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ABSTRACT Tradmonal logics suffer from the "monotomclty problem"' new axioms never mvahdate old 
theorems One way to get nd of this problem ts to extend traditional modal logic in the following way 
The operator M (usually read "possible") is extended so that Mp is true whenever p is consistent with the 
theory Then any theorem of this form may be mvahdated if ~p ~s added as an axiom This extension 
results m nonmonotomc versions of the systems T, $4, and $5 These systems are complete in that a 
theorem is provable in a theory based on one of them just if it is true m all "noncommittal" models of that 
theory, where a noncommittal model ts one m which as many thmgs are possible as possible Nonmonotomc 
$4 is probably the most interesting of the three, since it is stronger than ordinary $4 but has all the usual 
inferential machinery of $4 There is a straightforward proof procedure for the sententlal subset of 
nonmonotomc $4. 

This approach to nonmonotonlc logic may be applied to several problems in knowledge representation 
for arUficml mtelhgence Its main advantages over competmg approaches are that tt factors out problems 
of resource hmltattons and allows the symbol M to appear m any context, since M is a meaningful part of 
the language 
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1. Introduction 

I n  a p r e v i o u s  p a p e r  [8], J o n  D o y l e  a n d  I i n v e s t i g a t e d  t h e  p r o p e r t i e s  o f a  n o n m o n o t o n i c  

p r e d i c a t e  ca l cu lus .  T h e  w o r d  " n o n m o n o t o n i c "  r e f e r s  to  f i r s t - o r d e r  t h e o r i e s  in  w h i c h  

n e w  a x i o m s  c a n  w i p e  o u t  o l d  t h e o r e m s .  T h e  w a y  w e  a c c o m p l i s h e d  t h i s  w a s  b y  u s i n g  

t h e  i n f e r e n c e  ru le ,  

i n f e r  Mp f r o m  t h e  i n a b i l i t y  to  i n f e r  u p ,  

w h e r e  M is a n  o p e r a t o r  ( r e a d  " c o n s i s t e n t " )  w h i c h  f o r m s  f o r m u l a s  o u t  o f  o t h e r  

f o r m u l a s .  I n  t h i s  ru le ,  Mp is to  m e a n  "p  is c o n s i s t e n t  w i t h  t h e  t h e o r y . "  T h e n  M is 

u s e d  in  p r o p e r  a x i o m s  l ike,  

( V X ) ( B I R D ( X )  A M C A N - F L Y ( X )  

D C A N - F L Y ( X ) )  

w h i c h  is i n t e n d e d  to c a p t u r e  t h e  idea ,  " M o s t  b i r d s  c a n  f ly ."  I wi l l  r e c a p i t u l a t e  e x a c t l y  

h o w  th i s  r u l e  w o r k s  sho r t l y .  
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The main problem with our treatment was that it provided a very weak semantics. 
For example, even though ~M~p (abbreviated Lp) might plausibly be expected to 
mean "p is provable," there was not actually any relation between the truth values of 
p and Lp. The reason the semantics was so weak was that there were no other 
inference rules or axioms about L and M. 

In this paper I will rectify this by supplying some rules and axioms. These are just 
the rules and axioms of  "standard" modal logic (i.e., modal logic with Kripke 
semantics). With this addition we can get a clean semantics for nonmonotonic logic. 
This will give us completeness and some other nice results. At the end I will make 
some comments on applications and comparisons with related work. 

2. First-Order Modal Theories 

For our purposes the standard treatment of  modal logic is not quite adequate. In 
contrast to nonmodal predicate calculus, where is it common to add nonlogical 
axioms to the bare logical machinery, modal logicians usually stick to simple systems 
like T, $4, $5, etc. [6]. For artificial-intelligence applications we need more meat on 
the bones, including a vocabulary of domain-dependent symbols and lots of (some- 
what banal) axioms like, "The block is on the table." 

So I define a first-order modal theory as follows. First we need a language Lang, 
defined in the usual way: there is a supply (possibly countably infinite) of  predicate 
symbols, constant symbols, function symbols, and variable symbols. A term is a 
constant symbol, a predicate symbol, or an expression f( t l  . . . . .  tn), where f is a 
function symbol and tl . . . . .  t,, are terms. I use the symbol Trm to refer to the set of 
all terms. An atomic formula Is an expression P(tl . . . . .  tn), where P is a predicate 
symbol and tl . . . . .  tn are terms. A formula is either an atomic formula; an expression 
~p, where p is a formula; an expression p D q, where p and q are formulas; an 
expression Mp, where p is a formula; or an expression (Vv)p, where v is a variable 
and p is a formula. I use the symbol Lang to refer to the set of all formulas. We have 
the usual abbreviations: p V q for (~p) ~ q; p A q for ~((~p) V (~q)); p *-~ q 
for (p D q) A (q ~ p); (3v)p for ~(v)~p; and Lp for -M~p .  

Metanotation. Throughout most of the paper the letters p, q, and r denote 
formulas of the object language. The letter v denotes variables. The letters C, D, and 
E denote variable-free formulas. These may be subscripted. All set-theoretic appa- 
ratus that you see is metalinguistic. In Section 7 a more casual notation will be 
adopted, and some set notation will occur in the object language. Everywhere in the 
paper, if a metaexpression denoting a finite set occurs in a formula, it stands for the 
conjunction of its elements; if it is empty, it stands for some tautology. 

Now we define afirst-order modal theory as a bunch of proper axioms plus logical 
axioms and inference rules. (Sometimes I will use the term "theory" to mean just a 
set of axioms or even just a set of  proper axioms, the rest of  the machinery being 
derivable from the context.) 

We get different kinds of modal theory by varying the logical axioms. The logical 
axioms will always include the tautologies of the first-order predicate calculus. In 
addition, each theory will contain all instances of various subsets of the following 
axiom schemata: 

ASI: Lp D p 
AS2: L(p D q) D (Lp ~ Lq) 
AS3: ((Vv)Lp) D L(Vv)p 
AS4: Lp D LLp 
ASS: gp ~ LMp 
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The inference rules are always 

Modus Ponens (MP): 
Universal Generalization (UG): 
Necessitation (Nec): 

p, p D q ~ - q  
p ~ (Vv)p 
p~ Lp 
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We get various traditional modal systems by taking particular subsets [6]. The 
weakest system is called T and contains (instances of) axiom schemata AS 1 and AS2. 
Adding AS4 gives $4; adding AS4 and AS5 gives $5. Adding AS3 to T gives 
T + BF; adding AS3 to $4 gives $4 + BF. (Adding AS3 to $5 does nothing, since 
AS3 is inferable from the other schemata.) In this paper I will always include AS3 
and will refer to T + BF and $4 + BF as just T and $4. 

These axiom schemata and inference rules are intended to be a plausible account 
of the logic of "is-consistent." (The account is incomplete until the nonmonotonic 
rule is given.) So the logic is supposed to describe provabihty in itself. The basis for 
this attempt is the axioms of predicate calculus and the traditional inference rules 
UG and MP. These things are necessary to get started. AS1 to AS4 and Nec are 
aimed at capturing the properties of provability. In particular, it seems essential to 
the concept of provability that something proven be provable, and this is what 
Nec says. 

AS 1 says that everything provable is true. This may seem optimistic. But what I 
am trying to get it to mean is: If  p is necessarily true when the proper axioms are, 
then it is true when the proper axioms are. At any rate, it is difficult to visualize any 
other way of relating provability and truth. 

AS2 describes the operation of the rule MP; that is, where MP allows you to infer 
q from p D q and p, AS2 says that this is allowed. AS3, the "Barcan formula," 
describes how UG works in much the way that AS2 describes how MP works. That 
is, if every instance of a formula is provable, then its universal closure is provable. 

AS4 and AS5 describe the theory in a more global way. AS4 says thatp is provable 
only if it is provably provable. That is, the concept of proof is, in a sense, "public." 

AS5 makes a more breathtaking assertion, thatp is unprovable only if it is provably 
nnprovable. At first glance this is quite implausible, since in most interesting systems 
it makes the the concept of "proven" totally undecidable. This assertion would not 
be worth making, except that in nonmonotonic systems it is true. 

The reason why I study a variety of modal systems is that they are all closely 
related, and no one is obviously better than the others. 

3. Nonmonotonic Inference 

We now make the system nonmonotonic by adding the rule of 

Possibilitation (Pos): "(Can't infer ~p) b- Mp" 

The result is a first-order nonmonotonic modal theory. 
I put scare quotes around the rule because, of course, it is ill-formed. An inference 

rule states a relation between sets of formulas. It is meaningless to insert a comment 
about inference in the left-hand side. Besides, even if we could, this would only make 
the definition of "infer" circular. 

We must find a more elaborate defimtion of nonmonotonic inferability. As in 
[8], we define 

setl p. set2 

to mean 

set2 __. TH(set 1), 
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where 

TH(A) = Lang N (N (X: X = NMA(X)} ), 

the intersection of all fixed points of A, or the whole language Lang if there are no 
fixed points. 

NMA is defined as 

NMA(B) = Th(A O ASA(B)) 

where 

and 

Th(S) = {p: S I- p} 

ASA(B) = {Mq:q is a statement (i.e., has no free variables) and ~q ff B} 
- Th(A). 

