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Abstract

Many systems that exhibit nonmonotonic behavior have been described and studied already in the
literature. The general notion of nonmonotonic reasoning, though, has almost always been described
only negatively, by the property it does not enjoy, i.e. monotonicity. We study here general patterns of
nonmonotonic reasoning and try to isolate properties that could help us map the field of nonmonotonic
reasoning by reference to positive properties. We concentrate on a number of families of nonmonotonic
consequence relations, defined in the style of Gentzen [13]. Both proof-theoretic and semantic points
of view are developed in parallel. The former point of view was pioneered by D. Gabbay in [10], while
the latter has been advocated by Y. Shoham in [38]. Five such families are defined and characterized
by representation theorems, relating the two points of view. One of the families of interest, that of
preferential relations, turns out to have been studied by E. Adams in [2]. The preferential models
proposed here are a much stronger tool than Adams’ probabilistic semantics. The basic language used
in this paper is that of propositional logic. The extension of our results to first order predicate calculi
and the study of the computational complexity of the decision problems described in this paper will be
treated in another paper.

1 Introduction

1.1 Nonmonotonic reasoning

Nonmonotonic logic is the study of those ways of inferring additional information from given information
that do not satisfy the monotonicity property satisfied by all methods based on classical (mathematical)
logic. In Mathematics, if a conclusion is warranted on the basis of certain premises, no additional premises
will ever invalidate the conclusion.

In everyday life, however, it seems clear that we, human beings, draw sensible conclusions from what
we know and that, on the face of new information, we often have to take back previous conclusions, even
when the new information we gathered in no way made us want to take back our previous assumptions. For
example, we may hold the assumption that most birds fly, but that penguins are birds that do not fly and,
learning that Tweety is a bird, infer that it flies. Learning that Tweety is a penguin, will in no way make us
change our mind about the fact that most birds fly and that penguins are birds that do not fly, or about the
fact that Tweety is a bird. It should make us abandon our conclusion about its flying capabilities; though.
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It is most probable that intelligent automated systems will have to do the same kind of (nonmonotonic)
inferences.

Many researchers have proposed systems that perform such nonmonotonic inferences. The best known
are probably: mnegation as failure [5], circumscription [29], the modal system of [30], default logic [35],
autoepistemic logic [31] and inheritance systems [45]. Each of those systems is worth studying by itself,
but a general framework in which those many examples could be compared and classified is missing. We
provide here a first attempt at such a general framework, concentrating on properties that are or should be
enjoyed by at least important families of nonmonotonic reasoning systems. An up-to-date survey of the field
of nonmonotonic reasoning may be found in [36].

1.2 Nonmonotonic consequence relations

The idea that the best framework to study the deduction process is that of consequence relations dates back
to A. Tarski [42], [41] and [43] (see [44] for an English translation) and G. Gentzen [12] (see [13] for an English
translation and related papers). For an up-to-date view on monotonic consequence relations, the reader may
consult [3]. Tarski studied the consequences of arbitrary sets of formulas whereas Gentzen restricted himself
to finite such sets. In the presence of compactness, the difference between the two approaches is small for
monotonic consequence relations. For nonmonotonic relations, many different notions of compactness come
to mind, and the relation between Tarski’s infinitistic approach and Gentzen’s finitistic approach is much
less clear. We develop here a finitistic approach in the style of Gentzen. In [28], D. Makinson developed, in
parallel with and independently from our effort, an infinitistic view of nonmonotonic consequence relations.
Later efforts in this direction, by M. Freund and D. Lehmann [9], have benefited from the results presented
here.

D. Gabbay [10] was probably the first to suggest to focus the study of nonmonotonic logics on their
consequence relations. This is a bold step to take since some of the nonmonotonic systems mentioned above
were not meant to define a consequence relation, as was soon noticed by D. Israel in [17]. D. Gabbay asked
the question: what are the minimal conditions a consequence relation should satisfy to represent a bona fide
nonmonotonic logic? He proposed three: reflexivity (see equation 1 in section 3.1), cut (see equation 4) and
weak monotonicity (see equation 5). Weak monotonicity has, since, been renamed cautious monotonicity by
D. Makinson [28] and we shall follow this last terminology, notwithstanding the fact that D. Makinson has
now opted for the term cumulative monotony. D. Gabbay argued for his three conditions on proof-theoretic
grounds but provided no semantics against which to check them. He also assumed a poor underlying language
for propositions, a language without classical propositional connectives. In [28], D. Makinson proposed a
semantics for Gabbay’s logic and proved a completeness result, for a poor language. His models have a
definitely syntactic flavor, whereas the models presented here seem more truly semantic and more easily
suggest rules of inference.

Independently, Y. Shoham in [39] and [38] proposed a general model theory for nonmonotonic inference.
He suggested models that may be described as a set of worlds equipped with a preference relation: the
preference relation is a partial order and a world v is preferable, in the eyes of the reasoner, to some other
world w if he considers v to be more normal than w. One would then, in the model, on the basis of a
proposition «, conclude, defeasibly, that a proposition § is true if all worlds that satisfy a and are most
normal among worlds satisfying a also satisfy 5. Shoham claimed that adequate semantics could be given to
known nonmonotonic systems by using such a preference relation. He assumed a rich underlying language
for propositions, containing all classical propositional connectives. The idea that nonmonotonic deduction
should be modeled by some normality relation between worlds is very natural and may be traced back to
J. McCarthy. Tt appears also in relation with epistemic logic in [15]. One of the conclusions of this paper will
be that none of the nonmonotonic systems defined so far in the literature, except those based on conditional
logic described in [6], [7] and [34], may represent all nonmonotonic inference systems that may be defined by



preferential models. The framework of preferential models, therefore, has an expressive power that cannot
be captured by negation as failure, circumscription, default logic or autoepistemic logic. We do not claim
that all this expressive power is needed, but will claim that the systems mentioned above lack expressive
power.

The main point of this work, therefore, is to characterize the consequence relations that can be defined
by models similar to Shoham’s in terms of proof-theoretic properties. To this end Gabbay’s conditions have
to be augmented. The class of models corresponding exactly to Gabbay’s conditions is also characterized.
The elucidation of the relations between proofs and models that is achieved in this paper will allow for the
design of decision procedures tuned to different restrictions on the language of propositions or the knowledge
bases. Such decision procedures (or heuristics) could be the core of automated engines of sensible inferences.
This paper will not propose any specific system of nonmonotonic reasoning. Important steps towards such
a system, taken after obtaining the results reported here but before the final redaction of this paper, are

reported in [19], [22] and [20].

At this point it could be useful to state the philosophy of this paper concerning the relative importance of
proof-theory and semantics. We consider, in this paper, the axiomatic systems as the main object of interest
(contrary to the point of view expressed in [24] for example). The different families of models described
in this paper and that provide semantics to the axiomatic systems are not considered to be an ontological
justification for our interest in the formal systems, but only as a technical tool to study those systems and
in particular settle questions of interderivability and find efficient decision procedures. Preliminary versions
of the material contained in this paper appeared in [21] and [18].

1.3 Conditional logic

In this subsection, the relation between our work and conditional logic will be briefly surveyed. Since the link,
we claim, is mainly at the level of the formal systems and not at the semantic level, the reader uninterested
in conditional logic may easily skip this subsection.

This work stems from a very different motivation than the vast body of work concerned with conditional
logic and its semantics, (see in particular [40],[24] and [23]) which is surveyed in [32]. Two main differences
must be pointed at. The first difference 1s that conditional logic considers a binary intensional connective
that can be embedded inside other connectives and even itself, whereas we consider a binary relation symbol
that is part of the meta-language. The second difference 1s that the semantics of the conditional implication
of conditional logic is essentially different from ours. In conditional logic the formula o > 3 is interpreted
to mean if o were (or was) true and the situation were as close as possible, under this hypothesis, to what it
really is, then 3 would be true. For us a |~ 3 means that o is a good enough reason to believe 3, or that 3 is
a plausible consequence of a. The main difference is that conditional logic refers implicitly to the actual state
of the world whereas we do not. M. Ginsberg’s [14] proposal to harness conditional logic to nonmonotonic
reasoning was clearly set with the former semantics in mind, and that explains our disagreements concerning
the desirability of certain rules, e.g., the rule of Rational Monotonicity (see equation (25)).

One of the logical systems, P, studied in this paper turns out to be the flat (i.e. non-nested) fragment of a
conditional logic studied by J. Burgess in [4] and by F. Veltman in [47]. Because of their richer language, the
semantics proposed in those papers are more complex than ours: a ternary relation of accessibility between
worlds is used in place of our binary preference relation. Moreover, the semantics of J. Burgess are quite
different from ours in some other aspects; our semantics are closer to F. Veltman’s (private communication
from J. van Benthem) and to those studied by J. van Benthem in [46]. There are some connections between
one of our completeness proofs and theirs, but the restricted language considered here simplifies the models
and the proof a great deal. Our completeness result cannot be derived from the completeness result of [4]
since the latter concerns a extended language and it is not clear that a proof in the extended language may
be translated in the restricted one.



This very fragment had been considered by E. Adams in [2] (see also [1] for an earlier version and
motivation). E. Adams’ purpose was to propose probabilistic semantics for indicative conditionals and not
the study of nonmonotonic logics. Recently J. Pearl and H. Geffner [34] have built upon E. Adams’ logics,
our system P, and his motivation in an effort to provide a system for nonmonotonic reasoning. For a
gentle introduction, see chapter 10 of [33]. The semantics proposed here are not probabilistic. Probabilistic
semantics that are equivalent with a restricted family of models (ranked models) will be described elsewhere.
The preferential models presented in this paper provide a much sharper understanding of the system P than
can obtained by Adams’ methods.

