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∗chryss@nuclecu.unam.mx
†eliokon@nuclecu.unam.mx

Received 20 October 2004
Communicated by D. V. Ahluwalia-Khalilova

We apply Lie algebra deformation theory to the problem of identifying the stable form of
the quantum relativistic kinematical algebra. As a warm up, given Galileo’s conception
of spacetime as input, some modest computer code we wrote zeroes in on the Poincaré-

plus-Heisenberg algebra in about a minute. Further ahead, along the same path, lies a
three-dimensional deformation space, with an instability double cone through its origin.
We give physical as well as geometrical arguments supporting our view that moment,
rather than position operators, should enter as generators in the Lie algebra. With
this identification, the deformation parameters give rise to invariant length and mass
scales. Moreover, standard quantum relativistic kinematics of massive, spinless particles
corresponds to non-commuting moment operators, a purely quantum effect that bears
no relation to spacetime non-commutativity, in sharp contrast to earlier interpretations.
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1. Introduction

A prevailing theme of the last decade or so in physics has been the search for

an algebraic signature of quantum gravity. Lorentz symmetry violation, spacetime

non-commutativity and modified dispersion relations, among other novelties, have

been proposed as signals our antennas should be tuned for, in the search for a

scheme where quantum objects could be heavy too. Even before that, physicists

exasperated by the darker side of quantum field theory, sought their way out of the

maze of infinities in the form of a spacetime granularity that would exorcise, the

hope was, their ultraviolet nemeses.

The usual suspect in many of these endeavors has been the nature of space-

time, typically codified in a kinematical algebra. Accordingly, the above search has

often focused on the possible deformations of the Lie algebra GPH, i.e., the Poincaré

algebra, extended by the inclusion of the position operators and the Heisenberg com-

mutation relations, or one of its subalgebras. These attempts can be roughly divided
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into three categories, based on the mathematical framework of their approach (or

the absence thereof). The first category comprises deformations of Lie type, where

the commutators of the generators are linear functions of the same. There exists a

well-developed mathematical formalism to deal systematically with such deforma-

tions, which has not always been used by physicists. We comment more extensively

on this type of deformations below. In category number two enter quantum group

type deformations, which are generalizations of the classical group concept and form

particular examples of Hopf algebras with a universal R-matrix R, that solves the

(universal) quantum Yang–Baxter equation.a The linearity of the Lie case is lost,b

but the construction of the algebra is canonical, given an R with suitable proper-

ties. Extensive work in the eighties and nineties has provided a solid mathematical

background for these deformations, with applications overflowing to an impressive

list of fields. Finally, recent years have seen a plethora of articles loosely classified

under the generic misnomer1 “Doubly Special Relativity” (see, e.g., Ref. 2), which

form the third category. A common feature among them, and in some sense the

defining one, is that the commutators of the algebra are given by general analytic

functions of the generators.c To our knowledge, there is no well-defined mathe-

matical framework guaranteeing the self-consistency of these deformations, not to

mention their physical applicability, partly because they are not complete, e.g.,

the fate of the spacetime sector is often left unclear. Subsequent work20 showed

that endowing the above deformations with considerable more (Hopf) structure,

results in their identification with particular forms of the κ-Poincaré Hopf algebra,

proposed about a decade ago24 (see also Ref. 25). Both of the last two categories

suffer from serious physical problems in the many-particle sector, e.g., in a con-

sistent definition of such basic quantities like the total momentum of a system of

particles.

In this paper we deal with Lie-type deformations of standard quantum relati-

vistic kinematics. We undertook this project with three main goals in mind:

(1) Emphasize the Lie algebra stability point of view and present in an accessible

form the relevant mathematical apparatus, along the lines of Ref. 27, which

motivated the present work.

(2) Apply the formalism to the problem at hand to obtain a complete, detailed

map of the deformation territory in the vicinity of GPH.

(3) Interpret physically the generators of the algebra and investigate the nature of

the deformations.

aNot all Hopf-type deformations are known to possess a universal R-matrix, and some are known
not to.
bFor a class of such algebras, an appropriate deformation of the concept of commutator restores
linearity (see, e.g., Ref. 33).
cThe introduction of additional invariant scales cannot be considered as a defining characteristic
of these deformations since, as is well-known, and as we are about to see, such scales are also
introduced by the Lie-type deformations.
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The structure of the paper was conceived accordingly, with each of the subsequent

three sections dealing with one of the above goals. In Section 2 we give a self-

contained review of the standard Lie algebra deformation theory and explain why

stable structures are more likely to prove useful in physical applications than un-

stable ones. The section ends with a relatively detailed example, the passage from

Galilean to relativistic kinematics, illustrating the use of the formalism, as well as

the (alas, a posteriori) predictive power of the stability point of view. Section 3

contains a detailed analysis of the options available in deforming GPH. We take as

our starting point classical (~ = 0) relativistic kinematics (an unstable algebra)

and, with the help of some computer code we wrote, explore the various paths that

lead to stable algebras. We find that there is essentially one path, its first stop

introducing Heisenberg’s relations. Thus, given Galileo’s conception of spacetime

as input, our program zeroes in on the Poincaré-plus-Heisenberg algebra GPH in

about a minute. We find this motivating enough to inquire about what lies fur-

ther ahead. Following this path to its end, we find ourselves in a three-dimensional

deformation space of stable Lie algebras, with a double instability cone through its

origin. The section ends with a description of relations between our work and earlier

treatments in the literature. This concludes the mathematical part of the paper —

inferences about physics will have to wait the physical identification of the genera-

tors, which we undertake in Section 4. There, we argue that the position operators

do not have the right properties to serve as Lie algebra generators. In doing so, we

are in disagreement with all previous works. Retracing the steps that lead to the

definition of the relativistic center-of-momentum concept for a system of particles,

we come to the conclusion that the appropriate generators, in the case of a mas-

sive, spinless particle, are the moment operators, given essentially by the positions

rescaled by the mass operator for the particle. This shows that the algebra GQR of

standard quantum relativistic kinematics, differs from GPH and, in the above case,

lies on the instability cone. Furthermore, from the algebraic point of view, there is a

single deformation direction introducing non-commutativity among the momenta.

Section 5 comments on the findings and outlines directions for future work.

2. Lie Algebra Deformations and the Concept of Stability

In this section we summarize the elements of standard Lie algebra deformation

theory that will be of use in the rest of the paper. Our exposition follows mostly

the original source for this material, Refs. 29 and 30 as well as Ref. 27. Section 2.5

follows Ref. 7, echoing ideas originating in the Batalin–Vilkovisky quantization (see,

e.g., Ref. 37), the deformation-theoretic aspects of the latter being first pointed out

in Ref. 3 (see also Ref. 15). Background information on Lie algebra cohomology

can be extracted (not without some effort) from Refs. 6 and 16. The foundations of

deformation theory are laid out in the classic Ref. 11, while plenty of newer material

is contained in the book-length Ref. 12. An elegant generalization to bialgebra

deformations was given in Ref. 13, with still further generalizations to Drinfeld
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algebras, and much more, appearing in Ref. 34 — this latter reference also contains a

rather comprehensive bibliography. An exposition of related material, with physical

applications in mind, can be found in Ref. 10.

2.1. Lie products

We deal throughout with finite-dimensional real Lie algebras. These are built on a

(finite-dimensional) real vector space V , by defining a bilinear antisymmetric Lie

product map µ:V × V → V that satisfies the Jacobi identity,

µ(x, µ(y, z)) = µ(µ(x, y), z) + µ(y, µ(x, z)) . (1)

This is usually written as a cyclic sum, a form that, in the case at hand, obscures

its content. To clarify the latter, take as an example the case where x is a Lorentz

group generator, Jµν , and y, z are other generators carrying Lorentz indices, say,

Yρ, Zσ respectively. Suppose µ(y, z) = µ(Yρ, Zσ) = W . Substituting this in the

l.h.s. of (1), one finds that the Jacobi identity requires that the transformation

properties of W under the Lorentz group are derived solely from those of Yρ, Zσ ,

i.e., in this case, W ought to transform as a second-rank covariant tensor. Another

way of saying this is that µ itself is a Lorentz scalar, an observation that we use

later on.

Given a basis {TA}, A = 1, . . . , n of V , the product µ is specified by giving all

vectors µ(TA, TB), 1 ≤ A < B ≤ n. The coordinates of these vectors in the basis

are, up to a factor of i, the structure constants fAB
C of the algebra,

[TA, TB] ≡ iµ(TA, TB) = ifAB
CTC , (2)

which are antisymmetric in the lower two indices (a sum over repeated indices is

implied). In the above equation we follow the standard physics practice of express-

ing the (non-associative) Lie product as the commutator [· , ·] with respect to an

associative operator product, as well as the inclusion of an imaginary unit, related

to the Hermiticity of the generators. In terms of the structure constants, the Jacobi

identity becomes

fAR
SfBC

R + fBR
SfCA

R + fCR
SfAB

R = 0 . (3)

Relaxing for the moment this latter constraint, i.e., taking into account only the

antisymmetry in the lower two indices, one is left with N(n) = n2(n−1)/2 arbitrary

constants fAB
C , A < B. Consider now the space RN , with each of the f ’s ranging

along an axis. For each value of (A,B,C, S), (3) describes a quadratic hypersurface

in this space. The intersection of these hypersurfaces is the space Ln of all possible

n-dimensional Lie algebras — we sketch it as a surface in Fig. 1. Referring to this

figure, consider the point P of Ln — it corresponds to the Lie algebra GP , whose

structure constants are given by the coordinates of P . Under a linear redefinition

of the generators via a GL(n) matrix M ,

T ′

A = MA
BTB , (4)
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Figure 1: The space Ln of n-dimensional Lie algebras (sketch). P is surrounded by equivalent points and
hence, GP ∼ GPM

, for all PM sufficiently close to P . In contrast, in the tangent space of Ln at Q, there
are directions that lead outside of the GL(n,R) orbit Orb(Q). Q will move along these directions when
ψ1 in (6) is a non-trivial element of H2(GQ). Notice that, for all n, the surface passes through the origin,
which corresponds to the n-generator abelian algebra.

are given by the coordinates of P . Under a linear redefinition of the generators via a GL(n) matrix
M ,

T ′

A = MA
BTB , (4)

the structure constants transform as

f ′

AB
C

= MA
RMB

S(M−1)U
C
fRS

U , (5)

and P moves to PM . Clearly, no new physics is to be expected from such a redefinition, GP and
GPM

being isomorphic. What we are really interested in then, from a physical point of view, is not
Ln itself, but, rather, the space of equivalence classes into which Ln splits under the above action of
GL(n), each class being the GL(n) orbit Orb(P ) of any point P in the class5. The crucial observation
to be made here is that there exist two types of points in Ln: those that are completely surrounded
by equivalent points (corresponding to isomorphic algebras) and those whose neighborhoods6 include
non-equivalent points, sketched as P and Q respectively in Fig. 1. Any infinitesimal perturbation of
the structure constants of GP will necessarily lead to an isomorphic Lie algebra — the orbit Orb(P )
is open in Ln. We call GP stable or rigid. On the other hand, there exist infinitesimal perturbations
of GQ that lead outside of Orb(Q) and, hence, to non-isomorphic algebras — we call GQ unstable.