Note that if q is not in Th(A 0 B), M~q is in ASA(B) because ~ - q  is not in 
Th(A t.J B). 

In other words, Th(A) is the set of theorems of the modal theory with proper 
axioms A. Asa(B) is the set of assumptions allowed by B in the modal theory with 
proper axioms A. NMA(B) is the set of theorems of the modal theory with proper 
axioms A U Asa(B). A fixed point of NMA is a set X such that X = NMA(X). Such 
a fixed point is a set X containing A and a large set of assumptions ASA(X), such that 
no assumption Mp in X is wiped out by -p  being provable from X, and every other 
element of X has a proof from assumpnons and axioms. TH(A) is the set of all 
formulas that are in all fixed points. I will continue to talk as if these formulas were 
"derived by use of the rule Pos," but this just means that they are in the set of 
theorems defined by this fixed-point construction. 

Notice that if there are no fixed points, every formula in the language Lang is 
provable. Also, if Lang is a fixed point, then, as we proved in [8, Th. 4], it is the only 
fixed point. Either way, TH(A) = Lang, and the theory is said to be inconsistent. 

Except for Th now referring to modal provability, these are the same definitions 
Doyle and I used in our earlier paper [81. That paper contained several examples, all 
of which still work in this "stronger" logic. In what follows, the symbol t- denotes 
inferability in a monotonic system under discussion. When it is necessary to be 
specific, I will use t--T, t--s4, or t---s5 to denote inferability in a particular kind of theory. 
The term "consistent" will be modified with the prefixes T-, $4- and $5- in an 
analogous way. Similarly, all of the symbols Th, NM, TH, and As were defined with 
respect to an unspecified relation I-. I will prefix these symbols too with T, $4, or $5 
when necessary. For example, S4-TH(A) is defined to be 

Lang Iq (N{X: X = S4-NMA(X)}). 

An example will show that this is actually easier to think about than it looks. 
Consider the S4-based theory with proper axioms 

(VX)(BIRD(X) A M CAN-FLY(X) 
D CAN-FLY(X)) 

(VX)(OSTRICH(X) D (BIRD(X) A -CAN-FLY(X))) 
BIRD(FRED) 
OSTRICH(OZZIE) 

This theory has one fixed point, which contains the following formulas in addition 
to the axioms: 
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BIRD(OZZIE) 
~CAN-FLY(OZZIE) 
M CAN-FLY(FRED) 
CAN-FLY(FRED) 

The first two of these follow by predicate calculus. The third follows because ~CAN- 
FLY(FRED) is not a member of the fixed point. In other words, M CAN- 
FLY(FRED) is in Astheory(fixed-point). So by the first proper axiom, CAN- 
FLY(FRED) is in the fixed point as well. 

Of course, I have not proven that this is a fixed point, or the only fixed point. (As 
I will show below, if we had based the system on $5, there would be other fixed 
points.) In general, it is undecidable whether a formula appears in any fixed point or 
all of them. A computer program using nonmonotonic inference must always be 
prepared to withdraw some conclusion (cf. [2]). 

It might appear that we do not need to worry about the distinction between T, $4, 
and $5, since we have the following theorem. 

THEOREM 1. All closed instances of ASl,  AS2, AS3, AS4, and AS5 are derivable 
from PC plus Nec and Pos, no matter what other proper axioms are present. 

PROOF. Let A be a set of proper axioms plus the axioms of PC. If  A has no fixed 
points, the theorem is obvious. Otherwise, let X be any fixed point of  A. 

(a) Proof of AS1. For every formulap, eitherp is in Xor  it is not. If  it is, then by 
the statement calculus (SC), Lp D p is in X. If  p is not in X, M~p is in X. So 
~ M - p  D p is in X, but this is just Lp D p. Either way, this instance of  AS1 is in X, 
so every instance is in every fixed point. 

(b) Proof of AS2. I f q  is m X, then by Nec, Lq is in X; so, by SC, L(p D q) D 
(Lp D Lq) is in X. I fp  is not in X, then M~p is in X, so ~M~p D Lq is in X, so by 
SC, L(p D q) D (Lp D Lq) is in X. I fp  is in X a n d  q is not in X, thenp  D q is not in 
X. So M - ( p  D q) is in X. So by SC, L(p D q) D (Lp D Lq) is in X. In every case, this 
instance of  AS2 is in X, so every instance is in every fixed point. 

(c) Proof of AS4. Very similar. I fp  is in X, then LLp is in X b y  two applications 
of Nec. Otherwise, M-p  is in X. 

(d) Proof of AS5. Very similar. If up is not in X, then Mp is in X, and, by Nec, 
so is LMp. If  - p  is in X, then L-p  is too, by Nec, and so is ~Mp. (This last step 
requires the theorem L~p D ~Mp, which follows from AS 1 and AS2 [1, 61.) 

(e) Proof of AS3. This follows from the others (see [6, p. 145]. Q.E.D. 

Unfortunately, in nonmonotomc systems it ~s not enough to show that a formula 
is a theorem for it to be d~spensable as an axiom. It can actually happen that p is in 
TH(A) but TH(A tO {p}) differs from TH(A). It is shown in [8, Th. 8] that some 
consistent theories have inconsistent subtheories. In a case like that, every p is in 
TH(A) (where A is inconsistent), but for some suchp, A tO {p} is consistent. So, even 
thoughp is a theorem of A, A tO {p} gives different theorems. 

Inconsistency does not have to be involved. Consider the theory TI lacking Nec 
and AS I-AS5 (i.e., the logic of  our earlier paper), with the proper axioms 

MC D -D, MD D ~C. 

(The letters C, D, and E are propositional constants.) This theory has two fixed 
points, one with MC and ~D, the other with MD and ~C  [8]. 

Now add the axiom 

~C ~ ~M~E 
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to get the theory T2. In every fixed point of  this theory, E is not a theorem. (This 
may be verified by the procedure given in [8].) So M ~ E  is a theorem; so C is a 
theorem; so ~ M D  is a theorem. So the fixed point with MD no longer exists. So ~D  
is a theorem of  T2. 

Notice that ~ M ~ E  D E is a theorem of  T2 by the argument in Theorem 1. If  we 
add ~ M ~ E  D E to the axioms to get theory T3, then E is a theorem in the fixed 
point with AID and ~ C; so M ~ E  is blocked, and both fixed points come back to hfe. 
So ~D is not a theorem of  T3. 

The best we can do is to prove that adding a theorem as an axiom only makes 
some theorems go away. That is, every theorem of  A t_J {axiom} is a theorem of  A. 
This follows because every fixed point of  the original theory is a fixed point of  the 
enlarged theory, just not vice versa. 

The unhappy consequence of  all this is that to show that a formula is a useful 
lemma of  a nonmonotonic system, one must show that adding it to the axioms does 
not change the provable theorems. As we have just seen, this is not true for A S I -  
AS5; we must make them axioms. 

In spite of  the anticlimax, it was actually possible to derive these strong axiom 
schemata from nothing, using Nec and Pos. This raises the fear that the Pos rule is 
too strong; the nonmonotonic logics might all be inconsistent. Later I will show that 
they are not. 

4. Semantics of  Monotonic Modal Theories 

Before giving the semantics for nonmonotonic logic, I must give the semantics for 
first-order modal theories. 

A modal interpretation Is a tuple ( W, alt, D, V). Wis a set of  possible worlds, and 
alt is a reflexive relation on W, called the alternativeness relation, w~ alt w2 means w2 
is an alternative to wl, that is, w2 is possible with respect to wl. D is a domain of  
objects, not empty and perhaps uncountable. Let Trm aug D be the set of  terms 
obtained by adding D to the set of  constants. Let Lang aug D be the language Lang, 
obtained by using Trm aug D instead of  Trm in the definition of  Lang. 

V is a function from (Lang aug D) x W to {0, 1} which gives the truth value of  
every expression in the language in every possible world. We have the following 
constraints on V: 

V(~p, w) = 1 iff V(p, w) = 0; 
V(p D q, w) = l iff V(p, w) = O or V( q, w) = l; 
v((vv)p, w) = l iff  V(subst(d, v, p),  w) = l 

for all d in Trm aug D 
(subst(d, v, p) is the result of  substi- 
tuting term d for variable v in formula p); 

V(Mp, w) = 1 iff V(p, u) = 1 for some u such that wal t  u. 

I will use the abbreviation V(p) = x to mean V(p, w) = x for all w in W. If  
V(p, wl) # V(p, wz), then V(p) --- -1 .  If  V(p, w) = l , p  is true in world w, else false. 
I f  V(p) = 1, thenp  is true in V, else not true. A set of  formulas S is true in a world or 
interpretation if all its elements are. (I will usually just use the letter V to refer to an 
interpretation, writing Wv, altv, and Dv when I need to refer to W, alt, and D.) 

I f  alt v is transRive, then Vis an S4-interpretation. If  altv is transitive and symmetric, 
then V is an S5-interpretation. In any case, it is a T-interpretatton. 