1.4 Plan of this paper

This paper first describes the syntax proposed and compares it to more classical nonmonotonic systems.
Five logical systems and families of models are then presented in turn and five soundness and completeness
results are proven. The first system, C, corresponds to D. Gabbay’s proposal. The second, stronger, system,
CL, includes a rule of inference that seems original, and corresponds to models that seem to be more natural.
None of those systems above assumes, in any essential way the existence of the classical logical connectives,
if one allows a finite set of formulas to appear on the left of our symbol k . The systems below assume the
classical connectives. The third, stronger, system, P, is the central system of this paper. It has particularly
appealing semantics. The fourth system, CM, is stronger than CL but incomparable with P. It provides
an example of a monotonic system that is weaker than classical logic. The last one of those systems, M, is
stronger than all previous systems and equivalent to classical propositional logic.

2 The language, comparison with other systems

2.1 Our language

The first step i1s to define a language in which to express the basic propositions. We shall assume that a
set L of well formed formulas (thereafter formulas) is given. It is very important, from section 5 on, to
assume that L is closed under the classical propositional connectives. They will be denoted by =, V, A, —
and . Negation and disjunction will be considered as the basic connectives and the other ones as defined
connectives. The connective — therefore denotes material implication. Small greek letters will be used to
denote formulas. Since no rule relating to the quantifiers will be discussed in this paper, the reader may as
well think of L as the set of all propositional formulas on a given set of propositional variables.

With the language L, we assume semantics given by a set U, the elements of which will be referred to
as worlds, and a binary relation of satisfaction between worlds and formulas. The set I/ is the universe
of reference, it is the set of all worlds that we shall consider possible. If I is the set of all propositional
formulas on a given set of propositional variables, I is a subset of the set of all assignments of truth values
to the propositional variables. We reserve to ourselves the right to consider universes of reference that are
strict subsets of the set of all models of L. In this way we shall be able to model strict constraints, such
as penguins are birds, in a simple and natural way, by restricting U to the set of all worlds that satisfy the
material implication penguin — bird. Typical universes of reference are given by the set of all propositional
worlds that satisfy a given set of formulas.

We shall assume that the satisfaction relation behaves as expected as far as propositional connectives are
concerned. If w € U and o, § € L we write u | « if u satisfies o and assume:
1) u E-aiff u fEa.
NulEaviiffulEaorulg



The notions of satisfaction of a set of formulas, validity of a formula and satisfiability of a set of formulas

are defined as usual. We shall write |= « if «v is valid, i.e. iff Yu € U, u = «, and write o = 8 for E o — (.

We shall also make the following assumption of compactness': a set of formulas is satisfiable if all of

its finite subsets are.

Classical theorems of compactness show that if we take L to be a propositional calculus or a first order
predicate calculus and i to be the set of all models that satisfy a given set of formulas, then the assumption
of compactness described above is satisfied. Notice that the set of valid formulas, in our sense, is not, in
general, closed under substitutions.

All that is done in the sequel depends on the choice of L and U, though we shall often forget this
dependence. For this work, the basic language L may well be fixed, but we shall sometimes have to consider
different universes of reference. As noticed above, if I' is a set of formulas then the subset of ¢/ that contains
only the worlds that satisfy T' (this set of worlds will be denoted by Ur) is a suitable universe.

If o and g are formulas, then the pair o b 3 (read if o, normally 3, or § is a plausible consequence of
«) is called a conditional assertion (assertion in short). The formula « is the antecedent of the assertion, 3
is its consequent. The meaning we attach to such an assertion, and against which the reader should check
the logical systems to be presented in the upcoming sections, is the following: if a 1s true, I am willing to
(defeasibly) jump to the conclusion that § is true. Our choice, then, is to look at normally as some binary
notion. It is clear that efforts to understand normally as some unary notion, e.g. translating if o, normally
B3 as N(a — ) or as a — N3 for some unary modal operator cannot be expressive enough. Consequence
relations are sets of conditional assertions. Not all such sets, though, seem to be worthy of that name and our
use of the term for any such set is running against a fairly well-established terminology. The term conditional
assertion is taken from [37] (p. 417).

We hope that, by considering nonmonotonic consequence as a meta-notion, but allowing basic propositions
on arich language, we strike at the right language. It allows a new approach of questions about computational
complexity (see [25] for some general decidability results), but this is left for future work.

2.2 Pragmatics

We shall now briefly sketch why we think that the study of nonmonotonic consequence relations will be
a benefit to the field of automated nonmonotonic reasoning. The queries one wants to ask an automated
knowledge base are formulas (of L) and query § should be interpreted as: is 3 expected to be true? To
answer such a query the knowledge base will apply some inference procedure to the information it has. We
shall now propose a description of the different types of information a knowledge base has.

The first type of information (first in the sense it is the more stable, changes less rapidly) is coded in
the universe of reference U, that describes both hard constraints (e.g. dogs are mammals) and points of
definition (e.g. youngster is equivalent to not adult). Equivalently, such information will be given by a set
of formulas defining U to be the set of all worlds that satisfy all the formulas of this set.

The second type of information consists of a set of conditional assertions describing the soft constraints
(e.g. birds normally fly). This set describes what we know about the way the world generally behaves. This
set of conditional assertions will be called the knowledge base, and denoted by K.

The third type of information describes our information about the specific situation at hand (e.g. it is a
bird). This information will be represented by a formula.

Our decision to consider the first type of information as a separate type is not the only possible way to

I The compactness assumption is needed only to treat consequence relations defined as the set of all assertions entailed by
infinite sets of conditional assertions.



go. One could, equivalently, treat a formula « of the first type as the conditional assertion = « |~ false. One
could also have decided to introduce all information of the third type as information of the first type.

Our inference procedure will work in the following way, to answer query 5. In the context of the universe
of reference U, it will try to deduce (in a way that is to be discovered yet) the conditional assertion « b 3
from the knowledge base K. This is a particularly elegant way of looking at the inference process: the
inference process deduces conditional assertions from sets of conditional assertions. Clearly any system of
nonmonotonic reasoning may be considered in this way. So, we may look at circumscription, default logic
and other systems as mechanisms to deduce conditional assertions from sets of conditional assertions. We
shall now briefly investigate the expressive power of some of those systems in this light.

2.3 Expressiveness of our language

We shall now compare the expressive power of the language proposed here; i.e. conditional assertions, to
that of previous approaches. Our purpose is to show that circumscription, autoepistemic logic and default
logic all suffer from fundamental weaknesses, either in their expressive capabilities or in their treatment
of conditional information. Let «, § and v be formulas. We shall concentrate on the comparison of two
different conditional assertions. The conditional assertion A is ¥ A @ | 3. The conditional assertion B is
v maV g ie vk a— 3. Tosimplify matters we shall just treat the special case when the formula v is
a tautology. In this case A is a b 8 and B is true ~ —a Vv §.

The assertion A expresses that if o, normally 5. Assertion B expresses that Normally, if a is true then
G is true. Those assertions have very different meanings, at least when « is normally false. Assertion A
says that in this exceptional case when « is true, one also expects F to be true. Assertion B, on the other
hand, is automatically verified if « 1s normally false. In any case it seems that it is perfectly possible that
B does not say anything about cases when « is true (if these are exceptional). Take for example « to be
it 1s a penguin and [ to be it flies. If we talk about birds, it seems perfectly reasonable to accept B which
says that normally, either it is not a penguin or it flies, since normally birds fly (and normally birds are not
penguins, but this remark is not necessary). Nevertheless, one should be reluctant to accept A which says
penguins normally fly. 1t seems clear to us, then, that 4 and B have different meanings and that .4 does
not follow from B. We agree with Y. Shoham, and this opinion will be supported in the sequel, to say that
B should follow from A4, but we do not have to argue that case now. In the main system to be presented in
this paper, P, the assertion A is strictly stronger than 5. In the weaker systems C and CT, A and B are
incomparable. In CM, B is strictly stronger than A, and this is one of the reasons we shall reject it as a
system of nonmonotonic reasoning. It is only in M, which is equivalent to classical logic, that 4 and 5 are
equivalent.

Let us consider now the expression of A and B, first using circumscription. For circumscription, A
would be expressed as: a A —mabnormal — . In fact, since there would probably be a number of different
abnormalities floating around, we probably should have written: a A —abnormalsss — G, but this is not
significant. On the other hand B would be written as: —abnormal — (o — 3). One immediately notices
that the two formulations are logically equivalent. We conclude that circumscription would need some
additional mechanism to distinguish between A and B. In practise, the user of circumscription would give
different priorities (relative to the priorities of abnormalities of the other assertions of the knowledge base),
to the two abnormalities considered here; but there is no standard procedure to determine priorities.

Let us now use autoepistemic logic. The assertion .4 would be expressed as: o A M(F) — 3. On the
other hand B would be expressed as: M(a — §8) = (o — 3). Since the modality M is interpreted as
- K= for some epistemic modality K it satisfies: o A M(3) = M(a = 3). We immediately notice that, for
autoepistemic logic, B is strictly stronger than A. This is not what we expect.