In physical applications, structure constants are often given by experimentally determined funda-
mental constants of the theory. The experimental errors involved render the position of the corre-
sponding algebra in Ln uncertain. If the algebra employed is unstable, the physical predictions of the

5Notice that if one changes the structure constants from f to f ′, as above, without changing the generators, one does

obtain new physics.
6Ln inherits the natural topology of the structure constants, i.e., that of the ambient R

N .

Figure 1. The space Ln of n-dimensional Lie algebras (sketch). P is surrounded by equivalent
points and hence, GP ∼ GPM

, for all PM sufficiently close to P . In contrast, in the tangent space

of Ln at Q, there are directions that lead outside of the GL(n,R) orbit Orb(Q). Q will move along
these directions when ψ1 in (6) is a non-trivial element of H2(GQ). Notice that, for all n, the
surface passes through the origin, which corresponds to the n-generator Abelian algebra.

the structure constants transform as

f ′

AB
C

= MA
RMB

S(M−1)U
C
fRS

U , (5)

and P moves to PM . Clearly, no new physics is to be expected from such a redefini-

tion, GP and GPM
being isomorphic. What we are really interested in then, from

a physical point of view, is not Ln itself, but, rather, the space of equivalence

classes into which Ln splits under the above action of GL(n), each class being

the GL(n) orbit Orb(P ) of any point P in the class.d The crucial observation

to be made here is that there exist two types of points in Ln: those that are

completely surrounded by equivalent points (corresponding to isomorphic algebras)

and those whose neighborhoodse include non-equivalent points, sketched as P and

Q respectively in Fig. 1. Any infinitesimal perturbation of the structure constants

of GP will necessarily lead to an isomorphic Lie algebra — the orbit Orb(P ) is

open in Ln. We call GP stable or rigid. On the other hand, there exist infinitesimal

dNotice that if one changes the structure constants from f to f ′, as above, without changing the
generators, one does obtain new physics.
eLn inherits the natural topology of the structure constants, i.e., that of the ambient R

N .
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perturbations of GQ that lead outside of Orb(Q) and, hence, to non-isomorphic

algebras — we call GQ unstable.

In physical applications, structure constants are often given by experimentally

determined fundamental constants of the theory. The experimental errors involved

render the position of the corresponding algebra in Ln uncertain. If the algebra

employed is unstable, the physical predictions of the theory become ill defined, as

they depend critically on the exact value of the structure constants, which is not

known. Additionally, new measurements or improved data analysis, may move the

algebra to a new position. If the algebra is stable, the physical theory based on it

will maintain its qualitative validity. We conclude that stable algebras give rise to

robust physics.

2.2. Deformations and H2

Given a Lie algebra G0 = (V, µ0), i.e., the Lie product of X , Y ∈ V is supplied by

µ0(X,Y ) ≡ [X,Y ]0. A one-parameter (formal) deformation of G0 is given by the

deformed commutator

[X,Y ]t = [X,Y ]0 +

∞∑

m=1

ψm(X,Y )tm , (6)

where t is a formal parameter. The corresponding t-dependent structure constants,

[TA, TB]t = if tAB
C
TC , (7)

define a curve Pt in Ln, which passes through P0 (corresponding to G0) at t = 0. The

l.h.s. of (6) is bilinear and antisymmetric, hence the ψm on the r.h.s. are G-valued,

bilinear antisymmetric maps

ψm : V × V → V , ψm(X,Y ) = −ψm(Y,X) . (8)

We will call such maps 2-cochains (over V ), extending the definition in the natural

way (i.e., via p-linearity and total antisymmetry) to p-cochains ψ(p), which accept

p arguments.f The vector space of p-cochains over V will be denoted by Cp(V ).

Notice that the 1-cochains are simply linear maps from V to V , the antisymmetry

requirement being meaningless in this case. Also, the space of 0-cochains is V itself.

Next, for an arbitrary Lie product µ, we define a coboundary operator sµ, which

maps p-cochains to (p+ 1)-cochains, sµ:C
p → Cp+1, according to

sµ . ψ
(p)(TA0

, . . . , TAp
)

=

p
∑

r=0

(−1)rµ
(
TAr

, ψ(p)(TA1
, . . . , T̂Ar

, . . . , TAp
)
)

+
∑

r<s

(−1)r+sψ(p)(µ(TAr
, TAs

), TA0
, . . . , T̂Ar

, . . . , T̂As
, . . . , TAp

) (9)

fWhen the order p of a cochain ψ needs to be emphasized, we will write ψ(p).
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(hats denote omitted terms). For example, for φ ∈ C1 and ψ ∈ C2,

sµ . φ(A1, A2) = [A1, φ(A2)] − [A2, φ(A1)] − φ([A1, A2]) ,

s . ψ(A1, A2, A3) = [A1, ψ(A2, A3)] − [A2, ψ(A1, A3)] + [A3, ψ(A1, A2)]

− ψ([A1, A2], A3) + ψ([A1, A3], A2) − ψ([A2, A3], A1) ,

(10)

where µ(X,Y ) = [X,Y ]. It can be shown that s2µ = 0, a result that relies on the

Jacobi identity that µ satisfies — a compact proof is given in Section 2.3. The

relevance of sµ to the problem at hand becomes evident when one imposes the

Jacobi identity on the deformed commutator in (6). Writing out this identity and

evaluating its t-derivative at t = 0, one finds that ψ1 must satisfy sµ0
. ψ1 = 0.

We call a p-cochain ψ(p) annihilated by sµ, sµ . ψ
(p) = 0, a p-cocycle, and denote

the vector space of p-cocycles by Zp(V, sµ). What we have found above is that

infinitesimal deformations of Lie algebras are generated by 2-cocycles, the converse

being also true.

It remains to determine which of the above infinitesimal deformations lead to

isomorphic Lie algebras. As mentioned already, isomorphic Lie algebras result from

a linear redefinition of the generators with some invertible matrix M ∈ GL(n,R)

(see (4)). In the case of a deformation, M = Mt is t-dependent, with M0 = In (the

unit n× n matrix). Then the deformed, t-dependent commutator, is given by

[X,Y ]t = M−1
t [MtX,MtY ]0 , (11)

for any X , Y in G0. Taking Mt in a neighborhood of the identity, Mt = In + tQ,

with t small, one readily computes the corresponding first-order (in t) change to

the commutator,

[X,Y ]t = M−1
t [MtX,MtY ]0

= (In − tQ)[(In + tQ)X, (In + tQ)Y ]0

= [X,Y ]0 + t([X,QY ]0 − [Y,QX ]0 −Q[X,Y ]0) + O(t2) . (12)

But the linear map Q : X = XATA 7→ QX = XRQR
STS is, as mentioned earlier,

a 1-cochain. Comparing the O(t)-term in the r.h.s. of (12) with the first of the

examples in (10) shows that the O(t)-change in the commutator, i.e., the 2-cochain

ψ1 in (6), is given by

ψ1 = sµ0
. Q . (13)

We call a p-cochain ψ(p) that is in the image of sµ, ψ
(p) = sµ . φ

(p−1), a trivial

p-cocycle, or, a p-coboundary. The vector space of p-coboundaries will be denoted

by Bp(V, sµ). Since s2µ = 0, all coboundaries are cocycles, Bp ⊆ Zp. What the

above result shows is that infinitesimal deformations of G0 towards isomorphic Lie

algebras are generated by 2-coboundaries.
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Conversely, assume that for the deformed commutator as in (6), there exists

a linear map (1-cochain) φ1:G0 → G0, such that the ψ1 appearing in the r.h.s.

of that equation is given by ψ1 = sµ0
. φ1. Consider now a linear redefinition of

the generators by the matrix M1 = e−tφ1 and compute the new t-commutator

[X,Y ]′t. The result is given by (12), with the substitutions [X,Y ]t → [X,Y ]′t and

[X,Y ]0 → [X,Y ]t,

[X,Y ]′t = [X,Y ]t − t sµ0
. φ1

︸ ︷︷ ︸

ψ1

(X,Y ) + O(t2) . (14)

Using (6) to expand the r.h.s. in powers of t, we see that the term linear in t

in [X,Y ]′t cancels. Repeating the procedure one may eliminate one by one all

powers of t, thus bringing the original t-commutator in coincidence with the unde-

formed one [X,Y ]0, using nothing more than successive linear redefinitions of the

generators. We conclude that the two commutators define isomorphic Lie algebras,

the matrix giving the isomorphism being M = · · ·M2M1, with Mm = e−tφm and

sµ0
. φm = ψm.