A modal model of  a first-order modal theory is a modal interpretation V such that 
V(p) = 1 for every proper axiom p of  the theory. As before, we can distingutsh T- 
modal models, S4-modal models, and S5-modal models. 
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In this section I will prove the completeness of  modal theories, that is, that a 
formula is true in all modal models of  a theory iff  it is provable in that theory. This 
result is not particularly unexpected and has gone unproven so far only because 
logicians' interests have lain elsewhere. The proof is a little tedious, so you may want 
to just read Theorem 8 and proceed to the next section. 

First, some definitions. 
Define L nS, where n is a nonnegative integer and S is a set of  formulas, as follows: 

L°S is S. L'+tS is (L~S) tA (Lq:q E L~S}. 
Define L°~S to be the union of  all L~S:U{L'S: i  >. 0}. 
Define sl k-•,c s2 to mean, "s2 is inferable from sl using predicate calculus alone" 

(i.e., using MP and UG but not Nec). 
Define sl b-yet s2 to mean, "s2 is inferable from sl using predicate calculus and 

Nec." 
In this section T means all instances of axiom schemata AS 1-AS3. 

LEMMA 2. I f  T C_ A and A ['--vc p, then L1A F-r Lp. 

PROOF. By induction on the number of applications of  MP and UG. If  there are 
no applications of  MP and UG, then the theorem is obvious. Otherwise, assume it 
works for i applications. Let Prf  be a proof with i + 1 applications. 

Case 1. The last application is an application of  MP to q and q D r. By the 
induction hypothesis, there is a proof of  Lq and L(q  D r) from L1A. But since 
T C_ A, L( q ~ r) D (Lq D Lr) IS in A and hence L XA. So, by PC there is a proof of Lr 
from L 1A. 

Case 2. The last application is an application of  U G  to q, using variable v. By 
the induction hypothesis, there is a proof of  Lq from L ~A. So, using UG, there is a 
proof of (Vv)Lq. But since T C A, ((Vv)Lq) D L(Vv)q is m A and hence L 1A. So, by 
PC there is a proof of  L(Vv)q from L 1A. Q.E.D. 

LEMMA 3. I f  T C_ A, then A [-" Nec p iff there is a finite subset S of L °~A such that 
S F-pcA. That is, there is a Tproofofp from A iffthere is aprooffrom S that does not 
use necessitation. 

PROOF. I f  Let S be such a subset. Then A b-Nee S by repeated applications of  
Nec. So A t--Necp. 

Only if. Assume A k-No~ p. I will prove L~'A F-pc p by induction on the number of 
applications of  Nec in the shortest proof of  p from A. If  a proof contains no 
applications of  Nec, then the theorem is obvious. Otherwise, assume it is true for all 
proofs with i or fewer applications. Let Prf be a proof with i + 1 applications. The 
last application is to a formula q. By the induction hypothesis, there is a proof Prf '  
of  q from L~A that does not use Nec. Hence, by Lemma 2, there is a proof of Lq 
from L~L~A. But LIL~A is the same as L~A. Q.E.D. 

LEMMA 4. V is a modal model of A iff V is a modal model of L'~A. 

PROOF. I f  Obvious. 

Only if. Let Vbe a modal model of  A. We will prove it is a modal model of  L'A, 
for all i _> 0, by induction on i. For i = 0 it is obvious. Assume that V is a modal 
model of  L~A. Now consider Lp, where p E L'A. Let w0 be in Wv. Since V(p) = 1, 
V(p, w~) = I for all w~ such that w0 airy wl. So V(Lp, wo) = 1. So V(q, w) = 1 for all 
w in Wv and q in L'+~A. Q.E.D. 

LEMMA 5. I f  A F--Ne~ p and T C__ A, then p ts true in all modal models of A. 
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PROOF. Assume A l--Nee p. Let Supp(p) be some finite subset of L~(A - T) such 
that Supp(p) O L~T I---ec p. (This is guaranteed to exist by Lemma 3.) By the 
deduction theorem for PC, L ~T ~Pc Supp(p) D p. But then ~rSupp(p) D p. So every 
modal model of  Supp(p) is a model o fp .  But every modal model of  A is a modal 
model of  L~A (by Lemma 4), hence of  Supp(p). So p is true in every modal model 
of A. Q.E,D. 

LEMMA 6. I f  X is a (T-, $4-, $5-) consistent set of  formulas, then there is a 
(T-, $4-, $5-) modal interpretation Ux with a world Wx such that for all q in X, 
Ux( q, wx) = I. 

PROOF. This is essentially the same as [6, Th. 4, p. 169]. The only difference is 
that the theorem g~ven there is for a consistent single formula rather than a set. But 
the proof does not depend on the finiteness of the formula. It is a Henkin proof that 
extends T (or $4 or $5) plus the formula to a structure of maximal consistent sets, 
each corresponding to a world of the desired model. The first step is to extend the 
given formula to a maximal (PC-) consistent set; this step can be taken just as easily 
for an arbitrary consistent set of  formulas. After that the proof proceeds as 
before. Q.E.D. 

LEMMA 7. l f  A F/'tr,s4,ss) p, there is a (T-, $4-, $5-) modal model V of A and a 
world Wom Wv such that V(p, Wo) = O. 

PROOF. I fA I-/-tw,s4.ss)p, then L°'A ~-tv,s4,ss)p (since A ~-Nec L~A). So the set X = 
L~A t3 {~p} is (T-, $4-, $5-) consistent. By Lemma 6 there is a (T-, $4-, $5-) 
interpretation Ux with world vex (call it w0) such that for all q in X, Ux( q, Wo) = 1. 
Let V be the subinterpretation of Ux obtained by discarding all worlds not accessible 
in a finite number of  alt links from Wo. It remains a legal interpretation, since if Mq 
was true in a world before, the adjacent alternative world that made it true is still 
there. V is a model of L~A, since a world i alt links from w0 will have L~A 
true by virtue of the truth of L'L°'A in Wo. By Lemma 4, V is a model of A, with 
V(~p, Wo) = 1, and hence V(p, w0) = 0. Q.E.D. 

THEOREM 8 (CoMPLE'rENESS Or MODAL THEORIES). p is true in all modal models 
of the set of formulas A iff A ~- p. 

PRoov. I f  Lemma 5. 

Only if. Contrapositive of  Lemma 7. Q.E.D. 

5. Semantics of Nonmonotonic Modal Theories 

Simple modal models are not adequate for nonmonotonic systems. For example, 
with no proper axioms, M COLOR(BLOCK l, RED) is a theorem. That is, 
M COLOR(BLOCK1, RED) E TH(~Z). Clearly, though, it is not a theorem of  $4, as 
reflected by the existence of modal models in which M COLOR(BLOCK 1, RED) is 
false, and hence L~COLOR(BLOCKI ,  RED) is true. 

As usual in logical studies, our goal is to strengthen a logic by ruling some of its 
models out. The usual way of doing this is to change the rules of semantic 
interpretation so that fewer states of affairs qualify as making the desired formulas 
false. Unfortunately, this local approach is not going to work. 

In fact, to find anything like models for a nonmonotonic logic, we cannot get away 
with tinkering with interpretation rules but must do considerable v~olence to the 
entire classical notion of  model. A model traditionally captures the structure of the 
meanings of statements in a language by saying what states of affairs would make 
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various expressions true. Originally, it was taken for granted that the truth value of  
an expression depended on the truth values of its subexpressions. This intuition led 
philosophers like Quine to question whether any non-truth-functional semantics 
could possibly make sense. Twenty years ago, a revolution led by Saul Kripke 
changed intuition. The modal models he introduced (essentially those I described in 
the previous section) specify truth values only indirectly, through possible worlds. 
This led to so many insights into the semantic structure of modal logics that it was 
obviously valuable. 

If  we are to have a semantic analysis of nonmonotonic logics, we must attempt 
another wrenching of existing intmtions. This is because even the most bizarre 
Kripke-type model imposes certain properties that fail for nonmonotonic systems. 
One of these is the property of semantic locality. In "standard" model theory, if S 1 is 
the set of all models of theory T 1, and $2 is the set of all models of theory T2, then 
S 1 0  $2 is the set of all models of T1 U T2. That is, to add constraints to a set of 
formulas is just to throw away the models not compatible with the constraints. 

Semantic locality must fail for nonmonotonic logic. For example, let T1 be 
{MC D C) and T2 contain ~C. Our notion of model must be such that all models of 
TI have C true and all models of T2 have C false. But this does not mean that 
T 1 U T2 has no models. 

As with Kripke's alteration to classical semantic notions, the alterations we make 
to accommodate nonmonotonic logic will ultimately be justified by whether they lead 
to technical results and new insights. Some promising samples are presented in what 
follows. For another way to adapt the classical definition of model, see [7]. 

My approach begins with the definition of the (T-, $4-, $5-) accidentals of V with 
respect to theory A: 

(T-, S4-, S5-) acc(V, A) = {Mp:p is a statement in Lang, V(Mp) ffi 1, 
and some model V' of A has V'(Mp) ~ 1}. 