Let us try default logic now. The natural translation of A in default logic would be the normal default:



(a, B; 8), whose meaning is if & has been concluded to be true and 3 is consistent with what has been concluded
so far, conclude that 3 is true. The assertion B would be expressed as: (true,a — ;o — §), which means
that in any situation in which o — £ is consistent, one should (or could) conclude this last formula to be
true. We immediately see that in all situations in which a has been already concluded to be true, both
defaults act exactly in the same way, which seems very questionable. In situations in which « has been
concluded to be false, the first default is inapplicable, whereas the second default may be applied but yields
a trivial result (we do not get any new information from applying it). Again, both defaults are equivalent,
but, in this case, this seems to fit our intuition. In situations in which neither a nor its negation have been
concluded, the first default cannot be applied. For the second default, in certain situations it cannot be
applied either, but in others it may be applied and yields non trivial conclusions. We conclude from this
study that in some situations both defaults are equivalent, in others the second 1s more powerful than the
first one. Again this is not what we expected. A particularly spectacular case of this problem occurs when 3
is a logical contradiction. The assertion « h false has a very clear meaning: it says if o, normally anything.
It expresses the very strong statement that we are willing to disconsider completely the possibility of a being
true. To see that this may express very useful information, just think of a as I am the Queen of England.
Most people would probably be willing to have a b false in their personal knowledge base. As remarked
above, this corresponds to restricting i to those worlds that do not satisfy «. Now, the translation, as
a normal default, of such an assertion, which is: («,false;false), is never applicable since false is never
consistent with anything. Therefore this default gives no information at all. Somehow, all the strength of
our assertion has been lost in the translation.

We hope to have convinced the reader that one should look for formalisms in which the distinction
between A and B is clear and understandable.

3 Cumulative reasoning

3.1 Cumulative consequence relations

We shall, first, study the weakest of our logical systems. It embodies what we think, at this moment,
in agreement with D. Gabbay [10], are the rock-bottom properties without which a system should not be
considered a logical system. This appreciation probably only reflects the fact that, so far, we do not know
anything interesting about weaker systems. The order of the exposition, roughly from weaker to stronger
systems, is aimed at minimizing repetitions: rules that may be derived in weaker systems may also be derived
in stronger ones.

We shall name this system C, for cumulative. It is closely related to the cumulative inference studied by
D. Makinson in [28], and seems to correspond exactly, to what D. Gabbay proposed in [10]. The system C
consists of a number of inference rules and an axiom schema.

Definition 1 A consequence relation  is said to be cumulative iff it contains all instances of the Re-
flexivity axiom and is closed under the inference rules of Left Logical Equivalence, Right Weakening,
Cut and Cautious Monotonicity that will be described below.

We shall now describe and discuss the axioms and rules mentioned above and some derived rules. The

purpose of the discussion is to weight the meaning of the axioms and rules when the relation ... | ... s
interpreted as if ..., normally .. ..
(1) aba (Reflexivity)



Reflexivity seems to be satisfied universally by any kind of reasoning based on some notion of conse-
quence. Relations that do not satisfy it, probably express some notion of theory change. It corresponds to
the axiom ID of conditional logic.

The next two rules express the influence of the underlying logic, defined by the universe i, on the notion
of plausible consequence. Their role is similar to that of the rules of consequence of [16].

Faef, aky
Bhy

(2)

(Left Logical Equivalence)

Left Logical Equivalence expresses the requirement that logically equivalent formulas have exactly
the same consequences and corresponds to rule RCEA of conditional logic. The consequences of a formula
should depend on its meaning, not on its form. In the presence of the other rules of C, it could have been
weakened to: from a A3 bk v conclude S A a | 7.

The next rule, Right Weakening expresses the fact that one must be ready to accept as plausible
consequences all that is logically implied by what one thinks are plausible consequences. In other words,
plausible consequences are closed under logical consequences. It corresponds to the rule RCK of conditional
logic.

Fa—=0 , yha
v B

(3) (Right Weakening)

Right Weakening obviously implies that one may replace logically equivalent formulas by one another
on the right of the  symbol. Reflexivity and Right Weakening already imply that o ~ §if o = 5.
All nonmonotonic systems proposed so far in the literature satisfy Reflexivity, Left Logical Equivalence
and Right Weakening.

Our next rule is named Cut because of its similarity to Gentzen’s Schnitt.

aABby , abp
ale oy

(4) (Cut)

It expresses the fact that one may, in his way towards a plausible conclusion, first add an hypothesis to
the facts he knows to be true and prove the plausibility of his conclusion from this enlarged set of facts and
then deduce (plausibly) this added hypothesis from the facts. This is a valid way of reasoning in monotonic
logic, and, as will be seen soon, its validity does not imply monotonicity, therefore it seems to us quite
reasonable to accept it. Its meaning, it should be stressed, is that a plausible conclusion is as secure as the
assumptions it is based on. Therefore it may be added (this is the origin of the term cumulative) into the
assumptions. There is no loss of confidence along the chain of derivations. One may well be unwilling to
accept such a principle and think that, on the contrary, no conclusion of a derivation is ever as secure as the
assumptions. Indeed, recently, D. Gabbay [11] suggested to replace Cut by a weaker rule. In this paper, we
shall study only systems that validate Cut. Our conclusion is that there are many interesting nonmonotonic
systems that satisfy Cut. It should be mentioned that some probabilistic interpretations invalidate Cut
(Adams’ validates it), e.g. interpreting a conditional assertion « b 3 as meaning that the corresponding
conditional probability p(5 | «) is larger than some ¢ < 1.

It is easy to see that circumscription satisfies Cut, at least when all models that have to be considered
are finite. In [28], D. Makinson shows that default logic satisfies Cut too. The following example should
help convince the reader to endorse Cut. Suppose we tell you we expect it will be raining tonight and if it
rains tonight, normally Fireball should win the race tomorrow. Wouldn’t you conclude that we think that
normally, Fireball should win the race tomorrow?



Our last rule, named Cautious Monotonicity, is taken from D. Gabbay [10]. It corresponds to axiom
A3 of Burgess’ system & in [4]. The same property is named (riangulation in [34].

ab g, aby

®) aAfBhy

(Cautious Monotonicity)

Cautious Monotonicity expresses the fact that learning a new fact, the truth of which could have
been plausibly concluded should not invalidate previous conclusions. It is a central property of all the
systems considered here. The origin of the term cautious monotonicity will be explained in section 3.3. The
probabilistic semantics that invalidates Cut also invalidates Cautious Monotonicity. In [28], D. Makinson
showed that default logic, even when defaults are normal, does not always satisfy Cautious Monotonicity.
Circumscription, though, satisfies it, at least when all models considered are finite. What are our reasons
to accept Cautious Monotonicity? On the general level, D. Gabbay’s argumentation seems convincing:
if a 1s reason enough to believe 8 and also to believe 7, then a and § should also be enough to make us
believe =, since o was enough anyway and, on this basis, 7 was expected. From a pragmatic point of view
Cautious Monotonicity is very important since we typically learn new facts and we would like to minimize
the updating we have to make to our beliefs. Cautious Monotonicity and Cut together tell us, as will
be made clear in lemma 1, that if the new facts learned were expected to be true, nothing changes in our
beliefs. This will help minimizing the updating. From a semantic point of view, we want to argue the case
for Cautious Monotonicity on the following example. Suppose we tell you we expect it will be raining
tonight and normally, Fireball should win the race tomorrow. Wouldn’t you conclude that we think that
even if it rains tonight, normally Fireball should win the race tomorrow?

Lemma 1 The rules of Cut and Cautious Monotonicity may be expressed together by the following
principle: if a |~ 3 then the plausible consequences of a and of a A 3 coincide.

Let us now consider some rules that may be derived in C.

3.2 Derived rules of C

The first rule corresponds to CSO of conditional logic and expresses the fact that two propositions that are
plausible consequences of each other, have exactly the same plausible consequences.

ab g, Bha , aby
By

(6)

(Equivalence)

The second rule corresponds to CC of conditional logic and expresses the fact that the conjunction of
two plausible consequences is a plausible consequence.

ab g, aby
ak BAy

(7) (And)

The third rule amounts to modus ponens in the consequent.

AR By, ak s
ab oy

(8) (MPC)



The fourth rule is perhaps less expected and brought up here to show that C is not as weak as one could
think. It will be put to use in section 5.3.

aVikba , aky

©) aVpihy

Lemma 2 Equivalence, And, MPC and (9} are derived rules of the system C.

Proof: For Equivalence, use first Cautious Monotonicity to show that « A 3 |~ ~, then Left Logical
Equivalence to get 3 A a b v and then conclude by Cut.

For And, first use Cautious Monotonicity to show o A 3 bk v. Then, since a AGAY E BAY, we
have: a« A B A~ b 3 A~. Using Cut we conclude that « A 5 3 A+ and the desired conclusion is obtained
by one more use of Cut.

For MPC, use And and Right Weakening.

For (9), remark that, since o |= oo V 8, we have a b o vV 3. This, with the hypotheses, enables us to apply
Equivalence and conclude. 1

3.3 Monotonicity

We shall now justify the term Cautious Monotonicity and introduce four new rules. They cannot be
derived in C. The first rule is Monotonicity, or Left Strengthening.

Fa—=8, Bby
ab oy

(10) (Monotonicity)

It is clear that both Left Logical Equivalence and Cautious Monotonicity are special cases of
Momnotonicity. This explains the name Cautious Monotonicity.

The next rule corresponds to the easy half of the deduction theorem.

(11) affoy (EHD)
aABhy
The next two rules have been considered by many.

abp o, By e
12 Transitivit
(1) Tt ( )

abk p .-
13) ——— Contraposition
(13) = ik -a ( P )

It is easy to find apparent counter-examples to each one of the last four rules in the folklore of nonmono-
tonic reasoning. The next lemmas will explain why. Let us notice that, nevertheless, adding the first three
of those rules to the system C leaves us with a system, CM, that is strictly weaker than classical monotonic
logic, as will be seen in section 6. The next lemmas will describe some of the relations between the rules
above.

Lemma 3 In the presence of the rules of C, the rules of Monotonicity, EHD, and Transitivity are all
equivalent.
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Proof: We shall not mention the uses of Reflexivity, Left Logical Equivalence and Right Weak-
ening. Monotonicity implies EHD, using And. EHD implies Monotonicity. Monotonicity implies
Transitivity, using Cut. Transitivity implies Monotonicity. |

Lemma 4 In the presence of Left Logical Equivalence and Right Weakening, Contraposition implies
Monotonicity.