We may summarize the contents of this section in the following geometrical

picture: the tangent spaceg TP0
Ln to Ln at P0 is (isomorphic to) Z2, the space of

2-cocycles. The subspace of TP0
Ln leading to isomorphic Lie algebras, i.e., the tan-

gent space to the GL(n)-orbit Orb(P0) is B2, the space of 2-coboundaries. To close

the familiar circle of definitions, we define the quotient spaceHp ≡ Zp/Bp, in which

two cocycles are identified if they differ by a coboundary, as the pth cohomology

grouph of G0. The non-trivial elements of H2 (if any) correspond to directions in

TP0
Ln that lead to Lie algebras infinitesimally close to G0 but non-isomorphic to it.

A sufficient condition then for the stability of G0 is the vanishing of its second coho-

mology group H2(G0). Whitehead’s lemma states that this condition is satisfied by

all semisimple Lie algebras18 — we conclude that semisimple Lie algebras are stable.

It is worth pointing out that the above is not a necessary condition. As explained

in Section 2.4, although a non-trivial 2-cocycle may exist, obstructions originat-

ing in H3(G0) can render it non-integrable, in which case the corresponding finite

non-trivial deformation does not exist. Concrete examples of stable Lie algebras

with non-trivial H2 have been constructed, typically as semidirect products. For

example (see Ref. 31), denote by S the simple three-dimensional Lie algebra over C

and by ρn the irreducible representation of weight n of S on W ≡ C2n+1. The semi-

direct product Ln = W oρn
S, for n > 5 and odd, is a stable Lie algebra, while its

second cohomology group is non-trivial. To deal with such cases, non-cohomological

approaches have been developed, relying on techniques of non-standard analysis.

A classification algorithm for stable Lie algebras exists, relying on a theorem that

such algebras possess a standard non-zero generator whose adjoint representation

gWe are assuming here that P0 is not a singular point of Ln — if that is not the case one may
instead conclude that the Zariski tangent space to Ln at P0 is Z2 (see Refs. 30 and 14, p. 317).
hZp, Bp, Hp are all Abelian groups with the group composition given by addition.
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is diagonalizable. Although tedious, the algorithm permits, in principle, the classi-

fication of all stable Lie algebras, in any dimension — for more details we refer the

reader to Refs. 4 and 14.

2.3. The Z product

It turns out that calculations involving expressions like (1), or (10), simplify

considerably when a particular product, the subject of this section, is introduced

among p-cochains.30

Given a vector space V , put Altp(V ) = Cp+1(V ), p ≥ −1. Then for α ∈
Altm(V ), β ∈ Altn(V ), define the product α Z β ∈ Altm+n(V ) by

α Z β(X0, . . . , Xm+n) =
∑

σ

sgn(σ)α(β(Xσ(0) , . . . , Xσ(n)), Xσ(n+1), . . . , Xσ(m+n)) ,

(15)

where σ ranges over all permutations such that σ(0) < · · · < σ(n) and

σ(n + 1) < · · · < σ(m + n) (these are known as riffle shuffles with cut at n + 1).

When both α and β are 2-cochains, as will often be the case, the above formula

reduces to

(α Z β) T
ABC = α T

RA β R
BC + α T

RB β R
CA + α T

RC β R
AB , (16)

where, for a p-cochain ψ(p),

ψ(p)(TA1
, . . . , TAp

) = ψ
B

A1···Ap
TB . (17)

Notice that Z is non-associative, but satisfies instead

(γ Z α) Z β − γ Z (α Z β) = (−1)mn((γ Z β) Z α− γ Z (β Z α)) (18)

(the commutative-associative law). The (graded) commutator of α, β is defined as

[[α, β]] = α Z β − (−1)mnβ Z α . (19)

Consider now a Lie algebra G = (V, µ), µ ∈ C2(V ) = Alt1(V ). It is easy to see that

the Jacobi identity for µ, Eq. (1), can be put in the form

µ Z µ =
1

2
[[µ, µ]] = 0 (20)

(the first equality is an immediate consequence of (19)). Furthermore, the action of

the coboundary operator sµ on an arbitrary (p+1)-cochain ψ ∈ Altp(V ) is given by

sµ . ψ = (−1)p[[µ, ψ]] ≡ (−1)pDµψ , (21)

i.e., sµ is equal, up to a sign depending on the order of the cochain it acts on, to

the operator Dµ ≡ [[µ, · ]]. Thus, all operations introduced in earlier sections can be

expressed in terms of the Z product.
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It can be shown that the graded commutator of (19) satisfies a graded Jacobi

identity,

(−1)mp[[α, [[β, γ]]]] + (−1)nm[[β, [[γ, α]]]] + (−1)pn[[γ, [[α, β]]]] = 0 , (22)

where α ∈ Altm(V ), β ∈ Altn(V ) and γ ∈ Altp(V ). This property, together with

bilinearity and graded antisymmetry, implies that Alt(V ) ≡ ⊕

n Altn(V ) is a graded

Lie algebra.

We derive now a number of interesting results, illustrating along the way the

efficiency afforded by the formalism introduced in this section. First, the proof of

sµ ◦ sµ = 0 may be given in a simplified form. Up to an irrelevant sign, it translates

into Dµ ◦Dµ = 0 and, for an arbitrary α ∈ Alt(V ),

Dµ ◦Dµα = [[µ, [[µ, α]]]] =
1

2
[[[[µ, µ]], α]] = 0 , (23)

where the second equality follows from the graded Jacobi identity for [[· , · ]], Eq. (22),

and the last one from the Jacobi identity for µ, Eq. (20). Second, the equation for

finite deformations may be derived easily. If µ is a Lie product, µ′ = µ+φ will also

be one if [[µ′, µ′]] = 0, from which one gets immediately the deformation equation

Dµφ+
1

2
[[φ, φ]] = 0 , (24)

which reduces to the cocycle condition for infinitesimal φ. Third, Eq. (22) implies

that Dµ is a graded derivation in Alt(V ), i.e.,

Dµ[[α, β]] = [[Dµα, β]] + (−1)m[[α,Dµβ]] , (25)

where α ∈ Altm(V ) and β ∈ Alt(V ). One may then conclude that if α, β are

cocycles, α, β ∈ Z(Alt(V ), Dµ), then so is [[α, β]], and that if, additionally, γ is a

coboundary, γ ∈ B(Alt(V ), Dµ), then so is [[α, γ]]. These two facts, in turn, imply

that the quotient space H(Alt(V ), Dµ) is itself a graded Lie algebra.

2.4. Obstructions and H3

Given a Lie algebra G = (V, µ) and a deformation µt,

µt = µ+ φt , φt =

∞∑

n=1

φnt
n . (26)

Then the deformation equation for φt, Eq. (24), implies an infinite sequence of

equations for the φn, one for each power of t. The equations corresponding to t, t2

and t3, arei

Dµφ1 = 0 , (27)

Dµφ2 = −1

2
[[φ1, φ1]] , (28)

Dµφ3 = −[[φ1, φ2]] . (29)

iNotice that all the φn are 2-cochains, so that [[φm, φn]] = [[φn, φm]] = φm Z φn + φn Z φm.
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If φ1 is a 2-cocycle, as (27) demands, then [[φ1, φ1]] is a 3-cocycle, since Dµ is

a (graded) derivation with respect to the [[· , · ]] product. But then, (28) demands

that this 3-cocycle be a coboundary, which may not be the case if H3(V,Dµ) is

non-trivial. We see then that the existence of non-trivial 3-cocycles may render

infinitesimal deformations (φ1 above) non-integrable. If [[φ1, φ1]] is indeed a trivial

3-cocycle, so that (28) admits a solution, an obstruction may occur in the next step,

i.e., in (29), and so on. It can be shown that all of these obstructions lie in H3,

so that, if H3 is trivial, every non-trivial 2-cocycle is the first order term of some

finite deformation.30

The following remarks will prove useful:

(1) If a non-trivial 2-cocycle φ also satisfies [[φ, φ]] = 0, then it satisfies the defor-

mation equation (24). In that case, the truncated deformation µt = µ+ tφ is a

Lie product for every t, if µ is one, regardless of the structure of H3.

(2) If there are several non-trivial 2-cocycles φi and all their anticommutators are

zero, [[φi, φj ]] = 0, ∀i, j, then an arbitrary linear combination of them also

satisfies the finite deformation equation, and the space of finite deformations

becomes a vector space, spanned by the φi’s.

(3) In both of the above cases, infinitesimal deformations along non-trivial 2-

cocycles are guaranteed to lead, as we saw earlier, to non-isomorphic algebras.

This is not necessarily the case for finite deformations: the algebra µ+ tφ may

become isomorphic, for particular finite values of t, to the algebra µ. Notice

also that, in general, the algebras µ+ tφ, for various finite values of t, may not

be isomorphic among themselves. The infinitesimal version of this is that the

algebras µ + tφ, for various (infinitesimal) values of t, are all isomorphic, as

long as t does not change sign. µ+ tφ might well be non-isomorphic to µ− tφ,

even for t infinitesimal.

Interestingly enough, these scenarios are realized in the stability analysis of the

Galilean algebra, in Section 2.6, as well as in that of the PH algebra, in Section 3.