In other words, the accidentals are the possible statements which do not have to be. 
Now the new kind of model can be defined. 
A noncommittal model V of a theory A is a modal model of A such that Mp is true 

in all worlds of V whenever p is true in any world of any model of A U acc(V, A). 
Actually, this defines three kinds of noncommittal models, prefixed with T, $4, 

and $5, as usual, for each kind of modal model and its accompanying kind of 
accidental. For example, consider the S4-based theory with axiom MC D C. For any 
model of this theory to be noncommittal, it must have MC true, because some S4- 
model of this theory has it true. Hence, C is true in all noncommittal models and is 
a theorem. The reason I call this set of models "noncommittal" is that it excludes 
models with unfounded necessities like L - C  in any world. Something is allowed to 
be necessary only if its necessity is a logical consequence of the accidental possibilities. 
This gives us nontrivial logical truths of the form Mp, something previous modal 
logics have lacked. (In what follows, I will (somewhat glibly) refer to this as the 
property of "having as many things possible as possible," but this does not imply 
that noncommittal models literally have a higher count of possibilities. For one thing, 
having MC true means that LMC is also true, and hence M - M C  is ruled out.) 

Do these models shed light on nonmonotonic logics? I will discuss this question at 
some length in the rest of the paper. First, I will make the technical foundation secure 
by proving the following theorem. 

THEOREM 9 V is a (T-, $4-, $5-) modal model of afixedpoint of NMA iff V is a 
(T-, $4-, $5-) noncommittal model of A. 
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From this completeness will follow easily. 

PROOF. In this proof I drop the prefixes, it being understood that throughout the 
proof phrases like "modal model" mean "T-modal model" or one of the other 
models. 

Only if. Assume Vi sa  modal model of  S, NMA(S) = S. Let V' be a modal model 
of  S O acc(V, S) with V'(p, w) = 1. Then by Theorem 8, S O acc(V, S) b" ~p. Since 
S is a fixed point of  NMA, Mp ~ S, and V(Mp) = 1. So V is noncommittal. 

I f  Let Vbe a noncommittal model ofA.  I will prove that Th(A U acc(V, A)) is a 
fixed point of NMA, from which it will follow that V is a model of the fixed point 
Th(A U acc(V, A)), since V l s a  model ofA U acc(V, A). 

Here goes. We want to show that 

NMA(Th(A U acc(V, A))) --- Th(A U acc(V, A)). 

This will follow from 

ASA(Th(A U acc(V, A))) = acc(V, A). 

First, to show that acc(V, A) C_ AsA(Th(A U acc(V, A))), let Mp be an element of 
acc(V, A). Then 

A U acc(V, A) t7" ~p. 

So 

Mp E ASA(Th(A U acc( V, A))). 

Second, to show that ASA(Th(A U acc(V, A))) C acc(V, A), assume that 
Mp E Asa(Th(A U acc(V, A))). By definition of As,a, ~p ~ Th(A U acc(V, A)) and 
Mp f~ Th(A). Then by Theorem 8 there is a model V' of A O acc(V, A) with a 
world w0 such that V'(-p, w0) = 0, or V'(p, wo) = 1. So, since V is noncommittal, 
V(Mp) = 1. But Mp ~ Th(A), so some model V' of A has V'(Mp) # 1. There- 
fore Mp ~ acc(V, A). Q.E.D. 

A corollary is 

THEOREM 10. p is true in all (T-, $4- $5-) noncommittal models of A iff 
A~(T, 84,85) p. 

PROOF. Fairly obvious. Given Theorem 9, this proof follows the proof of  [8, Th. I 
and 2]. Q.E.D. 

In the proof of Theorem 10, Theorem 9 plays the same role the definition of truth 
played in the earlier paper. In that paper we had no way of defining truth without 
mentioning fixed points of  theorms. This led to rather unrevealing semantms. Now 
we are in a better position. Intuitively, a noncommittal model is one in which as 
many things are possible as possible. The second occurrence of "possible" here is a 
"metalevel above" the first and makes sense only if you are willing to contemplate 
the totahty of models of a theory. The totality is of ordinary models, so there is no 
circularity, but there is an uncomfortable kind of holism. Just as m our weaker logic, 
there is no way to define the meaning of  individual expressions by reference only to 
the meamngs of their parts. Put more positively, we have succeeded m avoiding the 
semantic locality condition. 

Pat Hayes has made an tmportant observation about formal semantics. When 
people are first confronted by semantic rules like those at the beginning of Section 4, 
they are likely to be unimpressed. It looks as if formal semantms ts merely translatmg 
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formulas from a formal language into a very similar informal one. One is tempted to 
identify the interpretation with this trivial rewrite system. In fact, the rules merely 
describe the flesh-and-blood things that can serve as interpretations; they allow an 
infinite variety of  different interpretations. One thing they allow is the entire real 
world. In fact, the real world would have to be a model of  the database of  a robot 
which was accurate m its beliefs. This is a substantial strength of  classical semantics, 
which should serve as a test for any proposed departure. 

Could the real world be a model of  a nonmonotonic theory? The same question 
comes up m evaluating Krtpke's earlier revision of classical semantics. Here the 
presence of  all those possible worlds requires us to translate Hayes 's  observation to 
the following: 

A robot is accurate m all its behefs tf and only If the real world is one of the possible worlds m a modal 
model of the robot's database 

In this context I use "modal"  loosely, intending to include things like tense logics 
as well. Then one application of this principle might be: "A robot believes 'Always 
p '  truly if  and only i f p  is true in the present moment,  all past moments,  and all fu- 
ture moments." Here past and future states of  this world fill the role of  possible 
worlds [11]. 

Let us try to adapt  this for the nonmonotonic case. We want the real world to be 
one of the possible worlds in a noncommittal model of  the robot 's database. Then 
everything the robot believes must be true in that model. Now an interesting issue 
comes up regarding what we mean by "belief." For first-order and modal  theories 
we unconsciously equated belief with theoremhood. This is a routine idealization 
of  the notion of  belief; the problems it engenders (such as the impossibility of  a per- 
son's not believing some consequence of  Peano's postulates) are not relevant here 
(see [5]). For nonmonotonic logic we have a choice of  idealizations. We can have a 
cautious robot that believes only the theorems of  some nonmonotonic theory, or a 
brave robot that believes all the formulas in some fixed point of  such a theory. These 
are both idealizations, because a finite robot can have explored only a finite part  o f  
either set. In the brave case we must imagine that the robot has a way of  choosing 
among formulas that would in the limit choose exactly the formulas of  a fixed point. 

Either way, the real world could be (one world of) a noncommittal  model of  what 
the robot believes. But the brave case leads to a more intuitive description of  the 
semantics. We want Mp to mean, "p is true in some possible world consistent with 
what the robot believes." I f  the robot 's beliefs are identified with a fixed point of  a 
theory, then this is correct: everything not ruled out by the fixed point is consistent 
with it and hence is consistent in the noncommittal  model (since a noncommittal  
model just is a model of  a fixed point). 

In the cautious case we do not have such an intuitive characterization. Consider, 
for example, the theory T1 with proper axioms 

MC D ~D, MD D ~C. 

Assume that some robot cautiously believes TI ,  and he is accurate in his beliefs: the 
real world Is (one world of) a noncommittal  model of  T 1. Since the theorems of  T 1 
are taken as what the robot believes, then both C and D are consistent with what it 
believes, because T I  has neither ~ C  nor ~ D  as a theorem. However, only one of  M C  
and MD is true in the real world. So for cautious robots, Mp cannot be taken as 
meaning, "p is true in some possible world consistent with what the robot believes." 

The upshot is that the semantics I have described is more satisfying if robots using 
nonmonotonic logics are thought of  as seeking a stable fixed point rather than a set 
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of theorems. In fact, this is the way most practical programs operate, especially the 
TMS of  [2]. Reiter [10] has also advocated concentrating on the property of  
"arguability," that is, presence in some fixed point [8], rather than provability. One 
reason for this emphasis is that it is cheaper to bet on one fixed point (debugging 
when necessary) than to try to reason about all of  them. Another is that all fixed 
points are not alike; as I will discuss in Section 7, it is not worth worrying about 
"unlikely" fixed points. And another is supplied by my semantic argument, that M 
means what it claims to mean only if belief is construed as acceptance of  a fixed 
point. 

On the other hand, the concept of  theorem, as Doyle and I have defined it, is still 
important and should not be discarded. That  is, the intersection of  all fixed points of  
a theory is just as important as the union. For  one thing, this intersection has the 
property that it is closed under ordinary monotonic deduction, so that everything 
that can be deduced from it monotonically is a theorem. The umon does not have 
this property and will in general be inconsistent. 

An even more important reason is that arguability can be a very weak property of  
a formula. A theory may have many fixed points, and, to put it crudely, a formula 
is more interesting the more fLxed points it appears in. (The "lottery paradox" 
example in Section 7 illustrates this.) If  a formula appears in one fixed point out of  
an infinite number, it is not clear how interesting it is. I do not have a theory of  
measure of  sets of  fixed points, but at least one case is dear: a formula that appears 
in every fixed point is definitely interesting. 

The next theorem will make this point quite dear.  

THEOREM 1 1. I f  there is an S5-modal model of proper axioms A, then there is an 
S5-noncommittal model of A. 

