed
by J� Pearl and H� Ge�ner 
��� to serve as the conservative core of a nonmonotonic reasoning system� It is
the �at fragment of the system S studied by J� Burgess in 
���

De�nition �
 The system P consists of all the rules of C and the following�

� � � � � � �

� � � � �
�Or�����

A consequence relation that satis�es all rules of P is said to be preferential�

The ruleOr corresponds to the axiomCA of conditional logic� It says that any formula that is� separately�
a plausible consequence of two di�erent formulas� should also be a plausible consequence of their disjunction�
It is a valid principle of monotonic classical reasoning and does not imply monotonicity� therefore we tend
to accept it� Further consideration also seems to support Or	 if we think that if John attends the party�
normally� the evening will be great and also that if Cathy attends the party� normally� the evening will be
great and hear that at least one of Cathy or John will attend the party� shouldn�t we be tempted to join
in� There is� though� an epistemic reading of � � � that invalidates the Or rule� If we interpret � � � as
meaning	 if all I know about the world is � then it is sensible for me to suppose that � is true� we must reject
the Or rule� Indeed� one may imagine a situation in which � expresses a fact that can very well be true or
false but the truth value of which is normally not known to me� If I knew � to be true� that would be quite
an abnormal situation in which I may be willing to accept �� If I knew � to be false� similarly� it would be an
exceptional situation in which I may accept �� but the knowledge that � � �� is true is essentially void and
certainly does not allow me to conclude that anything exceptional is happening� Notice that� in this reading�
the left hand side of the symbol � involves a hidden epistemic operator �the right hand side may also do
so� but need not�� We shall therefore defend the Or rule by saying that such a hidden operator should be
made explicit and the example just above only invalidates the inference	 from K� � � and K� � � infer
K��� �� � �� But nobody would defend such an inference anyway�

The interplay between Or and the rules of C makes P a powerful system� For example� Loop is a derived
rule of P� Since this result will be obvious once we have characterized preferential relations semantically� we
shall leave a proof�theoretic derivation of Loop in P for the reader to �nd�

We shall now put together a number of remarks revolving around the rule Or� Our �rst remark is that we
may derive from Or a rule that is similar to the hard half of the deduction theorem� This rule was suggested
in 
���� It is a very useful rule and expresses the fact that deductions performed under strong assumptions
may be useful even if the assumptions are not known facts�

Lemma �� In the presence of Re�exivity� Right Weakening and Left Logical Equivalence� the rule
of Or implies the following�

� � � � �

� � � � �
�S�����

S is therefore a derived rule of P�

Proof � Suppose � � � � �� We have � � � � � � �� byRightWeakening� But one has � � �� � � � ��
One concludes by Or and Left Logical Equivalence�

Our second remark is that� in the presence of S� the rule of Cut is implied by And� Therefore Re�ex�
ivity� Left Logical Equivalence� Right Weakening� And� Or and Cautious Monotonicity are an
elegant equivalent axiomatization of the system P�

��



Lemma �� In the presence of Right Weakening� S and And imply Cut�

Proof � Use S� And and Right Weakening�

D� Makinson 

�� suggested the following rule� It expresses the principle of proof by cases�

� � �� � � � � � � � �

� � �
�D�����

Lemma �� In the presence of Re�exivity� Right Weakening and Left Logical Equivalence�


� Or implies D and

�� D implies Or in the presence of And�

Therefore D is a derived rule of P�

The proof is left to the reader�

The next lemma gathers some more derived rules of the system P� They will be used in the proof of the
representation theorem of section ���� The importance of these rules is mainly technical� The reader should
notice that P is a powerful system� in which one may build quite sophisticated proofs�

Lemma �� The following are derived rules of P�

� � � � � � 	

� � � � � � 	
����

� � � � � � �� �

� � �� �
�
��

� � � � � � � � � � �

� � � � �
�
��

� � � � � � � � � � �

�� � � �
�

�

Proof � The uses of Left Logical Equivalence will not always be mentioned any more� For ����� use �rst
Right Weakening on each of the two hypotheses and then Or� This seems to be a very intuitive rule that
is often useful�

For �
��� from the second hypothesis� using Left Logical Equivalence we have �� � �� � � � �� By
S we conclude � � � � �� �� But� using the �rst hypothesis and Cautious Monotonicity one may now
conclude�

For �
��� from both hypotheses and using ���� one concludes � � � � � � � � �� Now� using our �rst
hypothesis and ��� we see �� � �� � � � �� Leaving this result for a moment� notice that from the �rst
hypothesis and � � �� using ���� we obtain �� � � � � � � �� Now� coming back to the result we left
hanging� using Cautious Monotonicity� we may conclude�

For �

�� from the second hypothesis one has �� � �� � �� � � � �� � �� By S	 � � � � � � �� � �� � ��
By Right Weakening� one may then obtain � � � � � � � � � But from the two hypotheses� using �����
one obtains	 � � � � � � � � �� Using Cautious Monotonicity on those last two results� we obtain	
� � � � � � �� Using the �rst hypothesis and Cautious Monotonicity one concludes�

��



��� Preferential Models

We may now describe our version of preferential models� Preferential models are cumulative ordered models
in which states are labeled by single worlds �and not sets of worlds�� The reasoner has� then� essentially�
a preference over worlds �except that the same world may label di�erent states�� We may now de�ne the
family of models we are interested in�

De�nition �� A preferential model W is a triple h S� l�
i where S is a set� the elements of which will be
called states� l 	 S 
� U assigns a world to each state and 
 is a strict partial order on S �i�e� an irre�exive�
transitive relation�� satisfying the smoothness condition of de�nition ��

Notice that� for a preferential model� s� � i� l�s� j� �� The smoothness condition� here� as explained in
section ���� is only a technical condition needed to deal with in�nite sets of formulas� it is always satis�ed in
any preferential model in which S is �nite� or in which 
 is well�founded �i�e� no in�nite descending chains��
The requirement that the relation 
 be a strict partial order has been introduced only because such models
are nicer and the smoothness condition is easier to check on those models� but the soundness result of lemma

� is true for the larger family of models� where 
 is just any binary relation� In such a case� obviously� the
smoothness condition cannot be dropped even for �nite models� The completeness result of theorem � holds
obviously� too� for the larger family� but is less interesting� Preferential models� since they are cumulative
models� de�ne consequence relations as in de�nition ��

Y� Shoham� in 
���� proposed a more restricted notion of preferential models� He required the set of
states S to be a subset of the universe U and the labeling function l to be the identity� He also required the
relation 
 to be a well�order� Any one of those two requirements would make the representation theorem
incorrect� The second point is treated in 


�� For the �rst point� we leave it as an exercise to the reader
to show that the following model has no equivalent model in which no label appears twice� Let L be the
propositional calculus on two variables p and q� Let S have four states	 s� 
 s� and s� 
 s�� Let s� satisfy
p and �q� s� satisfy �p and �q and s� and s� both satisfy p and q�

��� Characterization of preferential consequence relations

Our �rst lemma is obvious� It does not hold in cumulative models and should be contradistincted with
lemma ��

Lemma �� Let W � h S� l�
i be a preferential model� For any �� � � L� d� � � � b� � b��

Lemma �	 
Soundness� For any preferential model W � the consequence relation �W it de�nes is a
preferential relation� i�e� all the rules of the system P are satis�ed by the relations de�ned by preferential
models�

Proof � Indeed� as we remarked above� the fact that 
 is a partial order is not used at all� Since a
preferential model is a cumulative model� in light of lemma �� we only need to check the validity of Or�
Suppose a preferential model W � hS� l�
i and �� �� � � L are given� Suppose that � �W � and � �W ��

Any state minimal in d� � � is� by lemma 
�� minimal in the set b� � b�� and therefore minimal in any of the
subsets it belongs to�

We shall now begin the proof of the representation theorem� Let us� �rst� de�ne a relation among
formulas� that will turn out to be a pre�ordering whenever the relation � satis�es P�


�



De�nition �� We say that � is not less ordinary than � and write � � � i� � � � � ��

Indeed� if we would conclude that � is true on the basis that either � or � is true� this means that the
former is not more out of the ordinary than the latter� Notice that� if � satis�es Re�exivity and Left
Logical Equivalence� then for any �� � � L� � � � � ��

Lemma �
 If the relation � is preferential� the relation � is re�exive and transitive�

Proof � Re�exivity follows from Left Logical Equivalence and Re�exivity� Transitivity follows from
�
�� of lemma 

�

From now on� and until theorem �� we shall suppose that the relation � is preferential�

Lemma �� If � � � and m is a normal world for � that satis�es �� then m is a normal world for ��

Proof � Suppose � � 	� By �
�� of lemma 

� we have � � � � 	� If m is normal for � it must satisfy
� � 	� and since it satis�es �� it must satisfy 	�

Lemma �� If � � � � � and m is a normal world for � that satis�es � then it is a normal world for ��

Proof � By lemma 
�� it is enough to show that m satis�es �� By �

� of lemma 

 we have � � � � ��
but m is a normal world for � that satis�es �� therefore it must satisfy ��

We may now describe the preferential model we need for the representation result� Remember that we

start from any preferential relation � � We then consider the following model	 W
def
� h S� l�
i where

�� S
def
� f� m�� � j m is a normal world for �g�


� l�� m�� �� � m and

�� � m�� �
� n� � � i� � � � and m �j� ��

The �rst thing we want to show is that W is a preferential model� i�e� that 
 is a strict partial order and
that W satis�es the smoothness condition� We shall then show that the relation �W is exactly � �

Lemma �� The relation 
 is a strict partial order� i�e� it is irre�exive and transitive�

Proof � The relation 
 is irre�exive since � m�� �
� m�� � would imply m �j� �� but m is a normal
world for �� and since � � � by Re�exivity� it satis�es �� It is left to show that 
 is transitive� Suppose
� m�� �� �
� m�� �� � and � m�� �� �
� m�� �� �� By the de�nition of 
 we have �� � �� and �� � ���
From this we may conclude two things� First� by lemma 
� we conclude �� � ��� Secondly� since m� is a
normal world for �� that does not satisfy ��� we may conclude by lemma 
� that it does not satisfy ���

We are now going to characterize all minimal states in sets of the form b��

Lemma �� In the model W � � m� � � is minimal in b� i� m j� � and � � ��


�



Proof � For the if part� suppose m j� � and � � �� Clearly m � b�� Suppose now that � n� � �
� m� � �
and n j� �� We would have � � � � �� n normal for �� and n �j� � and m j� �� This stands in contradiction
with lemma 
��

For the only if part� suppose � m� � � is minimal in b�� Clearly m j� �� Suppose n is a normal world
for � � � that does not satisfy � �it is not claimed that such a normal world exists�� Since � � � � �� we
must have � n��� � �
� m� � �� But n is a normal world for � � � that does not satisfy � and therefore
must satisfy �� This stands in contradiction with the minimality of � m� � � in b�� We conclude that every
normal world for � � � satis�es �� By lemma �� �� � � ��

We shall now prove that W satis�es the smoothness condition�

Lemma �� For any � � L� b� is smooth�

Proof � Suppose � m� � �� b�� i�e�� m j� �� If � � � then� by lemma 
� � m� � � is minimal in b�� On
the other hand� if � � � �� � then by lemma � there is a normal world n for � � � such that n �j� ��
But � � � � � and therefore � n�� � � �
� m� � �� But� n j� � � � and n �j� � therefore n j� �� Since
� � � � �� Lemma 
� enables us to conclude that � n�� � � � is minimal in b��

We have shown that W is a preferential model� We shall now show that �W is exactly the relation �
we started from�

Lemma �� If � � �� then � �W ��

Proof � We must show that all minimal states of b� satisfy �� Suppose � m� � � is minimal in b�� Then m is
a normal world for � that satis�es �� By lemma 
�� � � � and therefore� by lemma 
�� m is a normal world
for ��

Lemma �� If � �W �� then � � ��

Proof � It follows from the de�nition of the relation 
 �lemma 
� could also be used� but is not really
necessary here� that� given any normal world m for �� � m�� � is minimal in b�� If � �W �� � is satis�ed
by all normal worlds for �� and we may conclude by lemma ��

We may now state the main result of this section�

Theorem � 
Representation theorem for preferential relations� A consequence relation is a prefer

ential consequence relation i� it is de�ned by some preferential model�

Proof � The if part is Lemma 
�� For the only if part� let � be any consequence relation satisfying the rules
above and let W be de�ned as above� Lemmas 
� and �� show that W is a preferential model� Lemmas ��
and �
 show that it de�nes an consequence relation that is exactly � �

As in the cumulative and cumulative ordered cases we may study the notion of preferential entailment
and obtain results similar to Corollaries �� 
 and ��

��� Some rules that cannot be derived in P

Is P a reasonable system for nonmonotonic reasoning� We think a good reasoning system should validate
all the rules of P� Notice that all the rules we have considered so far are of the form	 from the presence of







certain assertions in the consequence relation� deduce the presence of some other assertion� After careful
consideration of many other rules of this form� we may say we have good reason to think that there are no
rules of this type that should be added� Certain principles of reasoning that seem appealing� though� fail to
be validated by certain preferential consequence relations� This means� in our sense� that many agents that
reason in a way that is fully consistent with all the rules of P� nevertheless behave irrationally� We shall show
that circumscription does not� in general� satisfy even the weakest of the principles we shall present� The
reader will notice that the form of these principles is di�erent from that of all the rules previously discussed	
from the absence of certain assertions in the relation� we deduce the absence of some other assertion�

� � � �� � � � � �� �� �

� �� �
�Negation Rationality��
��

� �� � � � �� �

� � � �� �
�Disjunctive Rationality��
��

� � � �� � � � �� ��

� �� �
�Rational Monotonicity��
��

Each one of those rules is implied by Monotonicity and therefore expresses some kind of restricted
monotonicity� Any rational reasoner should� in our opinion� support them� and we shall� now� explain and
justify them� The rule of Negation Rationality says that inferences are not made solely on the basis of
ignorance� If we accept that � is a plausible consequence of �� we must either accept that it is a plausible
consequence of � � � or accept that it is a plausible consequence of � � ��� Indeed� suppose we hold that
normally� the party should be great� but that we do not hold that even if Peter comes to the party� it will be
great� i�e� we seriously doubt the party could stand Peter�s presence� It seems we could not possibly hold
that we also seriously doubt that the party could stand Peter�s absence� If we do not expect the party to
be great if Peter is there and do not expect it to be great if Peter is not there� how could we expect it to
be great� After all� either Peter is going to be there or he is not� It is� though� easy to �nd examples of
preferential models that de�ne consequence relations that do not satisfy Negation Rationality�

We shall even show� now� that circumscriptive reasoning does not always obeys Negation Rationality�
Suppose our language has two unary predicate symbols special and beautiful� and one individual constant a�
We know that� normally an object is not special� i�e� we circumscribe by minimizing the extension of special�
keeping beautiful constant� Take � to be true and � to be �special�a�� Indeed� without any information�
we shall suppose that a is not special� But take � to be beautiful�a�� special�a�� If we had the information
that a is beautiful if and only if it is special� we could not conclude that a is not special anymore� since it
could well be beautiful� i�e� there are two minimal models that must be considered	 the �rst one with a
neither beautiful nor special and the second one with a beautiful and special� On the other hand� had we
had the informatiom that either a is beautiful or it is special but not both� we could not have concluded
that it is not special either� since it could well not be beautiful� It seems that circumscription may lead to
unexpected conclusions� The example presented here is a simpli�cation� due to M� Ginsberg� of an example
due to the second author� If we try to understand where circumscription di�ers from intuitive reasoning� we
probably will have to say that� even with the knowledge that a is special if and only if it is beautiful� we
would have kept the expectation that it is not special� and therefore gained the expectation that it is not
beautiful� Similarly� with the knowledge that a is either special or beautiful but not both� we would have
kept the expectation that it is not special and therefore formed the expectation that it is beautiful�

The rule ofDisjunctive Rationality says that inferences made from a disjunction of propositions must
be supported by at least one of the component propositions� Again� this seems like a reasonable requirement�
If we do not hold that if Peter comes to the party� it will be great and do not hold that if Cathy comes to the
party� it will be great� how could we hold that if at least one of Peter or Cathy comes� the party will be great�


�



In this example� the reader may prefer to read even if instead of if� but the conclusion stands anyway� It
is easy to see that Disjunctive Rationality implies Negation Rationality� The second author recently
showed that Disjunctive Rationality is strictly stronger than Negation Rationality�

The rule of Rational Monotonicity is similar to the axiom CV of conditional logic� It expresses
the fact that only additional information the negation of which was expected should force us to withdraw
plausible conclusions previously drawn� It is an important tool in minimizing the updating we have to do
when learning new information� Suppose we hold that normally� the party will be great but do not hold
that even if Peter comes� the party will be great� i�e� we think Peter�s presence could well spoil the party�
shouldn�t we hold that normally� Peter will not come to the party� One easily shows that� in the presence
of the rules of C� Rational Monotonicity implies Disjunctive Rationality� D� Makinson proved that
Rational Monotonicity is strictly stronger than Disjunctive Rationality and conjectured a model�
theoretic characterization of preferential relations that satisfy Rational Monotonicity� The second author
proved the corresponding representation result in the case the language L is �nite� The third author lifted
the restriction on L� These results will appear in a separate paper�

��� Examples� diamonds and triangles

We shall now show what preferential reasoning may provide in the setting of two toy situations that have
become classics in the literature� First the so�called Nixon diamond� Suppose our knowledge base K contains
the four assertions that follow� The reader may read teen
ager for t� poor for p� student for s and employed
for e�

�� t � p


� t � s

�� p � e

�� s � �e

It is easy to see� by describing suitable preferential models� that no assertion that would look like some kind of
contradiction is preferentially entailed byK� In particular neither t � e� nor t � �e is preferentially entailed
byK� We cannot conclude� from the information given above� that teen�agers are normally employed� neither
can we conclude that they generally are not employed� This seems much preferable than the consideration
of multiple extensions� This weakness of the system P seems to be exactly what we want� Nevertheless�
preferential reasoning allows for some quite subtle conclusions� For example the following assertions are
preferentially entailed by K	 true � �t �normally� people are not teen
agers�� true � ��p � s� �normally�
people are not poor students�� The following assertions are not preferentially entailed	 s � �p �students�
normally are not poor�� or p � �s �poor persons are normally not students�� and we feel indeed that there is
not enough information in K to justify them� An example of an assertion that is not preferentially entailed
by K but we think should follow from K is	 a � p � e� since a is not mentioned in K� The reader may
consult 

�� for a possible solution�

A second classical example is the penguin triangle� Suppose our knowledge base K contains the three
assertions that follow� The reader may read penguin for p� �ies for f � and bird for b�

�� p � b


� p � �f

�� b � f


�



It is easy to see� by describing suitable preferential models� that no assertion that would lead to some
kind of contradiction is preferentially entailed by K� In particular p � f is not preferentially entailed by K�
On the other hand� the following assertions are preferentially entailed by K and we leave it to the reader to
show that they are satis�ed by all preferential models that satisfy K	

�� p � b � �f


� f � �p

�� b � �p

�� b � p � f

�� b � p � �p

The reader should remark that no multiple extension problem arises here and that preferential reasoning
correctly chooses the most speci�c information and in e�ect pre�empts the application of a less speci�c
default�

��	 Horn assertions

In this section we shall show that� if we consider only assertions of a restricted type �i�e� Horn assertions��
then the system P is no stronger than CL� For this result we shall need the full strength of theorem 
� To
keep notations simple� let us suppose L is a propositional language�

De�nition �� An assertion � � � will be called a Horn assertion i� the antecedent � is a conjunction of
zero or more propositional variables and the consequent � is either a single propositional variable or the
formula false�

The crucial remark is the following�

Lemma �� If W is a cumulative ordered model� there is a preferential model V such that �W and �V

coincide as far as Horn assertions are concerned�

Proof � Let W be the model h S� l�
i� We shall de�ne V to be the model h S� l��
i� where l� is de�ned in
the following way� For any s � S and for any propositional variable p� l��s� j� p i� for every u � l�s�� u j� p�
in other words i� s� p in W � It is clear that� if � is a conjunction of propositional variables then the sets
b� in W and V coincide� Therefore� if W satis�es the smoothness condition� so does V and �W and �V

agree on Horn formulas�

Theorem 	 Let K be a knowledge base containing only Horn assertions� and A a Horn assertion� If the
assertion A may be derived from K in the system P� then it may be derived from K in the system CL�


�



Proof � Suppose A cannot be derived in CL� By the representation theorem 
� there is a cumulative ordered
model W that satis�es all the assertions of K� but does not satisfy A� By lemma ��� there is a preferential
model V that satis�es K� but does not satisfy A� We conclude� by the soundness part of theorem �� that A
cannot be derived in P�

� Cumulative monotonic reasoning

	�� The system CM

In section ���� three rules were shown equivalent in the presence of the rules of C� We shall now study the
system obtained by adding those rules �or one of them� to the system C� One obtains a system that is strictly
stronger than CL� but incomparable with P� It is corresponds to some natural family of models�

De�nition �� The system CM contains all the rules of C and the rule of Monotonicity� de�ned in �
���
A consequence relation that satis�es all the rules of CM is said to be cumulative monotonic�

In fact� Left Logical Equivalence and Cautious Monotonicity are now redundant� since they follow
from Monotonicity� From lemma �� one sees that EHD and Transitivity are derived rules of CM� It is
obvious that Loop is also a derived rule of CM �by Transitivity�� It is not di�cult to �nd preferential
models that do not satisfy Monotonicity and we conclude that CM is strictly stronger than CL and not
weaker than P�

	�� Simple cumulative models

De�nition �� A cumulative model will be called a simple cumulative model i� the binary relation 
 on its
states is empty�

A simple cumulative model is a cumulative ordered model� The smoothness condition is always satis�ed
in such a model� It is very easy to see that the consequence relation de�ned by any simple cumulative model
satis�es Monotonicity� It is not di�cult to �nd simple cumulative models that do not satisfy certain
instances of the Or rule� We conclude that P and CM are incomparable� It is also easy to �nd such models
that do not satisfy certain instances of Contraposition�

	�� Characterization of monotonic cumulative consequence relations

Theorem 
 
Representation theorem for cumulative monotonic relations� A consequence relation
is cumulative monotonic i� it is de�ned by some simple cumulative model�

Proof � It has been noticed above that the if part is trivial� For the only if part� suppose � is a consequence

relation that satis�es the rules of CM� Let W
def
� hA� l� �i� where A � L is the set of all formulas � such that

� �� false and l
def
� fm j m is a normal world for �g� Lemma � implies that all labels are non�empty� By

lemma �� for any formula �� b� � f� j � � �g� Since all states of b� are minimal in b�� we see that � �W �
i� for all � such that � � � and all normal worlds m for �� m j� �� By lemma � this last condition is
equivalent to � � � and we have	 � �W � i� for any �� � � �� � � �� Suppose � � �� take any � such
that � � �� we have by Transitivity� a derived rule of CM� � � �� Therefore � �W �� Suppose now
that � �W �� then� by taking � � � one sees that � � ��


�



As in the cumulative� cumulative ordered and preferential cases� one may study the notion of entailment
yielded by simple cumulative models and obtain results similar to Corollaries �� 
 and ��

� Monotonic reasoning


�� The system M

The results presented in this section are probably folklore� They are presented here for completeness� sake�

De�nition �� The systemM consists of all the rules of C and the rule of Contraposition� A consequence
relation that satis�es all the rules of M is said to be monotonic�

Lemma � and the results to come will show that the system M is strictly stronger than P and CM�

Lemma �	 The rule Or is a derived rule of M�

Proof � Use Contraposition twice� then And and �nally Contraposition�

Lemma �
 A consequence relation is monotonic i� it satis�es Re�exivity� Right Weakening� Mono�
tonicity� And and Or�

Proof � The only if part follows from lemmas 
� � and ��� For the if part� notice� �rst� that Left Logical
Equivalence and Cautious Monotonicity are special cases of Monotonicity� The remark preceding
lemma 
� shows that all rules of P may be derived from the rules above� We must now show that Con�
traposition may be derived from the rules of P and Monotonicity� Suppose � � �� By S� one has
true � �� �� By Right Weakening� we conclude true � �� � ��� By Monotonicity� we have
�� � �� � ��� We conclude by Re�exivity and MPC�


�� Simple preferential models

The account of monotonic reasoning that we propose is essentially the following� The agent has in mind a
set of possible worlds V 	 this is the set of worlds the agent thinks are possible in practice� This set V is a
subset of the set U of all logically possible worlds� The agent is willing to conclude � from � if all worlds of
V that satisfy � also satisfy ��

De�nition �� A simple preferential model is a preferential model in which the binary relation 
 is empty�

A simple preferential model is a simple cumulative model in which the labeling function l labels each
state with a single world� Since repeated labels are obviously useless we could� as well� have considered a
model to be a subset of U �


�� Characterization of monotonic consequence relations

Theorem � 
Representation theorem for monotonic relations� A consequence relation is monotonic
i� it is de�ned by some simple preferential model�


�



Proof � The proof of the if part is trivial� For the only if part we shall build a simple preferential model for

any given monotonic consequence relation � � Let V
def
� fm � U j 	��� � L� if � � � then m j� �� � g

and let W
def
� h V� li where l is the identity function� So� m� � i� m j� ��

We shall prove that � � � i� � �W �� If � � � then by the construction of V � � �W �� Sup�
pose now that � �� �� we shall show that there is a world m � V that does not satisfy �� �� Let