2.5. Coboundary operator as exterior covariant derivative

It is obvious from the definition given above, that a p-cochain can be realized as

a G-valued left invariant (LI) p-form on the group manifold G corresponding to G,

with the generators TA now extended to LI vector fields. Denoting by {ΠA} the LI

1-forms on G dual to the generators {TB},
〈
ΠA, TB

〉
= δ A

B , (with 〈Πµν , Tρσ〉 = δ µν
ρσ ≡ g µ

ρ g ν
σ − g ν

ρ g
µ
σ ) , (30)

we write ψ(p) as

ψ(p) ≡ ψB ⊗ TB =
1

p!
ψA1···Ap

B ΠA1 · · ·ΠAp ⊗ TB . (31)
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Then the action of s given in (9) coincides with that of an exterior covariant deriva-

tive ∇,

∇(ψA ⊗ TA) = (dψA + ΩABψ
B) ⊗ TA , (32)

with the connection 1-form Ω given by

ΩAB = fRB
AΠR , (i.e., ∇TA

TB = [TA, TB]) . (33)

The nilpotency of s follows now from the vanishing of the curvature 2-form Θ =

dΩ + Ω2, due to the Jacobi identity, while 2-cocycles are covariantly constant G-

valued LI 2-forms (see, e.g., Ref. 7). Notice that the requirement that s . ψ(2) = 0,

with ψ(2) as in (31), reduces to

fAR
SψBC

R + fBR
SψCA

R + fCR
SψAB

R

+ ψAR
SfBC

R + ψBR
SfCA

R + ψCR
SfAB

R = 0 , (34)

which is, as expected, the first-order term, in t, of the Jacobi identity for the struc-

ture constants f+tψ. The use of the differential forms language permits writing out

cochains as geometrical objects, as in (31), rather than listing their components, a

practice we adhere to in the following.

The point of view sketched here has been further developed, in the case of com-

pact Lie algebras, in Ref. 38, the motivation there being the study of BRST cohomo-

logy. The appropriate coboundary operator, j called there the BRST operator, is

realized in terms of fermionic coordinates and their dual derivatives. An involu-

tion of the algebra of the latter, made possible by the invertibility of the Killing

form, gives rise to a dual object, the anti-BRST operator, and a grade-preserving

Laplacian. Further generalizations, involving higher order invariant tensors of the

algebra, have been explored in Ref. 8. We have developed similar techniques to deal

with the non-compact case, reinstating the connection term, and used them in one

of our programming approaches — we defer further details to a future publication.

2.6. An example: The shortest path from Galileo to Einstein

Consider the Galilean algebra GG of non-relativistic kinematics,

[Ja, Jb] = iε c
ab Jc , [Ja,Kb] = iε c

ab Kc , [Ka,Kb] = 0 , (35)

where Ja, Ka, a = 1, 2, 3, are the generators of rotations and boosts, respectively,

and indices are raised and lowered with the unit metric. The 2-cochain µ that

corresponds to this Lie product is, in the language of the preceding section,

µ =
1

2
ε c
ab ΠaΠb ⊗ Jc + ε c

ab ΠaΠb̄ ⊗Kc . (36)

jBecause of the compactness of the algebras studied in Ref. 38, the connection term in ∇ is dropped
— otherwise the cohomology is trivial, as asserted by Whitehead’s lemma.
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We adopt here the convention that, in 1-forms, unbarred indices refer to rotations,

while barred ones to boosts, so that, e.g., 〈Πā,Kb〉 = δ a
b (notice that bars are

important in forms but make no difference in Kronecker deltas or in the summation

convention). By an argument based on the observation made after Eq. (1), we

conclude that only scalar (under rotations) cochains need be considered. We simplify

further the notation taking advantage of the fact that, due to the limited number of

generators and invariant tensors, a simple listing of the nature of the 1-forms and

generators that enter in any given cochain, of up to second degree, is sufficient to

reconstruct it (there is only one way to contract the indices). For example, µ above

is given by

µ = χ
JJJ

+ χ
JKK

, where χ
JJJ

≡ 1

2
ε c
ab ΠaΠb ⊗ Jc , χ

JKK
≡ ε c

ab ΠaΠb̄ ⊗Kc

(37)

(a factor of 1/p! is included whenever p 1-forms of the same type are multiplied).

We inquire now about the stability of this algebra. The most general scalar

1-cochain is given by

φ = α1φJJ + α2φKJ + α3φJK + α4φKK , (38)

with φJJ = Πa ⊗ Ja, etc. Applying ∇ to obtain the most general 2-coboundary

we get

∇φ = α1(χJJJ
+ χ

JKK
) + 2α2χKKK

+ α3χJJK
. (39)

On the other hand, the most general scalar 2-cochain is given by

χ = β1χJJJ
+ β2χJJK

+ β3χJKJ
+ β4χJKK

+ β5χKKJ
+ β6χKKK

. (40)

We set ∇χ = 0 to obtain

∇χ = (β1 − β4)Ψ1 + β3Ψ2 = 0 (41)

with

Ψ1 = ΠaΠbΠb̄ ⊗Kā , Ψ2 = ΠaΠbΠā ⊗ Jb + Πb̄ΠaΠā ⊗Kb . (42)

We conclude that β1 = β4 and β3 = 0, so that the most general 2-cocycle is given by

χ̃ = c1(χJJJ
+ χ

JKK
) + c2χJJK

+ c3χKKJ
+ c4χKKK

, (43)

with arbitrary ci. Comparison of χ̃ with ∇φ shows that only χ
KKJ

is a non-trivial

2-cocycle, giving for the second cohomology group

H2(GG) = {[0], [χ
KKJ

]} . (44)

Accordingly, GG is infinitesimally unstable. By noting that [[χ
KKJ

, χ
KKJ

]] = 0, we

conclude that µt = µ + tχ
KKJ

yields a one-parameter deformation of the algebra

for finite t (see the comment at the end of Section 2.4). A look at the form of χ
KKJ
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shows that the deformation only adds a rotation generator in the r.h.s. of the K–K

commutator,

[Ka,Kb]t = itε c
ab Jc , (45)

leaving the rest of the commutators intact. The Lorentz algebra, describing rela-

tivistic kinematics, sits at t = − 1
c2

, where c is the velocity of light and, being

semisimple, it is stable.

3. Stable Quantum Relativistic Kinematics

Hopefully, the above example will have aroused the interest of the reader enough to

follow us as we embark on the search for a stable Lie algebra, encompassing rela-

tivistic and quantum effects. Our starting point is the fourteen generator Poincaré-

plus-positions algebra

[Jµν , Jρσ ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ) , (46)

[Jρσ , Pµ] = i(gµσPρ − gµρPσ) , (47)

[Jρσ , Zµ] = i(gµσZρ − gµρZσ) , (48)

augmented by a central generator M , to appear later in the r.h.s. of the Heisen-

berg commutator. We follow the practice of omitting all zero commutators, the

metric used is g = diag(1,−1,−1,−1) and c, the speed of light, is taken equal to

1. The resulting fifteen generator algebra, describing classical (~ = 0) relativistic

kinematics (plus the extra generator M) we call GCR (“Classical Relativity”). The

reader might want to identify Jµν with the Lorentz algebra generators and Pµ with

the momenta (and, even, Zµ with the positions) but we will focus initially on the

strictly algebraic problem of stability, and only digress on interpretational aspects,

which hold some surprises, in Section 4.

The 2-cochain µCR, corresponding to GCR, is given by

µCR =
1

2
ΠαρΠ β

ρ ⊗ Jαβ + ΠαρΠρ ⊗ Pα + ΠαρΠρ̇ ⊗ Zα . (49)

A straightforward calculation shows that [[µCR, µCR]] = 0, confirming that the

Jacobi identity is satisfied in GCR.

3.1. Calculation of H2(GCR)

We computed the second cohomology group H2(GCR) with the help of MATHE-

MATICA.k We did this in two independent ways. In the first one, the components

of cochains were calculated explicitly, one-by-one, while in the second a symbolic

approach was followed, dealing, e.g., with sums of the form ΠµΠν ⊗ Jµν without

kWe found version 5 a spectacular improvement over its predecessors in handling large systems of
linear equations.
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expanding them further. The first approach has the advantage of generality, as it

can deal, practically without further fine-tuning, with any Lie algebra — details of

the calculation are given in the appendix (see Appendix A). The second approach

is generally faster, at the price of adjustments needed every time a new object

(e.g., an invariant tensor) is introduced. In both approaches, the remark made after

Eq. (1) shows that we may consider only Lorentz scalars, drastically reducing the

workload. We have, nevertheless, implemented this only in our second approach, to

keep the first as general as possible. The result of both calculations is

H2(GCR) = {[0], [ψH], [ψPMZ], [ψZMP], [ψPMP], [ψZMZ]} , (50)

i.e., there are five non-trivial generators, with representatives given by

ψH = ΠµΠµ̇ ⊗M , (51)

ψPMZ = ΠµΠM ⊗ Zµ , (52)

ψZMP = Πµ̇ΠM ⊗ Pµ , (53)

ψPMP = ΠµΠM ⊗ Pµ , (54)

ψZMZ = Πµ̇ΠM ⊗ Zµ . (55)

As in the example of Section 2.6, we adopt a compact notation where undotted

indices in forms refer to P ’s, dotted ones to Z’s, so that, e.g.,
〈
Πµ̇, Zν

〉
= δ µ

ν .

As before, dots make no difference in Kronecker deltas or epsilon tensors. With a

slight abuse of notation, ΠM denotes the 1-form that detects the generator M . Our

first code mentioned above, running on a 2 GHz, 256 K, Pentium 4 machine, takes

slightly over 2 minutes to arrive at Eq. (50).

3.2. Finite deformations of GCR

Each of the cocycles in Eqs. (51)–(55) represents a direction of a possible infinite-

simal deformation. For example, the first of these, ψH, when added to µCR, adds the

Heisenberg commutator to GCR, while each of the other four rendersM non-central.

There are two questions that arise now:

(1) Are these infinitesimal deformations integrable?

(2) Are linear combinations of these infinitesimal deformations integrable?

To this end, we compute the commutators among the ψ’s and find that the only non-

zero ones are those between ψH and the rest of the ψ’s — it will prove convenient

in what follows to use the linear combinations ψ− = ψZMZ − ψPMP and ψ+ =

ψZMZ + ψPMP,

[[ψH, ψPMZ]] = −ΠµΠνΠν̇ ⊗ Zµ , (56)

[[ψH, ψZMP]] = ΠνΠµ̇Πν̇ ⊗ Pµ , (57)

[[ψH, ψ−]] = ΠµΠνΠν̇ ⊗ Pµ + ΠνΠµ̇Πν̇ ⊗ Zµ , (58)

[[ψH, ψ+]] = ΠνΠµ̇Πν̇ ⊗ Zµ − ΠµΠνΠν̇ ⊗ Pµ − 2ΠMΠνΠν̇ ⊗M . (59)



26th January 2005 10:59 WSPC/142-IJMPD 00663

2018 C. Chryssomalakos and E. Okon

Regarding the first question above, the fact that the diagonal commutators are all

zero implies that µCR + tψA, for t finite, gives a deformation of GCR, where ψA is

any of the five generators of H2(GCR) given above, Eqs. (51)–(55). For the second

question, the fact that the commutators among the last four ψ’s are all zero implies

that any linear combination of these ψ’s gives rise to a finite deformation as above.