PROOf. First of  all, notice that the definition of  "S5-noncommittal" has a 
particularly nice equivalent: An S5-modal model V of A is an S5-noncom- 
mittal model of  A iff there is no S5-modal model 11' of  A such that acc(V, A) C 
acc(V', A). The "only if"  case is obvious, even for T and $4. To prove the " i f"  case, 
assume there is no such model. Then if some formula p is true in any world of  any 
S5-model V' o f A  U acc(V, A), it will be an S5-accidental of  the largest connected 
piece of  V' containing that world, since in a connected S5-model the truth o fp  in one 
world is sufficient for the truth of  Mp in all worlds. (The largest connected piece is 
obtained by throwing away all worlds that cannot be reached from the given world 
through the altv. relation.) This piece has at least the same accidentals as the whole 
model, so just let V' name the piece. By construction, ace( V, A) C_ acc(V', A), but not 
a proper subset, so p must be an accidental of  V. 

Another equivalent statement is: V is an S5-noncommittal model of  A iff  for all 
statements Lp such that V(Lp) = 1 and all models V' o fA U acc(V, A), V'(p) = 1. 

Now let U be an S5-modal model of  A. Define R0 to be acc(U, A). Let ql, q2 . . . .  
be an enumeration of all the statements in Lang. Define R,+I as follows: 

(i) If  some modal model V of  R, U A has V(q~÷~, w) = 1 for some w in Wv, then let 
R,+I be R, L) {Mq~+l). 

(ii) Otherwise, every modal model of  R, U A has V(q,+O -- 0, so let R,+I = R,. 

NOW, by Theorem 8, if every finite subset of a set has a modal model, then the set 
itself has one. So there is a model U* of  A U (L,I(R,:i = 0, 1 . . . .  }). U* is S5- 
noncommittal, by the following argument. Assume U* is not S5-noncommittal. Then 
there is a q such that for some world wo in Wu*, U*(Lq, Wo) --- 1, and for some $5- 
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modal model U*' ofA O acc(U*, A) and some wl in WE*,, U*'(q, wa) = 0. Now ~q 
is q,+l for some t _> 0. That means that U*' is an S5-modal model o fA O R, with 

U*'(q,+l, W1) = I. 

So 

So 

gq,+l ~ R,+I. 

U*(Mq,+,) = 1 and U*(Lq) = O. 

This contradicts our assumption that U*(Lq, w0) = 1. Q.E.D. 

One nice consequence of  Theorem 11 is that Pos does not overstrengthen the logic 
to the point of inconsistency, at least not for $5. Unfortunately, we pay a very high 
price for this property: A nonmonotonic theory based on $5 has no theorems that the 
corresponding monotonic theory does not have as well. 

THEOREM 12. I f  A ~s5 p, then d F-so p. 

PROOF. Assume A ~s5 p. Then A 0 {M-p} has an S5-modal model and hence 
an S5-noncommittal modal model. But then this model is an S5-noncommittal model 
of  A in whichp is not true. So by Theorem 10, A ~s~ p. Q.E.D. 

For example, consider the apparently straightforward theory with one proper 
axiom MC ~ C, which is usually intended to mean, "C is to be considered true as a 
default." Surely C should be a theorem of  this theory. But it is not. There is a fixed 
point of  this theory with M~C. In $5, from M~C and MC D C you can infer ~C. 
(Use a procedure like that in [6].) The inference of  ~ C blocks the assumption MC; 
so the fixed point works. 

This is a serious bug of  nonmonotonic $5. This is too bad, because it would be 
nice to have all the ordinary properties of $5 in doing deductions. $4 is harder to 
work with and has certain arbitrary properties (like fourteen different modalities) 
that do not appear to mean much to the logic of  consistency. A defender of  the 
arguability relation might find this a good reason to stick with $5, arguing that a 
robot could perfectly well believe C, as intended. But this overlooks the fact that in 
$5, - C  is just as arguable as C. Surely the logic should draw some distinction 
between a default and its negation if it is to be a "logic of  defaults" at all. 

Fortunately, $4 and T do not have this problem. However, they have other 
problems. For example, consider the theory with proper axiom LMC D ~C. This 
theory is inconsistent. To see this, assume that it has a fixed point not equal to Lang. 
If  MC is assumed in this fixed point, then LMC is in it; so ~ C  is too, and MC is not 
assumable in it. If MC is not assumed in it, then ~C is not in it, so MC is assumable 
in it. So there is no fixed point not equal to Lang, and the theory is inconsistent. But 
this theory is consistent in monotonic $4. 

Strange theories hke this one raise the fear that nonmonotonic $4 itself is 
inconsistent. I conjecture that nonmonotonic $4 and T are consistent but have so far 
been unable to prove that they are. However, if we restrict our attention to sentential 
subsets, consistency can be proven, as well as other results. So let me turn to that 
topic now. 

6. A Proof Procedure for Finite Sentential S4-Based Theories 
One of  the weird features of  nonmonotonic logic is that "provabifity" is defined 
without reference to "proof." Although a theorem will have a proof in any given 
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fixed point of NMA, there is no obwous way to generate, or even describe, each fixed 
point. Of  course, this is not too surprising, since the structure of each fixed point 
depends on what is not provable from it, and the set of  unprovable statements for a 
first-order theory is not recursively enumerable. As must be clear to everyone by 
now, using defaults in reasoning is not a simple matter of "'common sense," but is 
computationally impossible to perform without error. 

So we have to look for special cases for which things are not so bad. One promising 
place to start is with the sentential calculus. This turns out to be decidable. In this 
secUon I will prove this for the case of theories based on $4. It is no doubt true for 
T as well (and it is vacuously true for $5, since nonmonotonic $5 has no theorems 
that $5 does not). 

I define afinite sentential theory as a theory that contains as proper axioms a finite 
list of variable-flee formulas. The only theorems of such a theory that we will be 
interested in are the variable-free theorems. 

As usual, I will bootstrap my way into the nonmonotonic case from the classical 
one. For the classical sentential modal calculus, one procedure for deciding the 
provability o f p  consists of a systematic search for a model in which p is false. That 
is, you create a model with a world in which the proper axioms are true and p is 
false. Then you explore consequences of the value assignments. When modal 
operators are involved, this may require creating a new possible world or copying 
value assignments from one world to others. When a disjunction is assigned a true 
value, you must split the investigation into branches, with a different dlsjunct made 
true in each branch. 

For example, consider the formula 

(MM ON(A, TABLE)) D (LM ON(A, TABLE)). 

We begin by assigning It truth value 0 (false). So its antecedent is true and its 
consequent false. But if MM ON(A, TABLE) is true, there is a possible world in 
which M ON(A, TABLE) is true. Continuing in this vein, we arrive at a complete 
tableau like this: 

W0: )(MMI ON(A, TABLE)) ~ (LM ON(A, TABLE)) 

WI: M ON(A, TABLE) 
1 

W2: ON(A, TABLE) 
1 

W3: M ON(A, TABLE) 
0 0  

In this diagram the angle bracket ) points to the formula that started off this tableau. 
Notice how W1 was constructed from the l-labeling of  AIM ON(A, TABLE) in W0; 
W2 was constructed from the l-labeling of M ON(A, TABLE) m W1; W3 was 
constructed from the 0-labeling of LM ON(A, TABLE) in W0. A world constructed 
this way is a alternative of the world it is derived from, as are any worlds derived 
from it as the procedure progresses. (Each world is counted as an alternative of  itself.) 

At the point shown no further steps are possible, so the tableau is complete. What 
it demonstrates is that there is an S4-model m which the given formula is false; hence, 
by completeness, it is not a theorem. Notice that at the last step the labehng of 
M ON(A, TABLE) with 0 was propagated to all occurrences of  ON(A, TABLE) that 
were in worlds alternative to W3, including W3 itself. This would have included any 
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worlds constructed below W3 but does not include WI  and W2; if it had, the formula 
ON(A, TABLE) would have had a contradictory labeling, and the original formula 
would have been proved. (In $5, a stronger system, this last step is allowed, and the 
original formula is a theorem.) 

For  a more complex example, consider a theory with proper axioms: 

Axl:  LC /~ MD D E 
Ax2: C 
Ax3: - D  D MD 
E is a theorem, as the following tableau shows: 

Branch 0: W0: ) E LC /k MD 
0 0 

Spht Branch 0 on LC/k MD: 
Branch 1: W0: )E LC 

0 0 

Propagate on LC and copy Axl:  
Wl:  C C 

1 0 

Spht Branch 0 the other way: 
Branch 2: W0: )E MD 

0 0 0  

Split Branch 2 on Ax3: 
Branch 2.1: W0: )E MD ~D 

0 O 0  O l  
i i 

Split Branch 2 the other way: 
Branch 2.2: W0: E MD MD 

0 0 0  1 

Propagate on both MD's: 
WI:  D D 

0 1 
I b 

In this example the proper axioms are labeled 1 in every world in every branch; I 
only copy the relevant parts at each step. Every branch eventually has an a tomw 
formula labeled both 1 and 0 (a square bracket connects the two occurrences). A 
branch m this state is said to be closed, else it is open. A formula is unprovable if  its 
tableau has an open branch. 

To handle nonmonotonic logic, we must change the procedure to search for a 
noncommittal  model. When a formula Lp is labeled 1 in any world, it is now 
necessary to create a new tableau in which p is labeled 0. I f  this new tableau is open, 
p is not provable, so we can label Lp O, closing its branch. Similarly, if  Mp is labeled 
0, a new tableau is created with p labeled 1. I f  this tableau is open, Mp must be 
labeled 1 in all other tableaux. 

