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We show that quantum particles constrained to move along curves undergoing cyclic
deformations acquire, in general, geometric phases. We treat explicitly an example, in-
volving particular deformations of a circle, and ponder on potential applications.
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1. Introduction

You leave a wire on a table in a locked room, and rumors soon have it that somebody

entered the room, played with the wire, and left it at the exact same initial position

— is it possible to detect the intrusion?

Geometrical phases may appear in quantum systems the Hamiltonian H of

which depends on a set of external parameters ξA, H = H(ξ). After a cyclic change

of the parameters, along a loop C in parameter space, slow enough to guarantee

that the system remains in an instantaneous eigenstate of H , the wave function

acquires a phase that, apart from the standard dynamical part of the “energy

times time” type, contains a contribution that only depends on C — hence the term

“geometric”.1 Observable effects are obtained if the system starts out in a suitable

superposition of energy eigenstates, each of which acquires a different geometric

phase — numerous experiments have confirmed these theoretical predictions (see,

e.g. Refs. 3, 15, 18, 19, 21 and 16).

On the other hand, the dynamics of quantum particles constrained to move

along a curve in three-dimensional Euclidean space, by a steep confining potential

in the plane normal to the curve, is governed by an effective Hamiltonian that
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depends on the curvature κ(s) and the torsion τ(s) of the curve, where s denotes

the arclength4,7,10,17 (see also Refs. 5, 8, 9, 12 and 11). Thus, the Fourier coefficients,

for example, of κ and τ , can be considered as external parameters of the effective

Hamiltonian. Slow, cyclic changes in the shape of the curve may then lead to the

appearance of geometric phases, and it is the confirmation of this possibility that we

report on here. Thus, the opening question is answered to the affirmative, at least for

a playful enough intruder (see below). Apart from limiting what intruders can get

away with, the effect pointed out here opens up a wide arena for experimentation,

both gedanken and real — we ponder on some possibilities in the concluding section.

2. Geometric Phases

Consider a Hamiltonian Hξ, as above, where the ξ’s are varying with time, tracing

out a loop C in ξ-space. Assume that the physical system governed byHξ starts out,

at time t = 0, in the nondegenerate eigenstate |n, ξ0〉, which satisfies Hξ0
|n, ξ0〉 =

Eξ0

n |n, ξ0〉. Then, in the adiabatic approximation, in which the change in H is

slow (in the time scale set by the energy difference of neighboring eigenstates), the

system’s state at time t is

|n, t〉 = e−iαn(t)+iγn(t)|n, ξt〉 , (1)

where |n, ξt〉 is an instantaneous eigenket of the Hamiltonian,Hξt
|n, ξt〉 = Eξt

n |n, ξt〉,
the phase αn(t) =

∫ t

0
dτ Eξτ

n is the expected dynamical one, and

γn(t) = i

∫ t

0

dτ〈n, ξτ |
d

dτ
|n, ξτ 〉 = i

∫ ξt

ξ0

dξ · 〈n, ξ|∇ξ|n, ξ〉 , (2)

is the geometrical phase — the latter form shows that it is time reparametrization

invariant (∇ξ denotes the gradient in ξ-space). For a loop C in ξ-space, Stokes’

theorem may be used to cast (2) in the form

γn(C) =

∫

S

dξA dξB K
(n)
AB , (3)

where

K
(n)
AB = i(∂A〈n, ξ|)(∂B |n, ξ〉) (4)

is the Berry curvature, and S is any two-dimensional patch with C as its bound-

ary1,2,14 (see also Refs. 6 and 13).

When the initial state |n, t = 0〉 is d-fold degenerate, the geometric phase factor

eiγn(t) generalizes to a unitary matrix20 (the Wilczek–Zee effect)

Un(t) = P exp

(

i

∫ ξt

ξ0

dξ Aξ
n

)

, (5)

where P exp is a path-ordered exponential, and Aξ
n is a hermitian d by d matrix

with entries

(Aξ
n)ab = i〈n, b; ξ|∇ξ|n, a; ξ〉 (6)

(a, b = 1, . . . , d, range over the degenerate subspace).
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3. Particles Constrained on Curves

Consider a quantum particle constrained to move along a smooth curve in three-

dimensional Euclidean space — what confines the particle to the vicinity of the

curve is a two-dimensional harmonic oscillator potential in the plane normal to the

curve, of width η, with its minimum at the position of the curve. It is convenient to

use an adapted coordinate frame, with coordinates (s, α, β), where s is the arclength

along the curve, and ηα, ηβ are distances along the normal n and the binormal b

of the curve, respectively. Then the position vector r(s, α, β) of an arbitrary point

in the vicinity of the curve is related to the position vector R(s) of the curve itself

by

r(s, α, β) = R(s) + ηαn(s) + ηβb(s) . (7)