The case of deformations that mix ψH with the other four generators needs special

treatment. We consider an infinitesimal deformation along the 2-cocycle φ1,

φ1 = qψH + β1ψPMZ + β2ψZMP + β−ψ− + β+ψ+ . (60)

One easily checks that [[φ1, φ1]] 6= 0 (the relevant anticommutators are given in

Eqs. (56)–(59) above), so that (28) is not trivially satisfied. For the above mentioned

anticommutators we find that the first three are trivial,

[[ψH, ψPMZ]] = −DµCR
ψPPJ , (61)

[[ψH, ψZMP]] = DµCR
ψZZJ , (62)

[[ψH, ψ−]] = −DµCR
ψPZJ , (63)

where

ψPPJ =
1

2
ΠµΠν ⊗ Jµν , (64)

ψZZJ =
1

2
Πµ̇Πν̇ ⊗ Jµν , (65)

ψPZJ = ΠµΠν̇ ⊗ Jµν . (66)

On the other hand, [[ψH, ψ+]] turns out to be non-trivial. Accordingly, the infinite-

simal deformation generated by φ1 might be integrable if, and only if, β+ = 0. In

that case, Eq. (28) is satisfied with

φ2 = qβ1ψPPJ − qβ2ψZZJ + qβ−ψPZJ . (67)

With an eye on (29), we compute [[φ1, φ2]] and find that it vanishes, so that φ3 = 0

(see Eq. (29)). Also, [[φ2, φ2]] = 0, implying that φ4, and all higher order φn’s vanish,

and the finite deformation truncates at second order,

µCR + φt = µCR + φ1t+ φ2t
2

= µCR + (qψH + β1ψPMZ + β2ψZMP + β−ψ−)t

+ q(β1ψPPJ − β2ψZZJ + β−ψPZJ)t
2 . (68)

Without loss of generality, we may put t = 1 and write the result as

µCR + φt=1 = µCR + qψH + β1(ψPMZ + qψPPJ)

+ β2(ψZMP − qψZZJ) + β−(ψ− + qψPZJ) , (69)

a form that will prove useful shortly.
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3.3. Heisenberg’s route: The algebra GPH(q)

We want to explore here what happens if one follows, along with Heisenberg, the

historical route and only deforms GCR along ψH. We consider, accordingly, the

stability of the algebra GPH(q) (“Poincaré plus Heisenberg”), with corresponding

2-cochain µPH(q) given by

µPH(q) = µCR + qψH (70)

(we assume henceforth that q 6= 0). The commutators defining it are given by

Eqs. (46)–(48), plus the Heisenberg commutator — for the sake of locality we

collect them all here,

[Jµν , Jρσ ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ) , (46′)

[Jρσ , Pµ] = i(gµσPρ − gµρPσ) , (47′)

[Jρσ , Zµ] = i(gµσZρ − gµρZσ) , (48′)

[Pµ, Zν ] = iqgµνM . (71)

We will have more to say about (71) in Section 4 — for the moment, we ask the

reader to accept it as a reasonable (i.e., covariant and of Lie-type) form of the

familiar Heisenberg relation. As in the previous case, of GCR, we first tackle the

purely algebraic problem of stability, and leave questions of physical interpretation

for Section 4. Meanwhile, the temptation should be resisted to consider GPH as the

algebra of “quantum relativistic kinematics” — it is argued later on that it is not.

We find that H2(GPH(q)) is non-trivial,

H2(GPH(q)) = {[0], [ζ1], [ζ2], [ζ3]} , (72)

where

ζ1 = ψPMZ + qψPPJ , (73)

ζ2 = −ψZMP + qψZZJ , (74)

ζ3 = ψ− + qψPZJ . (75)

ψH itself is still a cocycle, albeit a trivial one now (for all non-zero q). This means

that, starting at GPH(q), and moving along ψH, one arrives at isomorphic algebras.

But moving along ψH amounts to changing the value of q, without changing its

sign. We conclude that the algebras GPH(q), for all non-zero values of q, of the same

sign, are isomorphic. On the other hand, one can easily change the sign of q by a

redefinition of the generators, e.g., by rescaling all Z’s by some negative number,

or exchanging P and Z (notice that in both examples, the corresponding matrix

that effects the redefinition has positive determinant, i.e., it lies in the connected

component of GL(15,R)). The upshot of all this is that all GPH(q), for non-zero q,

are isomorphic.
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3.4. Finite deformations of GPH(q)

Reasoning as in Section 3.2, we compute the commutators among the ζ’s, and find

that they all vanish. Accordingly, every linear combination of the above cocycles,

added to µPH, provides a finite deformation of GPH. For a generic combination ζ(α),

ζ(α) = α1ζ1 + α2ζ2 + α3ζ3 , (76)

the 2-cochain µ(q,α) = µPH(q) + ζ(α), is clearly identical to the one found before,

Eq. (69), with the identifications (β1, β2, β−) 7→ (α1,−α2, α3). We have arrived

then at the same result, either deforming GCR along a direction that truncates

to second order in the deformation parameter, or by performing two successive

deformations (with intermediate stop at GPH(q)), each truncating to first order. The

corresponding deformed algebra is given by the commutators of GCR, Eqs. (46)–(48)

(notice that the Heisenberg commutator is not included), plus the following

[Pµ, Zν ] = iqgµνM + iqα3Jµν , (77)

[Pµ, Pν ] = iqα1Jµν , (78)

[Zµ, Zν ] = iqα2Jµν , (79)

[Pµ,M ] = −iα3Pµ + iα1Zµ , (80)

[Zµ,M ] = −iα2Pµ + iα3Zµ . (81)

We denote the resulting algebra by GPH(q,α). We see that, for a generic deforma-

tion, the P ’s cease to commute among themselves, and so do the Z’s, M is no longer

central, while the Heisenberg commutator receives an additional term, proportional

to Jµν .

3.5. The instability cone

Relevant questions that emerge now are:

(1) Are the above deformations GPH(q,α), for various values of α, (finally) stable?

(2) Are there deformations that are isomorphic among themselves?

To answer the first question, we compute, as always, the second cohomology group

and find

H2(GPH(q,α)) =

{

{[0]} if α2
3 6= α1α2

{[0], [χ]} if α2
3 = α1α2

, (82)

where χ = ζ1 + ζ2 satisfies [[χ, χ]] = 0. GPH(q,α) is, accordingly, stable everywhere

outside the instability surface α2
3 = α1α2 in α-space. The latter represents a double

cone with the apex at the origin and its axis along the first diagonal in the α1–α2

plane, parallel to χ (see Fig. 2). We will refer to the various regions of α-space with

their relativistic nicknames (“future”, “past”, etc.), with the future including the

positive α1–α2 quadrant. Notice that, off the cone, χ is a trivial cocycle, χ = ∇ξ, and
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Figure 2: The (α1, α2, α3) deformation space of GPH(q), with a representative of each of the six equivalence
classes drawn (these are, in relativistic parlance, the future and past light-cones, the apex, the future, the
past and the elsewhere). The two cones and the apex at the origin correspond to unstable algebras – the
rest of the space to stable ones. For all classes, a representative exists with α3 = 0 (the little spheres
denote such representatives). With the identification of Zµ with the moment operator (see Sect. 4), the
origin corresponds to GPH(q), while GQR, the Lie algebra of standard quantum relativistic kinematics, lies
on the future cone, at ~α = (0, q, 0). Stabilizing deformations of GQR, generated, e.g., by χ, may lead either
towards the future (isomorphic to so(1, 5)) or towards the elsewhere (isomorphic to so(2, 4)). Both choices
introduce non-commutativity of the P ’s, differing in the sign of the associated curvature.

to µt, for generic t. Finally, had we chosen instead a non-trivial cocycle orthogonal to the axis of the
cone, rather than parallel to it13, there would exist a finite deformation along it isomorphic to the
original algebra, given by the “antipodal” point on the future cone, (α2, α1,−

√
α1α2).

3.6 Gauging away the α’s

The above conclusion makes it evident that, for each of the above classes, a representative exists with
α3 = 0. The deformation space then, from the algebraic point of view, is essentially the α1-α2 plane.
To find explicitly a linear redefinition of the generators that moves an arbitrary point in α-space to
the α1-α2 plane, we notice that the transformation (P,Z) 7→ (P ′, Z ′), given by

P ′

µ = aPµ + bZµ , Z ′

µ = cPµ + dZµ , ad− bc = 1 , (84)

13This can achieved by adding an appropriate trivial cocycle to χ.

Figure 2. The (α1, α2, α3) deformation space of GPH(q), with a representative of each of the six
equivalence classes drawn (these are, in relativistic parlance, the future and past light-cones, the
apex, the future, the past and the elsewhere). The two cones and the apex at the origin correspond
to unstable algebras — the rest of the space to stable ones. For all classes, a representative
exists with α3 = 0 (the little spheres denote such representatives). With the identification of
Zµ with the moment operator (see Section 4), the origin corresponds to GPH(q), while GQR,
the Lie algebra of standard quantum relativistic kinematics, lies on the future cone, at α =
(0, q, 0). Stabilizing deformations of GQR, generated, e.g., by χ, may lead either towards the future
(isomorphic to so(1, 5)) or towards the elsewhere (isomorphic to so(2, 4)). Both choices introduce
non-commutativity of the P ’s, differing in the sign of the associated curvature.