Proof: Use Contraposition, then Right Weakening and Contraposition again. [

The results of section 6 show that Monotonicity does not imply Contraposition even in the presence
of the rules of C. Since Monotonicity seems counter-intuitive in nonmonotonic systems, the two lemmas
above show we should not accept EHD, Transitivity or Contraposition.

3.4 Cumulative models

We shall now develop a semantic account of cumulative reasoning, i.e. reasoning using the rules of the
system C. We shall define a family of models (without any reference to the rules of C) and show how each
model defines a consequence relation. We shall then show that each model of the family defines a cumulative
consequence relation (this is a soundness result) and that every cumulative consequence relation is defined
by some model of the family (this is a completeness result, or a representation theorem).

Let us, first, describe the models informally. A model essentially consists of a set of states (they represent
possible states of affairs, including perhaps the state of mind or knowledge of the reasoner) and a binary
relation on those states. The relation represents the preferences the reasoner may have between different
states: he could for example prefer the states in which he is rich to the ones in which he is poor, and prefer
the states in which he knows he is rich to those in which he is rich but does not know about it. More
realistically, one could prefer states in which Tweety is a bird and flies to those in which Tweety is a bird but
does not fly. The reasoner, described by a model, accepts a conditional assertion o b 3 iff all those states
that are most preferred among all states satisfying «, satisfy 3. The reader should notice we have not yet
said what is a state and what formulas are satisfied by a state.

We shall not define further the notion of a state, but suppose that every state is, in a model, labeled
with a set of worlds (intuitively the set of all worlds the reasoner thinks are possible in this state). Modal
logicians will identify our labels as S5 models. Considering a binary relation on states labeled by sets of
worlds, instead of considering a binary relation on sets of worlds, gives us an additional degree of freedom in
building models: the same set of worlds may appear at many states (that are not equivalent from the point
of view of the binary relation). This additional freedom is vital for the representation theorem to hold, and
was missing from Shoham’s account [38].

Some technical definitions are needed first.

Definition 2 Let < be a binary relation on a set U. We shall say that < is asymmetric iff Vs,t € U such
that s < t, we have t £ s.

Definition 3 Let V C U and < a binary relation on U. We shall say thatt € V is minimal in V iff Vs € V,
s At. We shall say thatt € V is a minimum of V iff Vs € V such that s #¢, 1 < s.

The reader has noticed that, though the last definitions sound familiar in the case the relation < is a
strict partial order, we intend to use them for arbitrary relations.
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Definition 4 Let P C U and < a binary relation on U. We shall say that P is smooth iff Vt € P, either
ds minimal in P, such that s <t ort s iwtself minimal in P.

We shall use the following lemma, the proof of which is obvious.

Lemma 5 Let U be a set and < an asymmetric binary relation on U. If U has a minimum it is unique, it
1s a munimal element of U and U 1s smooth.

Definition 5 A cumulative model is a triple { S,1, <), where S is a set, the elements of which are called
states, 11 S+ 24 is a function that labels every state with a non-empty set of worlds and < is a binary
relation on S, satisfying the smoothness condition that will be defined below in definition 7.

The relation < represents the reasoner’s preference among states. The fact that s < ¢ means that, in the
agent’s mind, s is preferred to or more natural than ¢. As will be formally defined below, the agent is willing
to conclude G from a, if all most natural states which satisfy a also satisfy 5.

Definition 6 Let { S,l, <) be as above. If v is a formula, we shall say that s € S satisfies o and write SJE o
iff for every world m € (s), m |z a. The set: {s|s €S, sk a} of all states that satisfy a will be denoted
by Q.

Definition 7 (smoothness condition) A triple ( S,1, <) is said to satisfy the smoothness condition iff,
Ya € L, the set a is smooth.

The smoothness condition is necessary to ensure the validity of Cautious Monotonicity. It is akin to
the limit assumption of Stalnaker [40] and Lewis [24], but it is defined in a more general context. Smoothness
is the property called, contrary to mathematical usage, well-foundedness in [8] and in [26].

We shall now describe how a cumulative model defines a consequence relation.

Definition 8 Suppose a cumulative model W = (S,1, <) is given. The consequence relation defined by W
will be denoted by by and is defined by: o bew B iff for any s minimal in @, sE 3.

Definition 9 A triple { S, <) is said to be a strong cumulative model iff

1. the relation < 1s asymmetric

2. for each formula o, the set a has a minimum.

It is clear that strong cumulative models are cumulative models, i.e. satisfy the smoothness condition.
The definition of cumulative models and the consequence relations they define seems quite natural, i.e.
a preference relation on epistemic states, but one should not forget that the preference relation < is not

required to be a partial order and that in triples (even when the set of states is finite) in which the relation
< 1is not a partial order, the smoothness condition is, in general, not an easy thing to check.

3.5 Characterization of cumulative relations

In this section we shall characterize the relation between cumulative consequence relations and cumulative
models. The first lemma is obvious.

12



Lemma 6 Let W = (5,1, <) be a cumulative model. For o, 3 € L, oz/\ﬁ =an B

Lemma 7 (Soundness) For any cumulative model W, the consequence relation bw it defines is a cu-
mulative relation, 1.e. all the rules of the system C are satisfied by the relations defined by cumulative
models.

Proof: The proof is easy and we shall only treat Cut and Cautious Monotonicity. The smoothness
condition is needed only for dealing with Cautious Monotonicity.

For Cut, suppose all minimal elements of @ satisfy 8 and all minimal elements of oz//\\ﬁ satisfy v. Any
minimal element of @ satisfies 3 and therefore satisfies o A 3. Since it is minimal in @ and a A 5 C @, it is
also minimal in a A 3.

For Cautious Monotonicity, the smoothness condition is needed. Suppose that o b 3 and o by .
We have to prove that a A @ w 7, i.e., that, for any s minimal in a//\\ﬁ, SJE ~. Such an s is in a. We shall
prove that it is minimal in @. By the smoothness condition, if it were not minimal, there would be an s’
minimal in @ such that s’ < s. But a fy 3 therefore s’ £ 3 and then s’ € @ N 3. By lemma 6 we conclude
that s’ is in a//\\ﬁ, in contradiction with the minimality of s in this set. Therefore s is minimal in @ and,
since « o ~, one concludes: SJE v. 1

We now intend to show that, given any cumulative relation h , one may build a cumulative model W
that defines a consequence relation ks that is exactly k . Suppose, therefore, that k satisfies the rules
of C. All definitions will be relative to this relation.

Definition 10 The world m € U is said to be a normal world for o {ff V3 € L such that « b 3, m | 3.

So, a world is normal for a formula if it satisfies all of its plausible consequences. Obviously, if the
consequence relation we start from satisfies Reflexivity, a normal world for a satisfies «.

Lemma 8 Suppose a consequence relation b satisfies Reflexivity, Right Weakening and And, and let
a, € L. All normal worlds for o satisfy 3 iff o b .

Proof: The if part follows from definition 10. Let us show the only if part. Suppose o K 8, we shall build

a normal world for a that does not satisfy 5. Let I'g ! {=5}U{d | ab d}. Tt is enough to show that Ty is
satisfiable. Suppose not, then, by the compactness assumption, there exists a finite subset of I'y that is not

satisfiable and therefore a finite set D C {6 | o v 8} such that = Asep 6 = 8. Now, E o = (Asep § = B)
and, by Reflexivity and Right Weakening o I (/\6€D b — ﬁ) But, using And one gets a b Ascpd.
Then, using MPC (the proof of lemma 2 shows that only And and Right Weakening are needed to derive
MPC), one concludes « b 3, a contradiction. [l

Definition 11 We shall say that o is equivalent to 3 and write o ~ 3 iff « b~ 3 and B I «.

Lemma 9 a~ 3 iff Vy abv< Bk ~. The relation ~ is therefore an equivalence relation.

13



Proof: The if part follows from Reflexivity and the only if part from Equivalence. |

The equivalence class of a formula a, under ~, will be denoted by a.
Definition 12 & < 3 iff 3o’ € & such that § |~ o'.

It is clear that the definition of < makes sense, i.e. does not depend on the choice of the representatives
a and §. The relation < is reflexive but is not in general transitive.

Lemma 10 The relation < is antisymmetric.

Proof: Suppose a < # and § < &. There are formulas o', o € & and 3’ 3" e 3 such that: & o' and
o' 37, By lemma 9, 8" I~ o” and o' I~ 3”. Therefore o’/ ~ 3", and a = 3.

The cumulative model W will be defined the following way: W def (S,1,<), where S def L/~ is the set of

all equivalence classes of formulas under the relation ~, [(&) wf {m | m is a normal world for a} and @ < 3

iff @ <@ anda#p (the relation < has been defined in definition 12). One easily checks the definition of {
does not depend on the choice of the representative v and that < is asymmetric.

Lemma 11 For any o € L the state a is a minimum of Q.

Proof: Indeed suppose s # a and s € . This last assumption implies, by the definition of @, that every
world of {(s) satisfies o. Let s = 5. By the definition of [, every normal world for § satisfies «. By lemma 8,
Bk a, and therefore a < s. Since s # @ we conclude @ < s. I

It follows from lemma 11 and the fact that < is asymmetric that the model W defined above is a strong
cumulative model. We may now prove what we wanted to achieve.

Lemma 12 o 3 iff o bw 3.

Proof: Lemmas 11 and 5 imply that the only minimal state of @ is a, therefore o by 2 iff all normal
worlds for o satisfy # and lemma & implies the conclusion. ||

Theorem 1 (Representation theorem for cumulative relations) A consequence relation is a cumu-
lative consequence relation off it is defined by some cumulative model.