��
def
� f��g � f	j �� 	g� Since � �� �� �� is satis�able �the full proof is given in a more general case

in lemma ��� Let m be a world that satis�es ��� We shall prove that 	�� � � L if � � � then m j� �� ��
If � � � then true � �� � by S and � � �� � by Monotonicity� Therefore� �� � � �� by the
de�nition of ��� and m j� �� �� We conclude that m � V and clearly m� � but m �� ��

It will now be shown that all the constructions and results described above relativize without problems
to a given set of conditional assertions�

Corollary 	 Let K be a set of conditional assertions� and �� � � L� Let �
def
� f� � 	 j � � 	 �Kg and let

W be the monotonic model h U	� l i� where l is the identity function� The notation U	 has been de�ned in
section ��
� The following conditions are equivalent� If they are satis�ed we shall say that K monotonically
entails � � ��


� for all monotonic models V such that �V contains K� � �V �

�� � �W �

�� � � � has a proof from K in the system M�

�� �� � follows logically �with respect to U� from the formulas of ��

Proof � We shall �rst show the equivalence of � and 
� The relation de�ned in � is the intersection of all
those monotonic consequence relations that contain K� If V is any monotonic model such that �V contains
K then the labels of its states must be in U	 �as de�ned in 
� and therefore �V contains �W � But �W

contains K and is one of the relations considered in �� To see the equivalence of � and �� notice that the
relation de�ned in � is the intersection of all those monotonic relations that contain K� Theorem � implies
that � and � de�ne the same relation� The equivalence between 
 and � is immediate�

From the equivalence of conditions � and � one easily proves the following compactness result	

Corollary 
 
compactness� K monotonically entails � � � i� a �nite subset of K does�

	 Summary� future work and conclusion

Five families of models and consequence relations have been de�ned and their relations will be summarized
here� Each family has been characterized by a logical system and no two of those systems are equivalent�
The family of cumulative models contains all other families and is characterized by the logical system
C that consists of Logical Left Equivalence� Right Weakening� Re�exivity� Cut and Cautious
Monotonicity� The next largest family is that of cumulative ordered models� It contains all three families
not yet mentioned here� It is characterized by the logical system CT that contains� in addition to the
rules of C� the rule of Loop� The families of simple cumulative models and of preferential models are
two incomparable subfamilies of the family of cumulative ordered models� Simple cumulative models are
characterized by the logical systemCM that contains� in addition to the rules ofC� the rule ofMonotonicity


�



�or equivalently� Transitivity�� The family of preferential models� probably the most important one� is
characterized by the logical system P that contains� in addition to the rules of C the rule of Or� The family
of monotonic models is the smallest one of them all� It is contained in all other four� It is characterized by
the logical system M that contains� in addition to the rules of C� both rules Monotonicity and Or�

Of those families of consequence relations� which is the best suited to represent the inferences of a
nonmonotonic reasoner in the presence of a �xed knowledge base� Monotonic and and cumulative monotonic
reasoning are too powerful� i�e� simple cumulative and simple preferential models are too restrictive to
represent the wealth of nonmonotonic inference procedures we would like to consider� We feel that all
bona �de logical systems should implement reasoning patterns that fall inside the framework of cumulative
reasoning� but probably not all cumulative models represent useful nonmonotonic systems� The same may
probably said about cumulative ordered models� Preferential reasoning seems to be closest to what we are
looking for�

Nevertheless� many preferential reasoners lack properties that seem desirable� for example Rational
Monotonicity� A major problem that is not solved in this paper is to describe reasonable inference proce�
dures that would guarantee that the set of assertions that may be deduced from any conditional knowledge
base satis�es the property of Rational Monotonicity� The second author proposed a solution to this
problem in 

��� Another major problem� not solved here� is to extend the results presented here to pred�
icate calculus and answer the question	 how should quanti�ers be treated� or what is the meaning of the
conditional assertion bird�x� � �y�x�� The second and third authors have a solution� still unpublished� to
this problem too�

We hope the results presented above will convince the reader that the �eld of arti�cial nonmonotonic
reasoning may bene�t from the study of nonmonotonic consequence relations�
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