ξ has a pole on the cone. Regarding the second question above, from the fact that

each algebra outside the light cone is isomorphic to all algebras in its neighborhood,

we conclude that all algebras in, say, the future, are isomorphic among themselves

(similarly for the past and the elsewhere). A slight refinement of the argument, using

the fact that tangent vectors to the cone are trivial cocycles, leads to the conclusion

that all algebras in, say, the future cone, are isomorphic among themselves (similarly

for the past cone), with the apex, i.e., GPH(q,0) ≡ GPH(q), in a class by itself. In

conclusion, there are six equivalence classes of algebras, given by the various regions

the α-space is divided into by the double light cone.

A glance at Fig. 2 helps visualize several aspects of the stability analysis that

were mentioned earlier (see Section 2.4). For example, starting at some (unstable)

point of, say, the future cone, it is clear that infinitesimal deformations along the

cocycle χ given above lead either to the future or to the elsewhere, both being non-

isomorphic to the original algebra but also between themselves. Since [[χ, χ]] = 0,

one may also consider finite deformations,

µt = µPH(q, α1, α2,
√
α1α2) + tχ . (83)



26th January 2005 10:59 WSPC/142-IJMPD 00663

2022 C. Chryssomalakos and E. Okon

In this case, it is clear that there exists a negative value of t (t0 = −α1 − α2) such

that the resulting algebra µt0 = µPH(q,−α2,−α1,
√
α1α2) lies on the past light

cone and is, therefore, non-isomorphic to µt, for generic t. Finally, had we chosen

instead a non-trivial cocycle orthogonal to the axis of the cone, rather than parallel

to it,l there would exist a finite deformation along it isomorphic to the original

algebra, given by the “antipodal” point on the future cone, (α2, α1,−
√
α1α2).

3.6. Gauging away the α’s

The above conclusion makes it evident that, for each of the above classes, a repre-

sentative exists with α3 = 0. The deformation space then, from the algebraic point

of view, is essentially the α1–α2 plane. To find explicitly a linear redefinition of the

generators that moves an arbitrary point in α-space to the α1–α2 plane, we notice

that the transformation (P,Z) 7→ (P ′, Z ′), given by

P ′

µ = aPµ + bZµ , Z ′

µ = cPµ + dZµ , ad− bc = 1 , (84)

leaves the value of q in the Heisenberg commutator invariant, while, in α-space, it

induces the transformation α 7→ α′ = Rα, where

R =





a2 b2 2ab

c2 d2 2cd

ac bd ad+ bc



 . (85)

It can be checked that, in the particular case where the P -Z transformation is a

rotation by an angle θ,
(
a b

c d

)

=
(

cos θ sin θ

− sin θ cos θ

)

, the matrix R that results from

(85) describes a rotation in α-space, around the axis of the cone, by an angle of

2θ, counterclockwise as seen from the future. Such a rotation clearly leaves all

isomorphism classes invariant and can be chosen so as to move any particular point

to the α1–α2 plane. Similarly, for algebras in the elsewhere, isomorphic algebras

exist with either α1 or α2 equal to zero — this is not true for algebras in the past

or the future (the orbits of the latter under the above rotation do not intersect

the α1–α3 or α2–α3 planes). Having said that, due consideration should be given

to the fact that physicists can be single-minded in what regards their preferred

set of generators, e.g., working with arbitrary linear combinations of momenta and

positions could be frowned on. If such preferences are given priority, one might be

forced to work with a version of the deformed algebra with α3 6= 0.

3.7. Isomorphisms

This brings our stability analysis to a conclusion. The algebra GPH(q,α) we have

arrived at is given by Eqs. (46)–(48) and (77)–(81), with corresponding 2-cochain

µPH(α) = µCR + qψH + α1ζ1 + α2ζ2 + α3ζ3 . (86)

lThis can achieved by adding an appropriate trivial cocycle to χ.
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The novelties are that the P ’s don’t commute, the Z’s do not commute, M is

no longer central, and an extra term appears in the Heisenberg commutator. The

nature of the three deformation parameters αi is discussed in Section 4.5, after the

physical identification of the generators has been carried out.

As it has been pointed out in Refs. 19 and 27, the above algebra, off the insta-

bility cone, is isomorphic to some so(m, 6 −m), where m depends on the signs of

α1, α2 (taking α3 = 0). The isomorphism, given in Ref. 27, is as follows: denote the

generators of so(m, 6 −m) by {Jµν , Jµ4, Jµ5, J45} — their commutation relations

are analogous to those of the Lorentz group, Eq. (46), with a metric ḡ that is taken

diagonal, with entries ±1, and coinciding with g in the Lorentz sector. Assuming

the identifications

Pµ = σJµ4 , Zµ = τJµ5 , M = ρJ45 , (87)

one finds the commutators

[Pµ, Zν ] = −i στ
ρ
ḡµνM , [Pµ,M ] = i

ρσ

τ
ḡ44Zµ , [Zµ,M ] = −i ρτ

σ
ḡ55Pµ . (88)

Comparing the first of these with the Heisenberg commutator gives ρ = −qστ .
Substituting this in the other two, and comparing with (80), (81), respectively,

shows that

ḡ = diag(1,−1,−1,−1, ε4, ε5) , ε4 ≡ −sgn(qα1) , ε5 ≡ −sgn(qα2) , (89)

i.e., assuming q > 0,

GPH(q, α1, α2, α3 = 0) ∼=







so(1, 5) if α1 > 0, α2 > 0

so(2, 4) if α1α2 < 0

so(3, 3) if α1 < 0, α2 < 0

. (90)

(see Fig. 2). On the light-cone, the above semisimple (and, hence, stable) algebras

go over to the corresponding semidirect product.19

3.8. Relation with other algebras

As mentioned in the Introduction, several non-commutative spacetime Lie algebras

have been proposed over the years, but, as a rule, they fail to provide a complete set

of generators. We provide below an account of these earlier attempts, emphasizing

from the outset that our list of references does not pretend to be complete.

The first, to our knowledge, publication regarding a non-commutative, Lorentz

covariant spacetime is due to Snyder, dating from 1947. Apparently, as J. Wess

has documented and publicized, the idea can be traced back to Heisenberg, who,

in a letter to Peierls, suggested that the ultraviolet infinities of quantum field

theory could be tamed by assuming non-commuting spacetime coordinates. Peierls

soon found an altogether different application in the calculation of the lowest

Landau level of a system of electrons in a magnetic field with impurities, using

non-commuting coordinates in the potential-like function describing them. He also
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passed on the idea to Pauli, who described it to Oppenheimer, who shared it with

Snyder, who published Ref. 36 (our source is Ref. 17). Snyder’s position opera-

tors fail to commute among themselves, exactly as in (79). His momenta, however,

commute, and the position-momenta relations contain non-linear terms. An early

attempt at formulating electrodynamics in this non-commutative spacetime fol-

lowed shortly after.35 Later in that year, Yang,39 pointed out that by introducing

what we have called M , one can render the algebra linear. Additionally, he proposed

non-commuting momenta, exactly as in (78) and the accompanying P -M relations,

Eq. (80) (with α3 = 0). The so isomorphism was also given, although with a partic-

ular choice for the signs ε4, ε5 (both equal to −1). In fact, getting to some known,

preferably semisimple, algebra (like so), seems to have been his guiding principle

in completing the set of commutators.

Several years later, Khruschev and Leznov19 provided a further deformation,

essentially the one given by our ζ3, i.e., by the terms proportional to α3 in (77)–

(81). Although their article cited above appeared in 2002, it quotes this result (or,

at least, significant parts of it) from an earlier work of theirs, dating from 1973,

which we have not had access to. Their approach is via a straightforward solution

of the Jacobi identities, and does not include the stability point of view. Apart

from the deformation itself, they also provide information on the Casimirs of the

deformed algebras, and mention the α1α2 − α2
3 6= 0 relation, with α1α2 6= 0, as a

semisimplicity criterion for the deformed algebra. The so identifications are given

(they actually use o(n, 6−n)) but the possibility of gauging away α3 by a redefinition

of the generators is not pointed out. Some steps towards constructing field theories

on these quantized spaces were taken in Ref. 23.

The work of Vilela Mendes,27 which motivated ours, appeared in 1994. There,

for the first time, the stability criterion for the non-commutative spacetime algebra

is invoked and its relevance, more generally, for the algebraic structures employed

in physical theories is convincingly advocated. The approach taken in determining

the stable form of the algebra is a minimalistic one: the so algebras are pro-

posed ab initio, being obviously deformations, and their semisimplicity is invoked

to guarantee their stability. Economical as it may be this approach, it leaves never-

theless pending the question of uniqueness, prompting us to undertake the present

systematic search. The instability double cone is not mentioned in the above work.

Also, although Snyder’s work was known to the author, it seems he did not come

across Yang’s contribution. Various applications have been considered by Vilela

Mendes and co-workers in Refs. 5, 26 and 28.

In recent years, as mentioned in the Introduction, several “Doubly Special

Relativity” algebras have been proposed. They all ignore the (initially) central

generator M . In Ref. 20 it was shown that all commutation relations of the de-

formed algebras, except the P -Z ones, can be brought into a Lie form by appro-

priate non-linear redefinitions of the generators. The Lie form found coincides with

that provided by the α2 deformation above. Furthermore, it was pointed out in

Ref. 9, that by taking M into account, the “Triply Special Relativity” of Ref. 21 is
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linearized, and the resulting, Lie-type, deformation is the one provided by α1 above

(this was essentially a repeat of Yang’s observation on Snyder’s proposal, applied

to the momentum sector). Thus, it seems that when M is taken into account, non-

linear redefinitions bring the “Multi-Special Relativity” algebras into one of the

forms found above.m These observations suggest that, before leaving the tried and

tested Lie algebra framework, Lie deformations introducing new invariant scales,

like the ones proposed earlier, should be studied carefully, and the need for non-

linearity should be critically examined.