Taking η � κ−1, guarantees that the frame is well defined in the region of physical

interest — we do assume that κ(s) 6= 0. The Hamiltonian for the particle, expressed

in terms of the adapted coordinates, is given by

H = − 1

2
√

|G|
∂AG

AB
√

|G|∂B + V (α, β) , (8)

where A, B range over the adapted coordinates,GAB is the metric induced from the

ambient Euclidean one, GAB = ∂Ar ·∂Br, G
AB its inverse, and G = η4(1−ηακ)2 its

determinant.a For the confining potential we take V (α, β) = (α2 + β2)/2η2. Notice

that V only depends on the normal coordinates, so that, classically, the tangential

motion of the particle is free. The normalization condition for the particle’s wave

function Φ is
∫

ds dα dβ
√

|G||Φ|2 = 1 , (9)

which motivates working with a rescaled wave function Ψ = |G|1/4Φ, obeying
∫

ds dα dβ|Ψ|2 = 1 , (10)

so that
∫

dα dβ|Ψ|2 can be interpreted as the probability density for finding the

particle at the position s along the curve. Accordingly, the Hamiltonian undergoes

a similarity transformation,

H → H̃ = |G|1/4H |G|−1/4 . (11)

Substituting the above into (8), and expanding in powers of η results in

H̃ =
1

η2
H−2 +H0 + O(η) , (12)

aWe follow here the exposition in Ref. 12 — notice that the sign of η in the expression for G that
follows from Eq. (3) in that reference is opposite to the one given here — we believe our expression
is the correct one.
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where

H−2 = −1

2
(∂2

α + ∂2
β) +

1

2
(α2 + β2) ,

H0 = −1

2
(∂s − iτL)2 − κ2

8
,

(13)

and L = i(β∂α − α∂β) is the generator of rotations in the normal plane. Looking

for H̃ eigenstates, H̃Ψ = ẼΨ, in the factorized form

Ψ(s, α, β) = χ(α, β)ψ(s) , (14)

one is led to consider simultaneous H−2 and L eigenkets χ
(n)
σ ,

H−2χ
(n)
σ = (n+ 1)χ(n)

σ , Lχ(n)
σ = σχ(n)

σ , (15)

leading to

−1

2
ψ′′

σ + iστψ′
σ +

1

2

(

iστ ′ + σ2τ2 − 1

4
κ2

)

ψσ = Eσψσ (16)

for the tangential wave function (primes denote derivatives with respect to s). Then

Ψσ = χ
(n)
σ ψσ and Ẽ = (n+ 1)/η2 +Eσ .

4. Wires with Quantum Memory

Consider a particle constrained to move on a unit circle, then κ(s) = 1 and τ(s) = 0.

For the normal ket, take either of the degenerate doublet |±〉 = (|10〉 ± i|01〉)/
√

2,

with H−2 eigenvalue 2, and satisfying L|±〉 = ±|±〉 (we use the standard notation

|10〉 ≡ a†α|00〉, |01〉 ≡ a†β |00〉, where a†α, a†β are creation operators of excitations

along the axes α, β). Equation (16) then becomes

−1

2
ψ′′

σ − 1

8
ψσ = Eσψσ , (17)

with σ = ±1 and solutions

ψ(k)
σ =

1√
2π
eiks , E(k)

σ =
4k2 − 1

8
, k ∈ Z . (18)

We choose k = 0 — the corresponding 3D states Ψ
(0)
± = χ±ψ

(0)
± form a degenerate

doublet, with

χ± = ρe−ρ2/2e±iφ/
√
π , Ẽ

(0)
± = 2/η2 − 1/8 (19)

(ρ, φ denote the standard polar coordinates in the normal plane).

Consider now a two-parameter deformation of the circle, given by

R(s; ξ, ζ) = (cos s, sin s, 0) + ξ(− cos3 s, sin3 s, 0) + ζ(0, 0, cos 2s) (20)

in Cartesian coordinates (x, y, z), or

R(s; ξ, ζ) = (0,−1, 0) + ξ

(

1

2
sin 2s, cos 2s, 0

)

+ ζ(0, 0, cos 2s) (21)
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in the adapted frame (t, n, b), with ξ, ζ � 1 (in the notation of the previous section,

ξ1 ≡ ξ, ξ2 ≡ ζ). The corresponding velocity field v = ∂R/∂ξ|ξ=0 satisfies the

locally arclength preserving condition ∂sv
t−κvn = 0 (similarly for u = ∂R/∂ζ|ζ=0).