The only problem with this procedure is that deciding whether a tableau is open 
or closed may depend on the states of  other tableaux [8]. So you just have to try all 
combinations of  the labels "OPEN"  and "CLOSED"  apphed to the tableaux. A 
labehng is admissible if, after applying the rules in the previous paragraph, tableaux 
labeled CLOSED have all their branches closed, and tableaux labeled OPEN have 
at least one open branch apiece. 
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F o r  example ,  with p rope r  axioms,  

MC V MD D E, 
MC ~ ~D, 
MD D ~C, 

E Is a theorem,  as shown by the fol lowing tab leau  structure:  

DREW MCDERMOTT 

Labehngs  

Tab l eau  0: B0: W0:  )E MC V MD C L O S E D  C L O S E D  
0 0 0 0 0 0  

Tab l eau  1: B0: W0:  )C MD O P E N  C L O S E D  
1 0 0  

T a b l e a u  2: B0: W0: )D MC C L O S E D  O P E N  
1 0 0  

Here  tab leau  1 exists because  MC is l abe led  0 in t ab leaux  0 and  2; It is c rea ted  by  
labe l ing  C I. Tab l eau  2 exists because  MD is l abe led  0 in t ab leaux  0 and l; it is 
created by labe l ing  D I. There  are  two admiss ib le  label ings.  I f  t ab leau  l is l abe led  
O P E N ,  then t ab leau  2 is l eg i t imate ly  labe led  C L O S E D ,  because  the  O P E N  label  on 
tab leau  l ent i t les  us to label  MC l m all  o ther  tableaux.  Simi lar ly ,  t ab leau  2 m a y  be 
labe led  O P E N  and  tab leau  1 C L O S E D .  E i the r  way, t ab leau  0 is C L O S E D ,  because  
one o f  MC or MD will  be l abe led  I. 

Here  is a s u m m a r y  o f  the p r o o f  procedure .  To  test p rovab i l i ty  o f  a var iab le - f ree  
fo rmula  p in a theory  with  p rope r  ax ioms  A, create  a t ab leau  with  one branch ,  
con ta in ing  a wor ld  in which  p is l abe led  0 and  every  ax iom in A is l abe led  I. (This  

is the tableau for p in A.) Then  repea ted ly  app ly  these rules: 

1 (Truth-funcuonal propagation). I f  the label on a formula unpiles labels on sts subparts, then label the 
subparts accordingly If  q D • is labeled 0, label q 1 and • 0. I f  ~q  is labeled 0 or 1, label q 1 or 0, 
respectively. Such labelmgs apply throughout the world the labehngs take place in 

2 (Posslbdlty propagauon) If Mq is labeled 1 m some world, create a new alternauve world m which 
q is labeled ! and every axiom m A is labeled i 

3. (Necessity propagaUon) If Mq Is labeled 0 m some world, label p 0 m all alternauve worlds 
4 (DisJunction sphttmg) If q D r ss labeled 1 m some world, spilt the branch it occurs m into two 

branches, each a copy of all the worlds, formulas, and labels of the original branch, except that one has 
q labeled 0 m that world, and the other has r labeled I m that world 

5 (Repetmon ehmlnatlon) If all the labehngs m a world are duphcated m a world of which It is an 
alternauve, delete it. (See [6, p. 111] for an explanaUon of this rule.) 

6 (Consistency testing) If Mq is labeled 0 m some world, create a new tableau w~th one branch, 
containing a world in whmh ~q ts labeled 0 and every axiom m A ~s labeled 1. This wdl be the tableau 
for ~q m A If there is already a tableau for ~q, use that 

These  rules are  r epea ted ly  app l i ed  unt i l  they  do  not  change  anyth ing .  (Rules  2, 4, 
and  6 m a y  be app l i ed  to a g iven fo rmula  on ly  once.)  T h e n  every  possible  labe l ing  o f  
t ab leaux  as O P E N  or  C L O S E D  is tr ied.  I f  the  t ab leau  for ~ q  is l abe led  O P E N ,  then  
Mq must  be l abe led  1 in all  tableaux.  I f  there  is an  admiss ib le  labe l ing  in which  the 
or ig inal  t ab leau  is l abe led  O P E N ,  then  the or ig ina l  fo rmula  is not  a theorem;  
otherwise  it is. 

This  is an adap t a t i on  o f  the f amiha r  p rocedure  for m o d a l  logic, descr ibed  in [6]. 
The re  are  two changes.  To  hand le  m o d a l  theories,  I have  specif ied that  wheneve r  a 
wor ld  is created,  al l  p rope r  ax ioms are  labe led  1 there.  This  is the same as p rov ing  in 
$4 that  L A D  p. Clear ly ,  every m o d e l  o f  $4 that  falsifies this is a m o d a l  m o d e l  o f  A 
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that falsifies p, and vice versa, so the modified procedure constructs a modal  theory 
that falsifies p if  it is possible. 

The other change is rule 6, which specifies the creation of  new tableaux to test the 
consistency of  subformulas. It is not so obvious that this adaptation is correct. It is 
not hard to see that the procedure still always halts: there are only a finite number  
of  subformulas of  the axioms and the formula being tested, so only a finite number  
of  tableaux can be created, and the procedure halts for all of  them. 

It is also true that the procedure decides provability, as the next two theorems 
show. 

THEOREM 13. For each S4-noncommittal model V of finite sentential theory A such 
that V(p) # 1, there is an admissible labeling of the tableau structure for a variable-free 

formula p in A such that the tableau for p is OPEN. 

PROOF. By Theorem 9, V is an S4-modal model of  some fixed point S of  A. I f  a 
tableau in the structure is for q, label it CLOSED if q ~ S, else OPEN. 

Consider one of  the tableaux labeled CLOSED, say the tableau for r in A. Since 
r ~ S, there must be some minimal set of  elements X = {Mr1 . . . . .  Aim} such that 
X _C AsA(S) and ALI X I-- r. I f  X = O, then the tableau for r is closed no matter  how 
the other tableaux are labeled. Otherwise, adding X to A in each world will close 
every branch of  the tableau. But adding Mrj to a branch will create a new world with 
rj labeled 1; if  this closes the branch, there must be a proof  of  ~rj f rom A plus a set 
Y of  formulas {~q,} such that each q, occurs in some Mq, labeled 0 in a world to 
which this one is alternative. So there will be a tableau for each ~q,. But at least one 
of  these tableaux will be labeled OPEN, since otherwise Y would be a subset of  S 
and there would be a proof  of  ~rj from A t.J S, and hence ~r~ would be in S and Mrj 
would not be in ASA(S). Labeling one tableau OPEN makes the corresponding 
branch of  the tableau for r closed. Similarly, every other branch of  the tableau for r 
has an Mrj that makes it closed, so the whole tableau for r will be closed. 

Now consider a tableau labeled OPEN, say the tableau for r in A. One of  its 
branches must be open, or else there must be a proof  of  r f rom some set of  
assumptions {Mq,}, where the tableau for each ~q, is labeled OPEN. But then r 
would be in S, because each - q ,  would not be in S. 

The labeling is therefore admissible. By construction, p is in S if and only if the 
tableau for p is labeled CLOSED. Q.E.D. 

THEOREM 14. For each admissible labeling of the tableau structure for p in A such 
that the tableau for p is OPEN, there is a noncommittal model V of A such that 
V(p) # 1. 

PROOF. I will construct a fixed point not containing p, and hence a model in 
which p is not true, from an admissible labeling. Let R0 be {Mq: the tableau for ~q  
is labeled OPEN}. Let ql, q2 . . . .  be an enumeration of  all the variable-free statements 
of  Lang, with the property that if qj contains ~Mq, as a subexpression, then i < j. 
Now define S, to be S4-Th(A t2 R,) and R,+I to be 

R, if  S~ I---s4 ~q,+l, 
R, t.J {Mq,+l} otherwise. 

The first thing to show is that for all i, R, b's4 p. I will show this by induction. It is 
obviously true for Ro, since the tableau-construction procedure works for ordinary 
$4. Now assume that R, b%4 p, and consider R,+~. Clearly, if  S, I--s4 ~q,+l, the lemma 
is obvious, so assume St b's4 ~q,+l. To get a contradiction, assume that R~ t9 {Mq,+l} 
t---s4 p. This means that augmenting A with the elements of  R, plus Mq,+a would close 
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p's tableau. But the only effect of  labeling Mq,+l 1 is (by rule 2) to create several new 
worlds in various branches of  the tableau (already augmented by adding the elements 
of  R,). Consider one such world, and call it w*. If  the branch b that w* is on is closed 
as a result, then in the tableau for p there must be formulas pl, p2 . . . . .  p,, which are 
labeled 1 in w* such that 

{ pl . . . . .  pro} I-s4 ~q,+l. 

These pk can come from three sources: some are axioms of  A; some are derived 
from formulas ~M~pk labeled 1 in the original tableau in some world to whmh w* 
is alternative; and some are derived from formulas ~M~pk which are subexpresslons 
of  elements of  R,. 