Finally, the following obvious fact should be emphasized: isomorphic, or even

identical, algebras may correspond to radically different physics if the generators

that enter in them are interpreted in different ways. In this respect, all of the

above mentioned works coincide in the physical identification of the generators, in

particular, in the fact that the Zµ’s should be interpreted as position operators. As

we explain in the section that follows, our view differs.

4. Some Physical Considerations

We deal, finally, with a number of interpretational issues. We would like to warn

the reader that the material in this section is still in its formative stage, and several

aspects of what follows are still under investigation. Nevertheless, we feel it is

worthwhile pointing out alternative possibilities in the physical identification of

the generators we have been studying. The content here is mostly qualitative and

the tone, accordingly, informal. We keep complexity to a minimum by treating the

case of a massive, spinless particle only — a more complete analysis will have to

wait, like so many other things, a future work.

4.1. The coproduct of Lie algebra generators

We wish to discuss the physical meaning of the coproduct of Lie algebra generators.

We will use the Poincaré algebra as an example, but the discussion applies to general

Lie algebras.

Consider applying a translation Ta to a particle, located at x. As a result, the

particle shifts to x + a. Imagine now that, under closer inspection, the particle is

seen to be a bound state of two other particles. To translate by a what is now

known to be a two-particle system, one applies the translation Ta to each of the

constituent particles in the system. The n-particle case, n > 2, is handled by further

subdivision of either of the two particles above. Similar considerations hold for rota-

tions or boosts. This observation is formalized in the following manner. The state of

the system under study is represented by a state vector |ψ〉 in some Hilbert space H.

To a possible transformation of the system, e.g., a rotation Rαβγ parametrized by

Euler’s angles, one associates an operator D(Rαβγ), acting on H. When the system

mThis statement is meant as an observation of a pattern, not as a theorem — we have certainly
not checked each and every non-linear algebra proposed.
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is revealed to consist of, say, particles 1 and 2, the state space becomes H1 ⊗H2,

where Hi is the state space of particle i. The observation made above then implies

that the operator representing Rαβγ in H1 ⊗H2 is simply D1(Rαβγ) ⊗ D2(Rαβγ),

where Di is the representation of rotations in Hi. This is true for all representa-

tions Di — we may accordingly conclude that the abstract rotation operator Rαβγ
acts on tensor products as Rαβγ ⊗Rαβγ and call this latter operator the coproduct

∆(Rαβγ) of Rαβγ . Particular cases then are handled by taking the appropriate rep-

resentation of this universal formula, e.g., D1 ⊗ D2 above. The fact that rotations

should compose in the same way, whether applied to a simple or to a composite sys-

tem, is expressed algebraically by the requirement thatn ∆(R1R2) = ∆(R1)∆(R2).

Our formalism respects this for, if R1R2 = R3, then

∆(R1R2) = ∆(R3)

= R3 ⊗R3

= R1R2 ⊗R1R2

= (R1 ⊗R1)(R2 ⊗R2)

= ∆(R1)∆(R2) , (91)

the product law in the tensor product being (A ⊗ B)(C ⊗ D) = AC ⊗ BD. We

summarize: for all transformations T in the Poincaré group

• the coproduct ∆(T ) is grouplike,

∆(T ) = T ⊗ T (92)

• ∆ is an algebra homomorphism,

∆(T1T2) = ∆(T1)∆(T2) . (93)

Now write T = eA, with A in the Poincaré algebra GP and define ∆ to be linear in

the entire U(GP), the universal enveloping algebrao of GP — a simple calculation

then shows that ∆(A) = A⊗ 1 + 1⊗A (this is a logarithm turning a product into

a sum, as usual). We conclude that

• The generators of grouplike transformations are primitive,

∆(A) = A⊗ 1 + 1 ⊗A , (94)

with Jtot = J1 + J2 as the archetypical example from quantum mechanics. In other

words, the physical quantities corresponding to generators of grouplike transfor-

mations are additive under system composition (or extensive, in thermodynamics

parlance). All Lie algebra generators are of this nature. From a geometric point

nAnother way of writing this is [∆(TA),∆(TB)] = f C
AB ∆(TC), i.e., the generators ∆(TA) in

G ⊗ G satisfy the same commutation relations as the TA’s.
oMore precisely, a certain topological completion of U(GP).
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of view, the definition of pointwise multiplication of functions on the group mani-

fold, (fh)(g) = f(g)h(g), is what fixes the coproduct of the point (transformation)

g to be grouplike. At the infinitesimal level, this becomes the Leibniz rule satis-

fied by the generators (this is another way of interpreting (94)), consistent with

their representation as first-order differential operators on the group manifold. The

above considerations prompt us to only allow primitive operators as Lie algebra

generators.

In Ref. 27, it is argued that the one-dimensional Heisenberg commutator, [p, x] =

−i, can be interpreted as defining a stable Lie algebra. The justification for this

claim is made through the observation that one could equally well choose a function

of x as a coordinate, in particular, y = eix. Then, the Heisenberg relation takes the

form [p, y] = y, which indeed defines a stable two-dimensional algebra. Apart from

the unsuitability of eix as coordinate over the entire x-axis, it should be clear from

our earlier discussion that we cannot agree with this argument, since y is no more

primitive than x.

4.2. The Lie form of the Heisenberg algebra

As mentioned after our first reference to the Heisenberg commutator, Eq. (71),

there are a number of remarks that we would like to make regarding its proposed

form. One usually first encounters the Heisenberg commutator in the form

[Pi, X
j ] = −iqδ ji , (95)

which is unsatisfactory for (at least) two reasons. The first has to do with Lorentz

covariance — the obvious remedy is to consider instead the form

[Pµ, Xν ] = iqgµν , (96)

leaving for a future brainstorm the elucidation of its physical implications (notice

that time is promoted to an operator). The second reason is of a technical nature:

dealing with a Lie algebra, the r.h.s. of (96) ought to be linear in the generators.

The usual solution followed in the literature is to introduce a new, central generator

M , with

[Pµ, Xν ] = iqgµνM . (97)

The resulting three-generator Lie algebra is referred to as the Heisenberg algebra —

the physical interpretation of M is generally left obscure. It might at first seem that

there is little to be gained from writing out M explicitly, since it commutes with

everything, but when deformations of the algebra are considered, it will be essential

to do so since, as a result of the deformation, M might cease to be central (for an

example of the type of problems that may arise by suppressing M , see Ref. 9).

Is (97), at last, an acceptable form of the Heisenberg algebra? That the answer

should still be negative follows easily from our remarks about the primitiveness of

Lie algebra generators. First, if M in the r.h.s. of (97) were primitive (and hence
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extensive), the effective Planck’s constant for a composite system would be the

sum of those for its constituent parts, providing for several concrete examples of

fuzzy spheres (e.g., the earth, with qEarth
∼= 1014 Kgr m2/sec). Second, Xµ is not

primitive. There are various ways to see this. To begin with, it is rather obvious

that position is not an extensive quantity: if two particles are glued together at xµ,

their composite system is also located at xµ, not at 2xµ. Another way is to look

at the corresponding finite transformation. Xµ may be considered, up to a sign,

the generator of translations in momentum space. But the apparent symmetry (via

duality) between momenta and positions should be treated with care. In particular,

although translations in spacetime are grouplike, those in momentum space are not.

If a particle of 4-momentum p is translated, in momentum space, by k, it ends up

with 4-momentum p+ k. If now it is discovered that it is actually made up of two

other particles and each of them is translated by k, then the composite particle

would be translated by 2k. This latter example reveals something about the nature

of the grouplike operator that should replace eX , the logarithm of which would be

acceptable as a Lie algebra generator. Roughly speaking, it should somehow detect

the mass of the particle and translate in momentum space by a quantity propor-

tional to it. Notice that, despite the elementary nature of the considerations in this

section, there seems to exist a consensus in the literature that Xµ is primitive.p

4.3. The coproduct of the position operator

So, if Xµ is not primitive, what is its coproduct ∆(Xµ)? The answer is that, in

general, ∆(Xµ) does not exist. To see why this is so, let us first specify what

exactly is it that we want the position operator to do for us. For a single localized

particle it is clear that Xµ should return its position, but what should Xµ (via

its coproduct ∆(Xµ)) do on a two-particle system? Clearly, if the two particles

are glued together and the composite system is localized, we should get the same

answer whether we operate with Xµ on the composite particle or with ∆(Xµ) on

the two-particle system. When the two particles are far apart and/or have dif-

ferent velocities, the natural requirement would be that ∆(Xi) (i.e., the spatial

part of ∆(Xµ)) should return the position of their center-of-momentum (or center-

of-inertia), i.e., the relativistic refinement of the newtonian center-of-mass concept,

which is the natural “effective position” of a relativistic composite system.q The

problem is that the center-of-momentum 3-vector is not the spatial part of any

4-vector, in other words, the “effective position” of a composite relativistic system

does not behave as a 4-vector. As a result, different observers locate the center-

of-momentum of a system at different points. This, in turn, implies that ∆(Xµ)

does not satisfy the same commutation relations with ∆(Jρσ) as Xµ does with Jρσ

pThe references assuming so are too many to list here explicitly — Ref. 20 may nevertheless
be singled out for actually deriving this result (see their Eq. (26) and the erroneous argument
preceding it).
qSee, for example, the discussion in Ref. 32, p. 84 and Ref. 22, p. 42.
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(see footnote n), in other words, ∆ fails to be a homomorphism of the algebra,

which proves our assertion.