Proof: The if part is lemma 7. The only if part follows from the construction of W and lemma 11 (that
shows W is a cumulative model) and lemma 12. |

One may remark that the representation result proved is a bit stronger than what is claimed in theorem 1:
any cumulative consequence relation is the consequence relation defined by a strong cumulative model. Tt is
now easy to study the notion of entailment yielded by cumulative models.

Corollary 1 Let K be a set of conditional assertions, and a, § € L, the following conditions are equivalent.
In case they hold we shall say that K cumulatively entails o b 3.

1. for all cumulative models V such that vy contains K, o oy 3

2. a b B has a proof from K in the system C.
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Proof: From lemma 7 one sees that 2) implies 1). For the other direction, suppose 2) is not true. The
smallest consequence relation closed under the rules of C that contains K is a cumulative consequence
relation that does not contain o b 3. By theorem 1, there is a cumulative model that defines it. This model
shows property 1) does not hold. |}

Corollary 2 Let K be a set of conditional assertions. There is a cumulative model that satisfies exactly
those assertions that are cumulatively entailed by K.

The following compactness result follows.
Corollary 3 (compactness) K entails o v § iff a finite subset of K does.

Proof: Proofs are always finite and therefore use only a finite number of assumptions from K. |

To conclude our study of cumulative reasoning, let us say that the system C provides an interesting
general setting in which to study nonmonotonic reasoning. Weaker systems are probably very different from
systems that are at least as strong as C. The system C is probably too weak to be the backbone of realistic
inference systems and cumulative models are quite cumbersome to manipulate. The next section will propose
nicer models and an additional rule of inference.

4 Cumulative reasoning with Loop

4.1 Cumulative ordered models

The original motivation for the study of the system CL, that will be proposed in this section, stems from
semantic considerations. Later on, a number of results, including the result that will be described in sec-
tion 5.6, which says that, if one restricts oneself to Horn assertions, then the system CL is as strong as P,
seemed to point out that CL is worth studying.

Looking back on the cumulative models of definition 5, one may wonder why we did not require the binary
relation < to be a strict partial order. We could have required it to be asymmetric without jeopardizing the
representation theorem, but the construction of section 3.5 builds a model in which < is not always transitive.
Nevertheless, preferences could probably be assumed to be transitive and, most important, transitivity of
= eases enormously the task of checking the smoothness condition: if < is a partial order (strict), then
all finite models (models in which the set of states is finite) satisfy the smoothness condition, and even all
well-founded models (in which there is no infinite descending <-chain) do. Could we have required < to be
a partial order? In other terms, are there rules that are not valid for cumulative models in general but are
valid for all cumulative models the preference relation of which is a strict partial order? We shall now give
a positive answer to this last question and exactly characterize this sub-family of cumulative models.

Definition 13 A cumulative ordered model is a cumulative model in which the relation < is a strict partial
order.

4.2 The system CL

The following rule, named Loop after its form, will be shown to be the exact counterpart of transitivity of
the preference relation in the models. It says that, if propositions may be arranged in a loop, in a way each
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one is a plausible consequence of the previous one, then each one of them is a plausible consequence of any
one of them, i.e. they are all equivalent in the sense of Equivalence.

Definition 14 The system CL consists of all the rules of C and the following:

aobar , artbas ., apmibar , arbag

(14) ap b ag

(Loop)

A consequence relation that satisfies all rules of CL is said to be loop-cumulative.

Lemma 13 The following is a derived rule of CL, for any ¢,j =0,.. . k.

aobar , artbas ., apmibar , arbag
OzZ'}\'Ozj

(15)

Proof: It is clear that, because of the invariance of the assumptions under cyclic permutation, the conclusion
of Loop, could as well have been «;41 b oy, for any ¢ = 0,..., k (addition is understood modulo &k 4 1).
From Equivalence one can then conclude a; b aj, for any 4,5 =0,...,k. |

It seems the rule Loop has never been considered in the literature. We feel it is an acceptable principle of
nonmonotonic reasoning. It is particularly interesting that Loop does not mention any of the propositional
connectives.

Lemma 14 Loop is valid in all cumulative ordered models.

Proof: Let W = (S,[, <) be a cumulative ordered model such that o; bw ;41 for i =0,... &k (addition
is understood modulo k 4 1) and let sy € .S be a minimal state in ag. We shall show that sy ]E . Since
ao bw a1, the state so must be in @7. By the smoothness condition, if sy is not minimal in &7 then there
is a state s; minimal in &7 such that s; < sg. Similarly, for every i = 0, ..., k there is a state s; minimal in
a; such that s; = s;_1 or s; < s;_1. Since < is transitive, s, = sg or s, < sg. But s; is minimal in &} and
a w ag, we conclude that sg € @y. But sg is minimal in &g, we conclude that s, = sy and sg ,E ap. 1

Lemma 15 The rule Loop is not valid in cumulative models.

Proof: Let L be the propositional calculus on the propositional variables pg, p1, p2 and U be the set of
all propositional models on those variables. We shall build a cumulative model V' = (S,[, <) such that
pi kv pigr for all ¢ = 0,...,2 (addition is modulo 3) but pg Hy pa. The set S has four states: s;, for
t=—1,...,2. For every ¢ =0,...,2 we have s_1 < s; and s;11 < s;. Notice that < is not transitive. Let
us now describe {. For ¢ = 0,...,2, {(s;) is the set of all worlds satisfying p; and p;41, and {(s_1) is the set
of all worlds satisfying at least two out of the three variables. First we want to show that V satisfies the
smoothness condition. Clearly all subsets of S that contain s_; are smooth since s_; is a minimum in S.
A set that contains at most two elements is always smooth. We conclude that the only subset of S that is

not smooth is 4 & {50, 51, s2}. We must show that there is no formula « such that A = @. Let « be any
formula and let ¢ =0,...,2. If s; € & all worlds of I(s;) must satisfy o and by definition of [, p; A pit1 FE a.
We conclude that if A C @ then any world that satisfies at least two of the variables satisfies a. We conclude
that @ must therefore also include s_.

To see that p; kv piy1, notice that p; = {s;—_1,s;} and that, since s; < s;_1, the only minimal state in
pi is s; that satisfies p;11. The only thing left to check is that pg Ky pa. But we just noticed that the only
minimal state of pg is sg and clearly sg bé ps. 1
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4.3 Characterization of loop-cumulative consequence relations

We now want to show that, given any loop-cumulative relation k one may build a cumulative ordered
model V' such that kv isequal to b . Suppose k issuch a relation and W = {S,[, <) is the cumulative
model built out of  in section 3.5. Let <1 be the transitive closure of <. First we shall show that, since
b satisfies Loop, the relation <1 is a strict partial order.

Lemma 16 The relation <% is irreflexive and therefore a strict partial order.

Proof: Suppose ag <T ap. Since < is asymmetric, it is irreflexive and t here must be some n > 0 such

that for ¢ =0,...,n, & < &4+1 (addition is modulo n). From the definitions of < and <, we see that,
for i = 0,...,n, there are formulas o such that a; ~ of and a;41 bk a}. From lemma 9, we conclude that
aj,y bajfori=0,...,n. By Loop wesee that a; k o}, and therefore a},; ~ o} and a; ~ a;41. But this

contradicts the asymmetry of <. We have shown that < is irreflexive. Since it is transitive by construction
it is a strict partial order. 1

Let us now define V (S,1,<T) where S|l and < are as in the definition of .

Lemma 17 In V, for any a, the state a is a minimum of @. Therefore V is a strong cumulative ordered
model.

Proof: Lemma 11 says @ is a minimum of & with respect to <. It is therefore a minimum with respect to
any weaker relation and in particular <T. Lemma 16 implies that <T is asymmetric and, by lemma 5, V
satisfies the smoothness condition. |

Lemma 18 o 3 iff a kv 3.

Proof: Lemma 17 implies that the only minimal state of @ is a, therefore o b~y G iff all normal worlds for
«a satisfy 4, and lemma 8§ implies the conclusion. [

We may now summarize.

Theorem 2 (Representation theorem for loop-cumulative relations) A consequence relation is a loop-
cumulative relation iff it 1s defined by some cumulative ordered model.

As in the cumulative case one may study the notion of entailment yielded by cumulative ordered models

and obtain results that parallel corollaries 1, 2 and 3.

5 Preferential reasoning

5.1 The system P

We shall now consider a system that seems to occupy a central position in the hierarchy of nonmonotonic
systems. It is strictly stronger than CL, but assumes the existence of disjunction in the language of formulas.
We call this system P, for preferential, because its semantics, described in section 5.2, are a variation on
those proposed by Y. Shoham in [38]. The differences (the distinction we make and he does not between
states and worlds) are nevertheless technically important, as noticed above just before definition 2, and as
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will be shown at the end of section 5.2. This very system has been considered by E. Adams [2] and proposed
by J. Pearl and H. Geffner [34] to serve as the conservative core of a nonmonotonic reasoning system. It is
the flat fragment of the system S studied by J. Burgess in [4].

Definition 15 The system P consists of all the rules of C and the following:

aby , By

(16) aV by

(Or)
A consequence relation that satisfies all rules of P is said to be preferential.