Clearly, for each pk from the first source, R, l-s4 pk. For each element of  the second 
kind there will be a tableau for pk (rule 6). This tableau must be labeled CLOSED, 
or the branch b would have been closed. So Ro I--s4 ph for each such pk and hence 
R, t-s4 pk. Finally, for elements in the third class, either R, [-$4 pk or M~p~ E R, by 
construction of  R,, given the subexpression property that I specified for the ordering 
q~, q2 . . . .  of  formulas. But if M~pk E R,, then the branch b would have been closed 
as soon as ~M~pk got labeled 1; so R, k--s4 ph in this case, too. 

In all cases, R, k--s4 pk. So R, t-s4 {p~ . . . . .  pm}. But then R, t-s4 ~q,+l, which is a 
contradiction. So R,+j ~s4 p. 

Now define R to be LJ{R,:i >_ 0} - S4-Th(A) and S to be U{S,:i >_ 0}. Clearly, 
S = S4-Th(A t.J R). I will now show that S is a fixed point of  S4-NMA. This will 
follow if I show that S4-ASA(S) = R. First, let p be a statement such that Mp 
S4-Asa(S). So ~p ~ S4-Th(A U R) and Alp ~ S4-Th(A). But p is q,+l for some i, 
so R~ b's4 ~p, and hence Mp ~ R,+I and Mp E R. So S4-AsA(S) C R. 

Second, let p be a statement such that Mp E R. I f  A U R i-s4 ~p, then A t9 R l--st 
~Mp, and some R, would be inconsistent. But then R, F-s4 p, which I proved 
impossible. So A kJ R ~s4 ~p, and hence Mp E S4-AsA(S). So R _ S4-AsA(S). 

So S is the desired fixed point, Furthermore, p ~ S, since otherwise some fimte 
subset, and hence some R,, would entail p. Q.E.D. 

We also have the obvious 

COROLLARY 15. Nonmonotonic $4 (i.e., the theory with no proper axioms) is 
consistent. 

PROOF. Theorem 14 allows us to conclude that some formulas (e.g., Pa) are not 
theorems of  nonmonotonic $4. Q.E.D. 

This proof procedure works only for the sentential calculus, but it gives some 
insights that might be useful in constructing a heuristic prover for first-order theories. 
Notice, for instance, that labeling Mq or Lq 0 can be thought of  as setting up a 
subgoal of  proving q consistent or provable, respectively. What is curious is that in 
the proof  of  Lq you are allowed to use the other truth-value assignments in the 
current tableau; in the proof of  Mq you are not. 

7. Applications 

In this section I will survey some practical and not so practical applications of  
nonmonotonic logic. These do not depend directly on the technical results I have 
derived so far, except that these results lend legitimacy to the discussion. 

First let us look at some more "philosophical" uses of  nonmonotonic logic. By 
using the word "philosophical" I do not mean to imply that they are irrelevant to 
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more hardheaded artificial-intelligence research, but only that their relevance is 
likely to be indirect: they show the kind of  thinking encouraged by nonmonotonic 
logics. 

One application has occurred to several people (Jerry Hobbs, for instance, in a 
personal communication). This is to make set theory nonmonotonic. Naive set theory 
is afflicted with paradoxes, which are all due to an overly powerful "comprehension 
axiom," which states that for every property there is a set of just the objects with that 
property. The usual first-order approximation to this is the axiom schema, 

(3s ) (Vx ) (x  E s ~ PROP(x)), 

which generates a new axiom for each formula PROP(x) with a free variable x. This 
allows us to conclude, for instance, that (3s ) (Vx ) (x  E s ~ color(x, red)), that is, that 
there is a set of  all red things. Unfortunately, it also allows us to conclude that there 
is a set s such that (Vx)(x E s ~ x ~ x), from which it follows that s ~ s ~ s ~ s. 
(This is, of  course, Russell's Paradox.) 

The existence of  this problem has led logicians to devise carefully stated restrictions 
of the comprehension axiom which apparently do not entail paradoxes. No one has 
been able to prove that the resulting systems are free of  contradictions, and there is 
reason to believe no one ever will. But apparently they are. 

Another approach to the problem would be to turn the theory nonmonotonic by 
switching to the following version of  the comprehension axiom, 

Pres (3s ) (Vx ) (x  E s ~ PROP(x)), 

where Pres p (read "presumably p")  is a convenient abbreviation for M p  D p. Now 
Russell's Paradox is avoided because (3 s ) (Vx ) ( x  E s ~ ,  x ~ x )  is contradictory. 

This approach is unlikely to be of  interest to working logicians, because there is 
absolutely no way to check whether a given set of  assumptions is contradictory or 
not. I have no idea how many fixed points nonmonotonic set theory would have, or 
even whether there are any. 

On the other hand, it may be of  interest to philosophers and engineers. As an 
engineering technique, this is probably just the right way to do set theory; there is no 
need for a rigorous proof that something is a set, because every property that occurs 
in the real world does correspond to a set. A robot would need to be able to withdraw 
its assumption that a property gave rise to a set only if he got involved in a cocktail- 
party conversation with a mathematician. 

Philosophers may find nonmonotonic set theory interesting as casting some light 
on the question of  whether sets really exist (see [3]). One problem with carefully 
chosen consistent axiomatizations of set theory is that there is more than one, and 
they give slightly different results. Which is correct? One is tempted to say that the 
question is meaningless, that set theory is just a formal game played by logicians, 
except that you can see that some sets do exist (the finite ones, for instance), and it 
is hard to see what could keep all the others from existing too. The nonmonotomc 
approach suggests an answer: The sets that exist in all noncommittal models of  set 
theory definitely exist, and so do some others, but we can never know which they 
are, since we can never know which noncommittal model the real world is in. 
Whichever it is, all the well-behaved sets you need for mathematics do exist. 

A more down-to-earth application is to the "sorites paradox": If  you remove one 
gram of sand from a heap of  sand, you still have a heap. But if you continue doing 
this, you will ultimately get to a single grain. Does that mean that a single grain is a 
heap? If  not, is there some number, say 57,895 grains, below which a bunch of  grains 
are not a heap? 
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Here is the problem stated in predicate calculus: 

~heap(0) 
heap(n) D heap(n + 1) 
heap(n + 1) D heap(n) 

Now, by a simple induction, we may infer (¥0-heap(0.  
This problem is old, but has recently caused problems for people trying to give 

truth conditions for natural-language sentences. Many words, like "near" and 
"recent," resist being given precise boundaries. This probably indicates that trying to 
specify truth conditions for natural language is silly, but let us look at the nonmon- 
otonic solution anyway, which is to keep the first two axioms and replace the third 
with 

heap(n + 1) D Pres heap(n) 
~heap(n) D Pres ~heap(n + 1) 

Now, given Peano's axioms and noncontroversial things like 

heap(100000), 

it is true in all noncommittal models that 

(3j)(j < 100000 

A (Vn)((n _< j D -heap(n)) 
A 
(n > j D heap(n)))) 

but the value of j varies from model to model. Here is why it is true in every 
noncommittal model: 100000 is a heap, so every number bigger must be a heap. Zero 
is not a heap, so to preserve noncommittalness, M~heap(l)  "must" be true, and 
hence -heap( l )  as well. Similarly, heap(99999) "must" be true. Clearly there must 
be pointsj  and j  + 1 in the middle with all of the following true: 

~heap(j) heap(j + 1) 
L-heap( j )  L heap(j + 1) 
M heap(j) D heap(j) 
M~heap( j  + 1) D -heap ( j  + 1) 

There can be only one such crossover, given the second axiom and its contrapositive: 
~heap(n + 1) D ~heap(n). 

Another "paradox of monotonicity" is the lottery paradox. This paradox arose 
from investigations into rules of conclusion [13], a device in decision theory to allow 
you to take as true any formula whose probability is close enough to 1. The problem 
arises in situations such as lotteries involving many bettors. Say the threshold of 
acceptance is set at probability 0.995. Then in a lottery involving 1000 people, among 
them your friend Fred, the statement "Fred loses" has probability 0.999, so it will be 
accepted. But the same argument works for everyone else, so you end up with 1000 
conclusions, together contradictory. 

The solution appears obvious: use axioms like 

win(Fred) V win(Frank) V win(Frieda) V . . .  
(Vx)(Pres -win(x)) 

This theory has a thousand fixed points, in only one of which Fred is the winner. 
In both of these examples it is important that a system using the logics try to find 

a stable piece of fixed point rather than accepting only proven things, in other words, 
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that it be brave rather than cautious. For example, given a heap of  9087 things, the 
system can conclude that taking one away can make a heap, but this is not a theorem 
(because there is a noncommittal model in which j is 9086 and everything less than 
9087 is not a heap). 

There is an interesting kind of probability theory lurking in the background here. 
It seems important that 999 out of  1000 models of  the lottery situation have Fred 
losing; it is a safe bet that he loses. Similarly, "most" models of  the sorites situation 
have 9086 being a heap. In cases where a formula appears in only a few models, it 
seems much less reasonable to try to accept it. So far, nuances like this have not been 
taken into account by systems like Doyle's TMS (Tenability Maintenance System) 
[2] for managing nonmonotonic databases. 