The above conclusion might well be correct, but, certainly, there are composite

systems the “effective position” of which, for all practical purposes, behaves like a

4-vector (e.g., an α-particle). This implies that although, strictly speaking, ∆(Xµ)

does not exist, one might nevertheless define an approximate coproduct that works

provided it is applied on a restricted class of systems — intuitively, systems that

can fool the observer into thinking they are a single, localized particle. To make

this statement precise, we note that the center-of-momentum spatial coordinates of

a (non-interacting) two-particle system are given by

R =
E1r1 +E2r2

E
, (98)

where E ≡ E1+E2 is the total energy of the system (this formula makes it clear that

R is not the spatial part of any 4-vector). Assume nowr that the system under study

is such that in its center-of-momentum frame all energies Ei are nearly equal to the

corresponding rest masses, Ei ∼= mi — we will call such a system psychron, from the

greek
�������

�́
	 for “cold.” Then, in the above frame, (98) reduces to the Newtonian

formula for the center-of-mass. Moreover, when boosting to an arbitrary frame, all

energies in the r.h.s. of (98) transform by the same γ-factor, which cancels, so that

the l.h.s. transforms as a spatial vector. We conclude that, for psychron 2-particle

systems, the relation

m12x
µ
12 = m1x

µ
1 +m2x

µ
2 , (99)

where m12 ≡ m1 +m2, defines the effective position x12 of the system as a 4-vector.

Denoting by M the mass operator, M 2 = P µPµ, and brushing aside ordering ambi-

guities, we conclude from (99) that the moment operator Zµ ≡ XµM is primitive,

when applied to psychron systems (M is also primitive on such systems). We note

furthermore that Zµ is of exactly the form anticipated by the argument at the

end of Section 4.2. In terms of Z, the covariant version of the Heisenberg relation,

Eq. (96), takes the familiar form used earlier,

[Pµ, Zν ] = iqgµνM , (71′)

albeit with a new interpretation. Notice that, with M positive, and our convention

for the metric, the standard quantum mechanical relations correspond to q = ~.

4.4. The algebra of standard quantum relativistic kinematics

We investigate the repercussions of the above interpretation of Zµ, M , in identi-

fying the algebra of standard quantum relativistic kinematics. In the latter, the

momenta commute and so do the positions, while their cross-relations are given

rOur simplifying assumptions of non-zero mass and zero spin start taking effect from this point on.
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by the Heisenberg commutator, Eq. (96). But then the Z’s, in terms of which the

algebra should be expressed, do not commute,

[Zµ, Zν ] = iq(XµPν −XνPµ) , (100)

and neither do the Z’s with M ,

[Zµ,M ] = −iqPµ , (101)

where [Xµ, f(P )] = −iq∂f(P )/∂P µ was used.s Notice that the Z-Z non-

commutativity is a purely quantum (q 6= 0) phenomenon and has no connec-

tion to spacetime non-commutativity. We recognize the r.h.s. of (100) as (a

multiple of) the covariant form of the orbital angular momentum generator,

Lµν = q−1(XµPν −XνPµ). For a massive, spinless particle then, we have

[Zµ, Zν ] = iq2Jµν . (102)

A look at (79), (81), shows that the above relations, Eqs. (101) and (102), are of

exactly the form furnished by the α2 deformation, with α2 = q. We conclude that,

for a massive, spinless particle, the algebra GQR of standard quantum relativistic

kinematics is given by

GQR = GPH(q, 0, q, 0) , (103)

i.e., in α-space, it lies on the surface of the future cone, along the α2-axis, at α2 = q

(see Fig. 2). It is worth noting that, with the above interpretation of the Z’s, the

Heisenberg algebra by itself does not close, the Z-Z commutator generating the

Lorentz group.

4.5. The nature of the deformations

The deformation corresponding to ζ1 introduces non-commutativity among the

momenta and rendersM non-central. Its origins lie in the instability of the Poincaré

algebra, which stabilizes to the simple De Sitter algebras so(1, 4) or so(2, 3). The

corresponding parameter, α1, has dimensions [L]−1[M ], so that R ≡
√

~/α1 is a

length, the radius of curvature of the manifold on which the various so algebras of

Section 3.7 act. It has been suggested in Ref. 27 that, as long as one is interested in

the kinematics in the tangent space to the manifold, rather than the group of mo-

tions of the manifold itself, one may take the R → ∞ limit, i.e., one may essentially

disregard the above deformation. On the other hand, in Ref. 21, the suggestion has

been made that R2 may set the scale for the cosmological constant Λ. In any case,

this deformation is a familiar and thoroughly studied one.

sStrictly speaking, this relation holds for functions f(P ) that can be expanded in power series in
P — nevertheless, the commutation relations (100), (101), are consistent with M 2 = PµPµ and
we do not require anything more.



26th January 2005 10:59 WSPC/142-IJMPD 00663

Generalized Quantum Relativistic Kinematics 2031

When the Zµ are identified with the position operators, the deformation

generated by ζ2 turns on spacetime non-commutativity. α2 in that case has dimen-

sions [L][M ]−1 , so that ` ≡
√

~α2 is a length, the inverse of which has, in the

past, been conjectured to set the scale for the masses of the elementary particles.

However, if that were the case, the effects of the deformed commutators would by

now have been measured, so this proposal had to be abandoned. A more recent

tendency is to regard ` as the Planck length, and attribute the non-commutativity

to quantum gravity effects (see, e.g., Ref. 21 and references therein). Whatever the

interpretation of the new length scale may be, the above identification of the Z’s

seems to us to suffer from a somewhat incredulous prediction: the extent to which

the coordinates of a particle do not commute, i.e., the local “fuzziness” in space-

time due to, e.g., quantum gravity effects, depends, in general, on the position of

the origin (since Jµν , the particle’s angular momentum, does). In particular, the

coordinates of a particle at the origin commute. We think it improbable that such

a state of affairs can be successfully incorporated in a consistent physical scheme,

and invite workers pursuing this direction to address what, to us, seems like a neg-

lected pathology. In conclusion, then, we think it fair to say that interpreting the

Z’s as spacetime coordinate operators of a particle makes it improbable for the

α2 deformation to have the physical applications proposed in the literature. On

the other hand, our identification of the Z’s with the moment operators leads to

the conclusion that GQR, the standard, experimentally tested, quantum relativistic

algebra in which, in particular, the spacetime coordinates commute, is given, in the

case of a massive spinless particle, by α2 = q, with the experiment fixing the value

q = ~. If the interpretation advocated above is correct, then, a look at Fig. 2 shows

that the only deformations left to explore are those generated by ±χ, leading to

the future or the elsewhere, respectively, both introducing non-commutativity of

the momenta.

The α3 deformation signals a more radical departure from GQR, so much so

that, in Ref. 27, it is practically discarded as unphysical. Reference 19, on the other

hand, treats it on an equal footing and observes that, with the Z’s as positions,

α3 is dimensionless, so that ~α3 is a new fundamental constant with dimensions of

action. When the Z’s are taken as moments, α3 acquires dimensions of mass. In

either case, the physical implications of the deformation are somewhat obscure and

deserve further study.

5. Concluding Remarks

We have pursued in this paper the stability point of view to its ultimate conse-

quences. Our systematic algebraic analysis has recovered previous results, establish-

ing their uniqueness, and shedding light along the way on various technical issues, in

particular, the interrelations among the deformations found. A fundamental depar-

ture from the established lore has been our identification of the Zµ generators with

the moment operators of a (massive, spinless) particle, having concluded that the
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position operators lack the essential property of primitiveness, necessary for all Lie

algebra generators.

We think that a number of questions raised here deserve further study. First, we

would like to extend the concept of the moment operators to the case of particles

with spin, and/or zero mass — this should be subsequently generalized to the fully

deformed case. Second, representation theoretical aspects of the problem should

be examined, in particular, a Wigner-type classification should be carried through

for the deformed algebras. It would also be of interest to develop some degree of

intuition regarding the deformed kinematics, e.g., by clarifying the coexistence of

the Lorentz contraction with an invariant length scale. Further ahead, one can

wonder about the form quantum field theory would take in the spacetimes we have

been considering, and whether the invariant scales introduced by the deformations

do indeed provide natural cutoffs. Still further on the horizon, a supersymmetric

version of this work, including this section’s musings, can be envisioned.
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Appendix A. Computing H2(GCR)

The complexity of the calculation of the second cohomology group of an algebra

grows rapidly with its dimension. When dealing with a 15-dimensional algebra, like

GCR in the case at hand, the prospect of carrying out the analysis manually becomes

somewhat unattractive. Luckily, some MATHEMATICA code we wrote deals with

the problem within minutes — we give here some details of the calculations. The

algorithm we used was the following:

(1) Consider the most general 1-cochain φ,

φ = φ B
A ΠA ⊗ TB , (A.1)

with φ B
A arbitrary real constants (a sum of 152 = 225 terms). Obtain the most

general 2-coboundary ψ by setting ψ = ∇φ. This produces a sum of 1008 terms,

each corresponding to a non-zero component of ψ.

(2) Consider the most general 2-cochain χ,

χ = χ C
AB ΠAΠB ⊗ TC , (A.2)

with χ C
AB arbitrary real constants (a sum of 15

(
15
2

)
= 1575 terms). Require

that it be a 2-cocycle by setting ∇χ = 0. This results in a system of 5672 linear

homogeneous equations in the above 1575 χ C
AB ’s, which is solved for some of

them in terms of the rest — call the latter ci. Effecting these substitutions in
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χ, one obtains the most general 2-cocycle χ̃ ≡
∑

i ciχi with arbitrary ci. As a

result, each of the χi in the sum is by itself a 2-cocycle — there are 221 of them

in our case.

(3) Examine which of the χi’s are non-trivial, i.e., check if the equations χi = ψ

have a solution for the φ B
A that appear in ψ. For each χi, this produces a system

of 1575 equations. If a solution exists, the 2-cocycle in question is trivial, i.e.,

a 2-coboundary. For the problem at hand, 5 out of the 211 χi turn out to be

non-trivial.

(4) Check whether the non-trivial cocycles obtained correspond to independent

generators of H2(GCR). Do this by setting an arbitrary linear combination of

the 2-cocycles equal to the general 2-coboundary. If a solution for the φ B
A

exists, discard one of the cocycles that enter in the linear combination and

repeat the test for the remaining ones, until no solution exists. For the case

at hand, no linear dependence was found, arriving thus at the final result,

Eq. (50).
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