The rule Or corresponds to the axiom CA of conditional logic. It says that any formula that is, separately,
a plausible consequence of two different formulas, should also be a plausible consequence of their disjunction.
It 1s a valid principle of monotonic classical reasoning and does not imply monotonicity, therefore we tend
to accept it. Further consideration also seems to support Or: if we think that if John attends the party,
normally, the evening will be great and also that if Cathy attends the party, normally, the evening will be
great and hear that at least one of Cathy or John will attend the party, shouldn’t we be tempted to join
in? There is, though, an epistemic reading of o I 3 that invalidates the Or rule. If we interpret o b 3 as
meaning: «f all I know about the world is a then it 1s sensible for me to suppose that § is true, we must reject
the Or rule. Indeed, one may imagine a situation in which a expresses a fact that can very well be true or
false but the truth value of which is normally not known to me. If I knew « to be true, that would be quite
an abnormal situation in which I may be willing to accept v. If I knew « to be false, similarly, it would be an
exceptional situation in which I may accept v, but the knowledge that o V =« is true 1s essentially void and
certainly does not allow me to conclude that anything exceptional is happening. Notice that, in this reading,
the left hand side of the symbol k involves a hidden epistemic operator (the right hand side may also do
so, but need not). We shall therefore defend the Or rule by saying that such a hidden operator should be
made explicit and the example just above only invalidates the inference: from Ka k v and K3 I ~ infer
K(aV 3) b~ . But nobody would defend such an inference anyway.

The interplay between Or and the rules of C makes P a powerful system. For example, Loop is a derived
rule of P. Since this result will be obvious once we have characterized preferential relations semantically, we
shall leave a proof-theoretic derivation of Loop in P for the reader to find.

We shall now put together a number of remarks revolving around the rule Or. Our first remark is that we
may derive from Or a rule that is similar to the hard half of the deduction theorem. This rule was suggested
in [39]. Tt is a very useful rule and expresses the fact that deductions performed under strong assumptions
may be useful even if the assumptions are not known facts.

Lemma 19 In the presence of Reflexivity, Right Weakening and Left Logical Equivalence, the rule
of Or implies the following:

aAfB by
ab 3=

S is therefore a derived rule of P.

(17) (S)

Proof: Suppose a A I v. Wehavea A 3 |~ 3 — v, by Right Weakening. But one hasa A =3 ~ 3 — 7.
One concludes by Or and Left Logical Equivalence. |l

Our second remark is that, in the presence of S, the rule of Cut is implied by And. Therefore Reflex-

ivity, Left Logical Equivalence, Right Weakening, And, Or and Cautious Monotonicity are an
elegant equivalent axiomatization of the system P.
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Lemma 20 In the presence of Right Weakening, S and And imply Cut.
Proof: Use S, And and Right Weakening. ||

D. Makinson [27] suggested the following rule. Tt expresses the principle of proof by cases.

ahN-Fbhy , anfby
abey

(18) (D)

Lemma 21 In the presence of Reflexivity, Right Weakening and Left Logical Equivalence,

1. Or wmplies D and

2. D wmplies Or in the presence of And.
Therefore D 1s a derwed rule of P.

The proof is left to the reader.

The next lemma gathers some more derived rules of the system P. They will be used in the proof of the
representation theorem of section 5.3. The importance of these rules is mainly technical. The reader should
notice that P is a powerful system, in which one may build quite sophisticated proofs.

Lemma 22 The following are derived rules of P:

19 Ty

(20) avfy;ja,%;lwﬁ
(21) avﬁlwaav:yf!ﬂwﬁ
(22) avﬁlwacrw,yj;ﬂwﬁ

Proof: The uses of Left Logical Equivalence will not always be mentioned any more. For (19), use first
Right Weakening on each of the two hypotheses and then Or. This seems to be a very intuitive rule that
is often useful.

For (20), from the second hypothesis, using Left Logical Equivalence we have (« Vy) Ao b 3. By
S we conclude Vv  a — 3. But, using the first hypothesis and Cautious Monotonicity one may now
conclude.

For (21), from both hypotheses and using (19) one concludes a V3V ~y k aV §. Now, using our first
hypothesis and (9) we see («V 8) Vy k a. Leaving this result for a moment, notice that from the first
hypothesis and v b v, using (19) we obtain aV SV y k~ aV~y. Now, coming back to the result we left
hanging, using Cautious Monotonicity, we may conclude.

For (22), from the second hypothesis one has (BVy) A(aVFVy) b B. ByS:aVivy b (BVy) = 6
By Right Weakening, one may then obtain aV fV vy kv — 8 But from the two hypotheses, using (19),
one obtains: aV VY k aV . Using Cautious Monotonicity on those last two results, we obtain:
aV f b v — 3. Using the first hypothesis and Cautious Monotonicity one concludes. |[I
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5.2 Preferential Models

We may now describe our version of preferential models. Preferential models are cumulative ordered models
in which states are labeled by single worlds (and not sets of worlds). The reasoner has, then, essentially,
a preference over worlds (except that the same world may label different states). We may now define the
family of models we are interested in.

Definition 16 A preferential model W is a triple { S,1, <) where S is a set, the elements of which will be
called states, | : S — U assigns a world to each state and < is a strict partial order on S (i.e. an irreflexive,
transitive relation), satisfying the smoothness condition of definition 7.

Notice that, for a preferential model, SJE a iff {(s) = a. The smoothness condition, here, as explained in
section 4.1, is only a technical condition needed to deal with infinite sets of formulas, it is always satisfied in
any preferential model in which S is finite, or in which < is well-founded (i.e. no infinite descending chains).
The requirement that the relation < be a strict partial order has been introduced only because such models
are nicer and the smoothness condition is easier to check on those models, but the soundness result of lemma
24 1s true for the larger family of models, where < is just any binary relation. In such a case, obviously, the
smoothness condition cannot be dropped even for finite models. The completeness result of theorem 3 holds
obviously, too, for the larger family, but is less interesting. Preferential models, since they are cumulative
models, define consequence relations as in definition 8.

Y. Shoham, in [38], proposed a more restricted notion of preferential models. He required the set of
states S to be a subset of the universe U and the labeling function [ to be the identity. He also required the
relation < to be a well-order. Any one of those two requirements would make the representation theorem
incorrect. The second point is treated in [22]. For the first point, we leave it as an exercise to the reader
to show that the following model has no equivalent model in which no label appears twice. Let L be the
propositional calculus on two variables p and ¢. Let S have four states: sg < s» and s; < s3. Let sg satisfy
p and —q, sy satisfy —p and —¢ and s; and s3 both satisfy p and gq.

5.3 Characterization of preferential consequence relations

Our first lemma 1s obvious. It does not hold in cumulative models and should be contradistincted with
lemma 6.

Lemma 23 Let W = ( 5,1, <) be a preferential model. For any o, 3 € L, oz/\ﬁ —au B

Lemma 24 (Soundness) For any preferential model W, the consequence relation hw il defines is a
preferential relation, i.e. all the rules of the system P are satisfied by the relations defined by preferential
models.

Proof: Indeed, as we remarked above, the fact that < is a partial order is not used at all. Since a
preferential model is a cumulative model, in light of lemma 7, we only need to check the validity of Or.
Suppose a preferential model W = (S,!, <) and «, 3,7 € L are given. Suppose that o kyw v and 5w ~.
Any state minimal in oz/\/\ﬁ is, by lemma 23, minimal in the set a U B, and therefore minimal in any of the
subsets it belongs to. [

We shall now begin the proof of the representation theorem. Let us, first, define a relation among
formulas, that will turn out to be a pre-ordering whenever the relation  satisfies P.
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Definition 17 We say that a is not less ordinary than 5 and write a < 5 iff aV 3 b+ a.

Indeed, if we would conclude that « is true on the basis that either o or § is true, this means that the
former is not more out of the ordinary than the latter. Notice that, if | satisfies Reflexivity and Left
Logical Equivalence, then for any o, F € L, oV 3 < «x.

Lemma 25 If the relation s preferential, the relation < is reflexive and transitive.

Proof: Reflexivity follows from Left Logical Equivalence and Reflexivity. Transitivity follows from

(21) of lemma 22. |}

From now on, and until theorem 3, we shall suppose that the relation |~ is preferential.
Lemma 26 [fa < 8 and m is a normal world for o that satisfies 3, then m s a normal world for 3.

Proof: Suppose § k §. By (20) of lemma 22, we have o 3 — . If m is normal for a it must satisfy
f# — §, and since it satisfies 3, it must satisfy 5. |

Lemma 27 If a < g <+ and m s a normal world for « that satisfies v then it i1s a normal world for (.

Proof: By lemma 26, it is enough to show that m satisfies 5. By (22) of lemma 22 we have o v — S,
but m is a normal world for o that satisfies v, therefore it must satisfy 3. |

We may now describe the preferential model we need for the representation result. Remember that we

start from any preferential relation k . We then consider the following model: W def (5,1, <) where

1. 5% {< m,a > | mis a normal world for o},
2. l{(< mya>) = m and

3. <mya><<n,p>iffa <Band m £ 3.

The first thing we want to show is that W is a preferential model, i.e. that < is a strict partial order and
that W satisfies the smoothness condition. We shall then show that the relation oy is exactly k.

Lemma 28 The relation < is a strict partial order, i.e. it is wrreflevive and transitive.

Proof: The relation < is irreflexive since < m, o >~<< m,a > would imply m [£ «, but m is a normal
world for «, and since o b a by Reflexivity, it satisfies a. It is left to show that < is transitive. Suppose
< Mg, ag >=<< my,a; > and < my, a; ><< Mgy, as >. By the definition of < we have ap < a7 and ay < as.
From this we may conclude two things. First, by lemma 25 we conclude ay < as. Secondly, since mg is a
normal world for ag that does not satisfy a1, we may conclude by lemma 27 that it does not satisfy as. |

We are now going to characterize all minimal states in sets of the form a.

Lemma 29 In the model W, < m, [ > is minimal in @ iff m = o and 3 < «.
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Proof: For the if part, suppose m |= « and 8 < «. Clearly m € &. Suppose now that < n,y ><< m, g >
and n |= a. We would have v < 8 < &, n normal for v, and n £ 8 and m = a. This stands in contradiction
with lemma 27.