Another technical problem is that of  "exceptions to exceptions." The usual 
examples of  nonmonotonic formulas are formulas like, "A professor has a Ph.D. 
unless proven otherwise," which is overridden for a particular professor by proving 
that he or she does not have a Ph.D. But what about rules like this: 

All snakes are not poisonous, 
. . .  except those in South America, 

• . .  except Andean snakes living above 5000 feet, 
• . .  except those kept in greenhouses by the Beitcha tribe, 

, . .  

Here the third rule concludes the same thing as the first, but with a different status. 
If  the second rule is satisfied, it overrules the first but not the third. 

The solution to this problem is to introduce explicit indications whether a rule is 
applicable or not. Define the construction 

(RULE name va rp  q ol . . .  oN) 

to abbreviate 

isrule(name) 
A (V var)(  p D 

M applic(name, var) D q 
A 
~applic(ol,  vat) 
A 
~apphc(o2, var) 
A . . . )  

where the predicate "applic" is true of  a rule and an object if the rule is applicable 
to the object. 

Now we can express our facts about snakes thus: 

(RULE Rl  x snake(x) ~polsonous(x)) 
(RULE R2 x SouthAmerican(x) poisonous(x) R1) 
(RULE R3 x over5000ft(x) ~poisonous(x) R2) 
(RULE R4 x Beitcha(x) poisonous(x) R3) 

Now, given a set of facts about a particular snake, these umquely determine a fixed 
point in which the snake is either poisonous or not. 

I should point out that the reducibility of this exception mechanism to ordinary 
nonmonotonic logic does not mean that in a real program this is the way to implement 
exceptions. It might be better to build in RULE, for instance, as a connective the 
program knows about the same way it knows about "if." For example, the program 
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could look for conclusions of the form ~applic(...) and tell the TMS to handle them 
in a special way. 

It is often thought that (Vx)Pres ~P(x) means "I know all instances of P," since it 
can be used to deny P-hess to objects that cannot be shown to be P. It does not mean 
this, as the following argument (due to Robert Moore, in a personal communication) 
shows. 

One would like the following kind of inference to work: Given that "I know what's 
in this box," "Some cheese is in this box," "Something in this box smells funny," and 
no knowledge of anything else's presence, infer that "The cheese smells funny." Here 
is how this looks in our notation: 

(Vx)Pres ~in(x, ThlsBox) 
in(TheCheese, ThisBox) 
(3x)(in(x, ThisBox) A Stinks(x)) 

Unfortunately, Stinks(The Cheese) is not a theorem of this system. The problem is 
that there are plenty of noncommittal models in which the x that smells funny is not 
the cheese. In those models, Pres ~in(x, ThisBox) is true for this x because 
M~in(x, ThisBox) is false, or, put another way, I know about two things in the box, 
the cheese and the thing that smells. 

One way to solve this problem would be to introduce into the logic a distinction 
between known and unknown individuals (see [9]). I think a simpler solution to this 
problem might lie along the following lines. (I believe this is probably a variant of 
McCarthy's "circumscription" device [7].) What is missing is some way of inferring 
that {TheCheese) is the set of all things in the box. So what if we added the axiom 
schema, 

(Vx)Pres ~PROP(x) 
D 
(RULE inferset S 

M(S = (x:PROP(x)}) 
S = {x:PROP(x))) 

This attempts to say, "If I know everything with PROP, then a set which could be 
the set of all PROPs is the set of all PROPs." Now there is a fixed point of the theory 
in which {TheCheese) = (x:in(x, ThisBox)) is proven. Unfortunately, there is also 
a fixed point in which {TheCheese, TheMouse) is the set. (We cannot have our 
axiom (Vx)Pres ~in(x, ThisBox) rule out TheMouse ~ (x:in(x, ThisBox)}, since 
from the latter we can infer in(TheMouse, ThisBox).) The rule is allowing us to find 
more things in the box rather than fewer. 

In previous examples of this section, I concluded that fixed-point ambiguity could 
be tolerated. In those cases I visualized using a rule like heap(n) D heap(n - l) on 
demand to infer the heapness of particular pile sizes. A brave robot would just keep 
using this rule until trouble developed. In the cheese problem, the rule that generates 
the ambiguity does not so nicely suggest a course of action. If we use it by just trying 
out candidate sets of all objects in the box, we are not likely to hit on a good fixed 
point. 

We can patch the rule by adding this: 

(VS)(M(S = {x:PROV(x)}) 

( v s ' ) ( s  c s '  
D 
~applic(inferset, S'))) 
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Now all we need to be able to prove is TheCheese ~ TheMouse, from which it will 
follow that (TheCheese} C {TheCheese, TheMouse}, which will cancel the unwanted 
use of  inferset. 

I would not want to guarantee that this will handle every case, but it seems 
promising. In practice, a program using these axiom schemata could use them in a 
more specialized way. As soon as a formula of  the form (Vx)Pres ~PROP(x)  was 
learned, the system would begin keeping track of objects with property PROP. They 
would be used m a theorem like this: 

(Vx)(PROP(x) D x = a: V x = a2 V . . .  ~ /x  = an), 

where a~, az . . . . .  an are the objects collected. (Any deductions made from such a 
theorem would have to be revised, using data dependencies, as new a~ were deduced; 
see [2]. Compare the T H F I N D  operator of PLANNER [4].) 

8. Conclusions 

The major result of this paper is Theorem 10. This establishes a satisfying notion of  
semantic interpretation and model for nonmonotomc theories. 

Let me contrast this with some other treatments of  similar issues. Many researchers 
in artificial intelligence have resisted the idea of  exploring logics such as this one. 
One common line of  argument, due most notably to Terry Winograd [15], is that it 
is a mistake to study the abstract notion of  nonmonotonic provability, since any real 
program will be constrainted by lack of resources; the real issue is when it is 
reasonable to stop trying to prove something and start acting on the assumption that 
it cannot be proved. 

It is true that this is an interesting question, and in the long run more interesting 
and difficult than those I have examined. However, it seems like a waste of  our 
resources to implement programs for default reasoning without giving any thought 
to what conclusions they ought to come to. For example, a question that comes up 
in the design of  real proof procedures is, "What is the significance of  goal interac- 
tions?" If  "prove p" is a subgoal of one proof effort, and "prove ~p" is a subgoal of  
another, under what circumstances can you stop working on your original goal? 
Questions like this must be answered before programs with limited resources are 
written. 

Another criticism made of  the particular approach Doyle and I have pursued is 
that it is at the wrong level: nonmonotonic inference rules are really rules about 
changing theories, not inference rules within a theory (e.g., [14], and Bundy, in a 
personal communication). For example, " I f  x is a bird, you can assume it can fly, 
unless you can prove otherwise," gets translated into " I f  ~can-fly(x) is not a theorem 
of T, you may adopt T' = T tO {can-fly(x)}." This rule is a theorem about legal and 
desirable actions taken in a space of  theories, which is applied by some kind of  
executive which is trying to adopt the best theory at any given time. 

The problem with this alternative is that it fails to capture one's intuitions about 
how defaults work, even in some very simple cases. For example, consider a theory 
with the structure, 

MC D D, ME D ~ C. 

If  we translate this into the theory-transformation format, we have (apparently) two 
possible actions, assuming D and assuming ~C. However, if we do the second, the 
first becomes impossible; if we do the first and then the second, then we are left 
believing D "for no reason." (It is not clear what reasons would look like in this 
system anyway.) 
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Of  course, there is another basic problem, which is that the condition parts of  
these action rules are not computable. So it is not actually decidable when an action 
should be taken. 

One way around these difficulties is to introduce the notion of  an "ideally allowable 
action," one that would be takable if  all nontheorems were known and if all other 
ideally allowable actions were taken. But this sort of  construction has little to do with 
a realistic theory of  theory selection. 

An approach along these lines has been worked out by Raymond Reiter [10]. His 
system is halfway between that of  Weyhrauch and those of  Doyle and me, in that 
nonmonotonic rules are thought of  as rules for permitting theory extensions, but they 
are all considered together in a fixed-point construction somewhat like ours. Where 
we have implications of  the form (p A Mq) D r and a single inference rule Pos, 
Reiter allows a theory to contain an arbitrary number  of  inference rules of  the form, 
" I f p  is a theorem and q is not, r is." This is written in a notation like this: 

p M - q  

r 

The resulting system has many  attractive properties, especially a somewhat more 
tractable proof  theory than mine. There are a few drawbacks to his system. For 
example, from (3x)Q(x) and 

M P(x) 
P(x) 

his system allows the reference of  (3x)(P(x) A Q(x)). This does not seem correct to 
me, since there may well be millions of  unnamed objects that lack property P, one of  
which is the one with property Q. Notice that if  (3x)Q(x) is replaced with Q(a), 
where a is a new constant, we can infer (3x)(P(x) A Q(x)), which shows that 
Skolemization [12] changes the meanings of  formulas in our logic. 

The main difference between the two approaches is whether M is to be included 
in the language or used as a mere marker  in nonmonotonic inference rules, and this 
is just the question whether a decent semantics can be given to it if it is included. I 
do not think any conclusive answer to this question has yet been attained, but the 
preliminary answer supplied by this paper  shows that the attempt is worth it. This 
preliminary answer is that Mp can mean what one intuitively thinks it should mean: 
that p is consistent with one's current beliefs. This applies only in systems, the 
"brave"  ones, that search for a particular fixed point to try to accept. 
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