This enables the physical identification of points of the curve with the same s

coordinate, for different values of the deformation parameters, so that derivatives

of the wave function with respect to the latter can be meaningfully taken. The

above deformation brings along changes in κ(s) and τ(s), which in turn result in

the perturbation Hamiltonian

H1 =
3

4
ξ cos 2s+ 6iζσ(sin 2s∂s + cos 2s) , (22)

to be added to the zeroth-order Hamiltonian on the left-hand side of (17). The

resulting first-order corrected ground state tangential wave functions are

ψ± =
1√
2π

(

1 −
(

3ξ

8
± i3ζ

)

cos 2s

)

. (23)

We are still not in the position to use (4) though. The reason is that, on the one

hand, the true, physical wave function is the Φ that appears in (9), and not the

rescaled Ψ we have been working with, while, on the other hand, our expressions

involve the adapted coordinates, which depend implicitly on the parameters ξ and

ζ, since the curve being deformed in (20) drags with it the adapted frame. Our

task then, in principle, would be to express the adapted coordinates in terms of

the Cartesian ones, differentiate them with respect to the parameters, treating

the Cartesian co-ordinates as constants, and re-express the result in terms of the

adapted coordinates. Then the derivatives with respect to the parameters in, e.g.,

(2), would contain contributions both from the explicit dependence of Φ(s, α, β; ξ, ζ)

on the parameters, as well as the implicit one through the adapted coordinates.

Taking the above into consideration, we find that the matrix A in (6) is diagonal,

so that the nondegenerate expression for K, Eq. (4), may be used, giving

K
(0,σ)
ξζ = − 9

16
σ . (24)

The fact that the two states in the doublet, corresponding to σ = ±1, pick up

opposite geometrical phases, allows the detection of the latter by starting out the

system in a suitable superposition, e.g., in the state |Ψ〉t=0 = |0, 10〉 = (|0,+〉 +

|0,−〉)/
√

2, with wave function Ψ ∼ αe−ρ2/2 — a plot of a constant probability

density surface appears in Fig. 1. Assume now that the system is driven cyclically

in the ξ–ζ plane, tracing the circle ξ = ε(1 − cosλt), ζ = ε sinλt, with λ � 1, so

that the adiabatic approximation is valid. For t = 0 the wire described by (20) is

a unit circle in the x–y plane, centered at the origin, with n radially inwards, and

b along z. As t increases, the wire sweeps out the self-intersecting surface shown in

Fig. 2 (assuming ε = 0.2). The geometrical phase accumulated after each revolution

in parameter space by the state |0,±〉 is ±∆φ, where

∆φ = 2πε2K
(0,+)
ξζ = −9

8
πε2 , (25)
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Fig. 1. Plot of a constant probability density surface for the state |0, 10〉, corresponding to exci-
tation of the 2D harmonic oscillator along n. The darker colored ring represents the (undeformed)
wire.

Fig. 2. The surface swept out by the wire as it is being deformed, with ξ and ζ tracing out a
circle in parameter space.

so that after m revolutions, the state vector is

|Ψ〉t = (eim∆φ|0,+〉 + e−im∆φ|0,−〉)/
√

2 . (26)

As a result, the corresponding probability density profile rotates in the plane normal

to the curve by an angle ∆φ — Fig. 3 assumes an integer m such that ∆φ ≈ π/2.

5. Conclusions

We pointed out a wide class of quantum systems exhibiting geometrical phases:

particles constrained to move along curves in three-dimensional Euclidean space,

with the shape of the latter in the role of an infinite dimensional parameter space.



November 18, 2008 8:47 WSPC/146-MPLA 02697

Wires with Quantum Memory 3093

Fig. 3. The accumulation of geometric phase is evidenced in the rotation of the probability
density profile in the plane normal to the curve. Here it is assumed that ∆φ ≈ π/2, so that the
normal ket has changed from |10〉 (see Fig. 1) to |01〉.

We presented a particular example, involving deformations of a circle, and leading

to a nonzero Berry curvature, Eq. (24). The effect is observable, through changes in

the probability density distribution, when superpositions of states are considered,

each of which accumulates a different, in general, geometrical phase.

There are obvious directions along which our result might be generalizable:

higher dimension and/or codimension of the constraint manifold, e.g., the case of

surfaces embedded in R
4. Along with such endeavors, a detailed analytical study of

the problem we considered here should provide general expressions for the curvature

in terms of the initial shape of the wire and the velocity fields of the perturbations

— we defer such an analysis to a longer paper, currently in progress.

A question that we find particularly interesting is the extend to which the

details of the deformation can be encoded in the probability density distribution.

It is clear that, no matter what the initial quantum state of the particle is, there

are deformations of the wire that pass unnoticed, e.g., those that evolve along

an arbitrary curve in parameter space and then retrace their evolution along the

same curve, back to the original shape. This means that one cannot, in general,

reconstruct the deformation entirely from a comparison of the initial and final

probability density distributions, but it is, nevertheless, plausible that, in general,

more can be inferred than just the fact that there was some deformation.

Experimental uses of the above effect in quantum wires and nanotubes might

be possible, as tiny periodic mechanical deformations are encoded cumulatively in

a quantum system — this could provide sensitive (periodic) motion detectors. In

this context, it would be interesting to consider the potential amplification of the

effect, either in the present, or its higher dimensional variants alluded to above,

by replacing the single particle employed here by mesoscopic condensates. Another

direction worth pursuing would be applications to holonomic quantum computing.
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