For the only if part, suppose < m, 3 > is minimal in a. Clearly m |= a. Suppose n is a normal world
for &V /3 that does not satisfy 3 (it is not claimed that such a normal world exists). Since oV 3 < o, we
must have < n,aV g ><< m,J >. But n is a normal world for a V 3 that does not satisfy 8 and therefore
must satisfy «. This stands in contradiction with the minimality of < m, # > in a@. We conclude that every
normal world for oV 3 satisfies 2. By lemma 8, av 3 ~ 3. |

We shall now prove that W satisfies the smoothness condition.
Lemma 30 For any o € L, @& is smooth.

Proof: Suppose < m, >€ a, i.e., mEa. If 8 <« then, by lemma 29 < m,8 > is minimal in @. On
the other hand, if oV g K § then by lemma 8 there is a normal world n for aV 3 such that n [£ 5.
But VvV 3 < 8 and therefore < n,aV g ><<m,8>. But, n|EaV g and n [ 5 therefore n = a. Since
aV B < a, Lemma 29 enables us to conclude that < n,a V 8 > is minimal in a.

We have shown that W is a preferential model. We shall now show that pyw is exactly the relation
we started from.

Lemma 31 Ifa b 3, then a bw 3.

Proof: We must show that all minimal states of & satisfy 3. Suppose < m,~ > is minimal in @. Then m is
a normal world for v that satisfies o. By lemma 29, v < « and therefore, by lemma 26, m is a normal world

for a. |

Lemma 32 Ifa bw 3, then a ~ 3.

Proof: Tt follows from the definition of the relation < (lemma 29 could also be used, but is not really
necessary here) that, given any normal world m for o, < m, @ > is minimal in &. If o by 5, 3 is satisfied
by all normal worlds for «, and we may conclude by lemma 8. |

We may now state the main result of this section.

Theorem 3 (Representation theorem for preferential relations) A consequence relation is a prefer-
ential consequence relation iff it is defined by some preferential model.

Proof: The if part is Lemma 24. For the only if part, let I~ be any consequence relation satisfying the rules
above and let W be defined as above. Lemmas 28 and 30 show that W is a preferential model. Lemmas 31

and 32 show that it defines an consequence relation that is exactly ~ . |

As in the cumulative and cumulative ordered cases we may study the notion of preferential entailment
and obtain results similar to Corollaries 1, 2 and 3.

5.4 Some rules that cannot be derived in P

Is P a reasonable system for nonmonotonic reasoning? We think a good reasoning system should validate
all the rules of P. Notice that all the rules we have considered so far are of the form: from the presence of
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certain assertions in the consequence relation, deduce the presence of some other assertion. After careful
consideration of many other rules of this form, we may say we have good reason to think that there are no
rules of this type that should be added. Certain principles of reasoning that seem appealing, though, fail to
be validated by certain preferential consequence relations. This means, in our sense, that many agents that
reason in a way that is fully consistent with all the rules of P, nevertheless behave irrationally. We shall show
that circumscription does not, in general, satisfy even the weakest of the principles we shall present. The
reader will notice that the form of these principles is different from that of all the rules previously discussed:
from the absence of certain assertions in the relation, we deduce the absence of some other assertion.

aANyhR G, aN—yh 3
alt p

(23) (Negation Rationality)

(24) ably , By

Disjunctive Rationality
aV @by ( )

aANBhy , al-p

(25) pyva

(Rational Monotonicity)

Each one of those rules is implied by Monotonicity and therefore expresses some kind of restricted
monotonicity. Any rational reasoner should, in our opinion, support them, and we shall, now, explain and
justify them. The rule of Negation Rationality says that inferences are not made solely on the basis of
ignorance. If we accept that J is a plausible consequence of a, we must either accept that it is a plausible
consequence of o A~ or accept that it is a plausible consequence of o A =y. Indeed, suppose we hold that
normally, the party should be great, but that we do not hold that even if Peter comes to the party, it will be
great, i.e. we seriously doubt the party could stand Peter’s presence. It seems we could not possibly hold
that we also seriously doubt that the party could stand Peter’s absence. If we do not expect the party to
be great if Peter is there and do not expect it to be great if Peter is not there, how could we expect it to
be great? After all, either Peter is going to be there or he is not. It is, though, easy to find examples of
preferential models that define consequence relations that do not satisfy Negation Rationality.

We shall even show, now, that circumscriptive reasoning does not always obeys Negation Rationality.
Suppose our language has two unary predicate symbols special and beautiful, and one individual constant a.
We know that, normally an object is not special, i.e. we circumscribe by minimizing the extension of special,
keeping beautiful constant. Take « to be true and § to be —special(a). Indeed, without any information,
we shall suppose that @ is not special. But take v to be beautiful(a) <> special(a). If we had the information
that a is beautiful if and only if it is special, we could not conclude that a is not special anymore, since it
could well be beautiful, i.e. there are two minimal models that must be considered: the first one with a
neither beautiful nor special and the second one with a beautiful and special. On the other hand, had we
had the informatiom that either a is beautiful or it is special but not both, we could not have concluded
that it is not special either, since it could well not be beautiful. It seems that circumscription may lead to
unexpected conclusions. The example presented here is a simplification, due to M. Ginsberg, of an example
due to the second author. If we try to understand where circumscription differs from intuitive reasoning, we
probably will have to say that, even with the knowledge that @ is special if and only if it is beautiful, we
would have kept the expectation that it 1s not special, and therefore gained the expectation that it is not
beautiful. Similarly, with the knowledge that a is either special or beautiful but not both, we would have
kept the expectation that it is not special and therefore formed the expectation that it is beautiful.

The rule of Disjunctive Rationality says that inferences made from a disjunction of propositions must
be supported by at least one of the component propositions. Again, this seems like a reasonable requirement.
If we do not hold that if Peter comes to the party, it will be great and do not hold that ¢f Cathy comes to the
party, it will be great, how could we hold that if at least one of Peter or Cathy comes, the party will be great?
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In this example, the reader may prefer to read even if instead of if, but the conclusion stands anyway. It
is easy to see that Disjunctive Rationality implies Negation Rationality. The second author recently
showed that Disjunctive Rationality is strictly stronger than Negation Rationality.

The rule of Rational Monotonicity is similar to the axiom CV of conditional logic. It expresses
the fact that only additional information the negation of which was expected should force us to withdraw
plausible conclusions previously drawn. It is an important tool in minimizing the updating we have to do
when learning new information. Suppose we hold that normally, the party will be great but do not hold
that even if Peter comes, the party will be great, i.e. we think Peter’s presence could well spoil the party,
shouldn’t we hold that normally, Peter will not come to the party? One easily shows that, in the presence
of the rules of C, Rational Monotonicity implies Disjunctive Rationality. D. Makinson proved that
Rational Monotonicity is strictly stronger than Disjunctive Rationality and conjectured a model-
theoretic characterization of preferential relations that satisfy Rational Monotonicity. The second author
proved the corresponding representation result in the case the language L is finite. The third author lifted
the restriction on L. These results will appear in a separate paper.

5.5 Examples: diamonds and triangles

We shall now show what preferential reasoning may provide in the setting of two toy situations that have
become classics in the literature. First the so-called Nizon diamond. Suppose our knowledge base K contains
the four assertions that follow. The reader may read feen-ager for ¢, poor for p, student for s and employed
for e.

1.t ~p
2.t s

3.phe
4. s ~ —e

It 1s easy to see, by describing suitable preferential models, that no assertion that would look like some kind of
contradiction is preferentially entailed by K. In particular neither ¢ b ¢, nort | —e is preferentially entailed
by K. We cannot conclude, from the information given above, that teen-agers are normally employed, neither
can we conclude that they generally are not employed. This seems much preferable than the consideration
of multiple extensions. This weakness of the system P seems to be exactly what we want. Nevertheless,
preferential reasoning allows for some quite subtle conclusions. For example the following assertions are
preferentially entailed by K: true k —t (normally, people are not teen-agers), true b —(p A s) (normally,
people are not poor students). The following assertions are not preferentially entailed: s k —p (students,
normally are not poor), or p b —s (poor persons are normally not students), and we feel indeed that there is
not enough information in K to justify them. An example of an assertion that is not preferentially entailed
by K but we think should follow from K is: a Ap k e, since a is not mentioned in K. The reader may
consult [20] for a possible solution.

A second classical example 1s the penguin triangle. Suppose our knowledge base K contains the three
assertions that follow. The reader may read penguin for p, flies for f, and bird for b.

l.p ko
2.p b f
3.b f
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It is easy to see, by describing suitable preferential models, that no assertion that would lead to some
kind of contradiction is preferentially entailed by K. In particular p k f is not preferentially entailed by K.
On the other hand, the following assertions are preferentially entailed by K and we leave it to the reader to
show that they are satisfied by all preferential models that satisfy K:

1. pAb b =f
- Fp
3.6 b —p
4. 6Vp b f

5. bVp I —p

[\]

The reader should remark that no multiple extension problem arises here and that preferential reasoning
correctly chooses the most specific information and in effect pre-empts the application of a less specific
default.

5.6 Horn assertions

In this section we shall show that, if we consider only assertions of a restricted type (i.e. Horn assertions),
then the system P is no stronger than CL. For this result we shall need the full strength of theorem 2. To
keep notations simple, let us suppose L is a propositional language.

Definition 18 An assertion o b 3 will be called a Horn assertion iff the antecedent o is a conjunction of
zero or more propositional variables and the consequent (3 is either a single propositional variable or the
formula false.

The crucial remark is the following.

Lemma 33 If W is a cumulative ordered model, there is a preferential model V' such that bw and by
coincide as far as Horn assertions are concerned.

Proof: Let W be the model { S, <). We shall define V' to be the model ( S,l’, <), where I’ is defined in
the following way. For any s € S and for any propositional variable p, l’(s) |= p iff for every u € I(s), u |= p,
in other words iff SJE pin W. It is clear that, if o 1s a conjunction of propositional variables then the sets
a in W and V coincide. Therefore, if W satisfies the smoothness condition, so does V and bw and kv
agree on Horn formulas. [

Theorem 4 Let K be a knowledge base containing only Horn assertions, and A a Horn assertion. If the
assertion A may be derived from K in the system P, then it may be derived from K in the system CL.
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Proof: Suppose A cannot be derived in CL. By the representation theorem 2, there is a cumulative ordered
model W that satisfies all the assertions of K, but does not satisfy A. By lemma 33, there is a preferential
model V' that satisfies K, but does not satisfy 4. We conclude, by the soundness part of theorem 3, that A
cannot be derived in P. ||

6 Cumulative monotonic reasoning

6.1 The system CM

In section 3.3, three rules were shown equivalent in the presence of the rules of C. We shall now study the
system obtained by adding those rules (or one of them) to the system C. One obtains a system that is strictly
stronger than CL, but incomparable with P. It is corresponds to some natural family of models.

Definition 19 The system CM contains all the rules of C and the rule of Monotonicity, defined in (10).
A consequence relation that satisfies all the rules of CM is said to be cumulative monotonic.

In fact, Left Logical Equivalence and Cautious Monotonicity are now redundant, since they follow
from Monotonicity. From lemma 3, one sees that EHD and Transitivity are derived rules of CM. It is
obvious that Loop is also a derived rule of CM (by Transitivity). It is not difficult to find preferential
models that do not satisfy Monotonicity and we conclude that CM is strictly stronger than CL and not
weaker than P.

6.2 Simple cumulative models

Definition 20 A cumulative model will be called a simple cumulative model iff the binary relation < on its
states 1s empty.

A simple cumulative model is a cumulative ordered model. The smoothness condition is always satisfied
in such a model. It is very easy to see that the consequence relation defined by any simple cumulative model
satisfies Monotonicity. It is not difficult to find simple cumulative models that do not satisfy certain
instances of the Or rule. We conclude that P and CM are incomparable. It is also easy to find such models
that do not satisfy certain instances of Contraposition.

6.3 Characterization of monotonic cumulative consequence relations

Theorem 5 (Representation theorem for cumulative monotonic relations) A consequence relation
1s cumulative monotonic iff it is defined by some simple cumulative model.

Proof: It has been noticed above that the ¢f part is trivial. For the only if part, suppose h is a consequence

relation that satisfies the rules of CM. Let W (A,1,0), where A C L is the set of all formulas « such that

« b false and { ! {m | m is a normal world for a}. Lemma 8 implies that all labels are non-empty. By
lemma 8, for any formula o, @ = {5 | 3 «a}. Since all states of @ are minimal in &, we see that o w 8
iff for all 4 such that ¥  « and all normal worlds m for v, m = 5. By lemma 8 this last condition is
equivalent to v | 2 and we have: a by @ iff forany v, v b a = v 3. Suppose a |~ 3, take any 7 such
that v | a, we have by Transitivity, a derived rule of CM, v 3. Therefore a oy 3. Suppose now
that o b 3, then, by taking v = o one sees that o ~ 3. |
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As in the cumulative, cumulative ordered and preferential cases, one may study the notion of entailment
yielded by simple cumulative models and obtain results similar to Corollaries 1, 2 and 3.

7 Monotonic reasoning

7.1 The system M

The results presented in this section are probably folklore. They are presented here for completeness’ sake.

Definition 21 The system M consists of all the rules of C and the rule of Contraposition. A consequence
relation that satisfies all the rules of M is saitd to be monotonic.

Lemma 4 and the results to come will show that the system M is strictly stronger than P and CM.
Lemma 34 The rule Or s a derived rule of M.

Proof: Use Contraposition twice, then And and finally Contraposition. |

Lemma 35 A consequence relation s monotonic iff it satisfies Reflexivity, Right Weakening, Mono-
tonicity, And and Or.

Proof: The only if part follows from lemmas 2, 4 and 34. For the ¢f part, notice, first, that Left Logical
Equivalence and Cautious Monotonicity are special cases of Monotonicity. The remark preceding
lemma 20 shows that all rules of P may be derived from the rules above. We must now show that Con-
traposition may be derived from the rules of P and Monotonicity. Suppose al~ 3. By S, one has
true b a — 3. By Right Weakening, we conclude true b —3 — —a. By Monotonicity, we have
-3 =8 = —a. We conclude by Reflexivity and MPC. |

7.2 Simple preferential models

The account of monotonic reasoning that we propose is essentially the following. The agent has in mind a
set of possible worlds V': this is the set of worlds the agent thinks are possible in practice. This set V is a
subset of the set U of all logically possible worlds. The agent is willing to conclude # from « if all worlds of
V' that satisfy «a also satisfy 5.

Definition 22 A simple preferential model is a preferential model in which the binary relation < is emply.

A simple preferential model is a simple cumulative model in which the labeling function [ labels each
state with a single world. Since repeated labels are obviously useless we could, as well, have considered a
model to be a subset of If.

7.3 Characterization of monotonic consequence relations

Theorem 6 (Representation theorem for monotonic relations) A consequence relation is monotonic
off it 1s defined by some simple preferential model.
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Proof: The proof of the if part i1s trivial. For the only if part we shall build a simple preferential model for

any given monotonic consequence relation k. Let V def {meld|VapelL ifa ~pFthenmpEa— 3}

and let W { V,1) where [ is the identity function. So, mf o iff m = a.

We shall prove that a @ iff @ bw 3. If @ 2 then by the construction of V, a by 3. Sup-

pose now that « K 8, we shall show that there is a world m € V' that does not satisfy o — 5. Let

Iy {=8}U{d|ab d}. Since a K 4, Ty is satisfiable (the full proof is given in a more general case

in lemma 8). Let m be a world that satisfies T'g. We shall prove that Vi, ¢ € Lif ¢ b 9 then m |E ¢ — .
If ¢ I ¢ then true ¢ — 1 by S and a ~ ¢ — ¥ by Monotonicity. Therefore, ¢ — 1 € I'y by the
definition of Ty, and m = ¢ — . We conclude that m € V and clearly m,E a but m Eé JER |

It will now be shown that all the constructions and results described above relativize without problems
to a given set of conditional assertions.

Corollary 4 Let K be a set of conditional assertions, and o, 3 € L. Let A L PV 6 € K} and let
v v

W be the monotonic model {Un,l), where | is the identity function. The notation Ua has been defined in
section 2.1. The following conditions are equivalent. If they are satisfied we shall say that K monotonically

entails a b~ 3.

1. for all monotonic models V such that v contains K, o hy 3

2. a bw B
3. a b B has a proof from K in the system M.

4. o = B follows logically (with respect to U ) from the formulas of A.

Proof: We shall first show the equivalence of 1 and 2. The relation defined in 1 is the intersection of all
those monotonic consequence relations that contain K. If V' is any monotonic model such that kv contains
K then the labels of its states must be in s (as defined in 2) and therefore kv contains by . But by
contains K and is one of the relations considered in 1. To see the equivalence of 1 and 3, notice that the
relation defined in 3 is the intersection of all those monotonic relations that contain K. Theorem 6 implies
that 1 and 3 define the same relation. The equivalence between 2 and 4 is immediate. ||

From the equivalence of conditions 1 and 3 one easily proves the following compactness result:

Corollary 5 (compactness) K monotonically entails o =~ 3 iff a finite subset of K does.

8 Summary, future work and conclusion

Five families of models and consequence relations have been defined and their relations will be summarized
here. Fach family has been characterized by a logical system and no two of those systems are equivalent.
The family of cumulative models contains all other families and is characterized by the logical system
C that consists of Logical Left Equivalence, Right Weakening, Reflexivity, Cut and Cautious
Monotonicity. The next largest family is that of cumulative ordered models. It contains all three families
not yet mentioned here. It is characterized by the logical system CT that contains, in addition to the
rules of C, the rule of Loop. The families of simple cumulative models and of preferential models are
two incomparable subfamilies of the family of cumulative ordered models. Simple cumulative models are
characterized by the logical system CM that contains, in addition to the rules of C, the rule of Monotonicity
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(or equivalently, Transitivity). The family of preferential models, probably the most important one, is
characterized by the logical system P that contains, in addition to the rules of C the rule of Or. The family
of monotonic models is the smallest one of them all. It is contained in all other four. It 1s characterized by
the logical system M that contains, in addition to the rules of C, both rules Monotonicity and Or.

Of those families of consequence relations, which is the best suited to represent the inferences of a
nonmonotonic reasoner in the presence of a fixed knowledge base? Monotonic and and cumulative monotonic
reasoning are too powerful, i.e. simple cumulative and simple preferential models are too restrictive to
represent the wealth of nonmonotonic inference procedures we would like to consider. We feel that all
bona fide logical systems should implement reasoning patterns that fall inside the framework of cumulative
reasoning, but probably not all cumulative models represent useful nonmonotonic systems. The same may
probably said about cumulative ordered models. Preferential reasoning seems to be closest to what we are
looking for.

Nevertheless, many preferential reasoners lack properties that seem desirable, for example Rational
Momnotonicity. A major problem that is not solved in this paper is to describe reasonable inference proce-
dures that would guarantee that the set of assertions that may be deduced from any conditional knowledge
base satisfies the property of Rational Monotonicity. The second author proposed a solution to this
problem in [20]. Another major problem, not solved here, is to extend the results presented here to pred-
icate calculus and answer the question: how should quantifiers be treated, or what i1s the meaning of the
conditional assertion bird(z) b fly(x)? The second and third authors have a solution, still unpublished, to
this problem too.

We hope the results presented above will convince the reader that the field of artificial nonmonotonic
reasoning may benefit from the study of nonmonotonic consequence relations.
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