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Stable Quantum Relativistic Kinematics

C. Chryssomalakos and E. Okon

ABSTRACT. We apply Lie algebra deformation theory to the problem of identi-
fying the stable form of the quantum relativistic kinematical algebra. We find
three possible deformations, introducing dimensionful invariants. It is argued
that the appropriate operators to serve as Lie algebra generators are moments,
not positions, leading to substantial differentiation from earlier interpretations
of the nature of the deformations.

1. Introduction

There have been numerous attempts to endow spacetime with a noncommuta-
tive nature, the first hint in that direction attributed to Heisenberg. Historically,
this line of thought has been pursued in the hope that some of the unpleasant
aspects of quantum field theory could thus be exorcised, while more recent motiva-
tions tend to emanate from a quantum gravitational nucleus. In either case, a fairly
direct approach is through the underlying kinematical Lie algebra, with the stabil-
ity criterion as a sensible mathematical compass (see, e.g., [Men94, Chr01]). In
this paper we determine the stable form of standard quantum relativistic kinemat-
ics. We find three possible deformations, the physical ramifications of which rely
on the identification of the generators sitting opposite the P’s in the Heisenberg
commutator. We call them Z’s here, and argue against their universally accepted
interpretation as position operators. With their proposed new role as moment op-
erators, spacetime noncommutativity is not an inevitable feature of stability, in
contrast to earlier assertions.

2. Lie Algebra Deformations and the Concept of Stability

We will be dealing with finite dimensional real Lie algebras and their deforma-
tions. We assume the reader is familiar with the relevant concepts, our brief review
serving mostly to establish notation. Relevant references are [NR66, NR67], the
original source for this material, [Men94], also a source and our main motivation
to follow the stability path, [Ger64], a classic on all things deformed, and [HS53],
for background on Lie algebra and group cohomology.
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A Lie algebra G = (V,u) is a vector space V equipped with a bilinear anti-
symmetric product u : V x V. — V. which satisfies the Jacobi identity. Given
a basis {T4}, A = 1,...,n for V, G can be specified by its structure constants,
w(Ta,Tg) = [Ta,TB] = ifABCTC. Accordingly, the set £,, of n-dimensional real
Lie algebras is a hypersurface embedded in RN (with N =n2(n —1)/2) with each
fag®, A < B, ranging along an axis, and with the Jacobi identities as the defining
algebraic relations'. The coordinates of a point P of £, give the structure con-
stants of the Lie algebra Gp. GL(N,R) acts on £, via linear redefinitions of the
generators, Ty = M, BTg, under which the structure constants transform as

. C
(2.1) Fans = MARMES (M) frs¥,

and P moves to Py — the corresponding algebras are isomorphic. There exist,
accordingly, two types of algebras in £,: those that are completely surrounded by
isomorphic algebras and those that do not, called stable (or rigid) and unstable,
respectively.

Given a Lie algebra Gy = (V, o), a one-parameter (formal) deformation of Gy
is given by the deformed commutator

o0

(2.2) (X, Y] =[X, Y]o+ Z Ym (X, Y) ™,

m=1
where t is a formal parameter and the v, are Gyp-valued, bilinear antisymmetric
maps called 2-cochains (over V). The definition is extended in the natural way
(i.e., via p-linearity and total antisymmetry) to p-cochains ¥ which accept p
arguments®. The vector space of p-cochains over V will be denoted by CP(V).
Notice that the 1-cochains are simply linear maps from V' to V, the antisymmetry
requirement being meaningless in this case. Also, the space of 0-cochains is V' itself.
Trivial deformations correspond to a linear redefinition of the generators with some
invertible matrix, as in (2.1). Next, for a Lie algebra G = (V,u), we define a
coboundary operator s, which maps p-cochains to (p+1)-cochains, s,: C? — CP*!,
according to

p
Sp > llj(p) (TA07 s 7TAp) = Z(_l)r,u (TAM ¢(p)(TA17 v 7TAM . '7TAI,))
r=0
(2.3) + Z(—l)r+s1/}(p) (N(TAM Ta,), Tay,--- ,TA,,; . ;TAS, o
r<s

(hats denote omitted terms). The Jacobi identity satisfied by w implies that s, is
nilpotent, si = 0. One then defines p-cocycles and p-coboundaries in the usual man-
ner, their vector spaces being denoted by Z?(V,s,) and BP(V, s, ) respectively. The
p-th cohomology group of G is the quotient space H?(V,s,) = Z?(V,s,)/B?(V, s,)
in which two p-cocycles are identified if they differ by a p-coboundary.

Imposing the Jacobi identity on the deformed commutator (2.2) and requiring
that the t-derivative, at ¢ = 0, vanishes, one finds that ¢ in (2.2) satisfies s,,>t1 =
0, i.e., deformations are generated by 2-cocycles. On the other hand, effecting a
linear redefinition of the generators with the matrix M; = I 4 tQ, one finds that
the O(t) change in po is given by s,, > Q, i.e., trivial deformations are generated

L£,, inherits the natural topology of the structure constants, i.e., that of the ambient RV .
2When the order p of a cochain 1 needs to emphasized, we will write 1 (P).
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by 2-coboundaries. The geometrical picture that emerges is as follows: the tangent
space Tp, L, to L, at Py is (isomorphic to) Z2, the space of 2-cocycles. The
subspace of Tp,L,, leading to isomorphic Lie algebras, i.e., the tangent space to
the GL(n)-orbit Orb(P) is B?, the space of 2-coboundaries. It follows that a
sufficient condition for the stability of Gy is the vanishing of its second cohomology
group H?(Go) = H?*(V,s,,). Semisimple algebras are therefore stable, in view of
Whitehead’s lemma.

Calculations are simplified with the introduction of the A product among cochains.
Put Alt?(V) = CPTY(V), p > —1. Then for a € Alt"(V), B € Alt"(V), define the
product a A 8 € Alt"™ (V) by
(2.4)

aA ﬂ(XO) s >Xm+n) = ngn(g) a(B(XO'(O)7 s >Xa(n))7Xa'(n+1)7 s )Xa(m—i-n)) )

where o ranges over all permutations such that ¢(0) < ... < o(n) and o(n +
1) < ... < o(m + n) (these are known as riffle shuffles with cut at n + 1). The
corresponding (graded) commutator of a, 5 is given by

(2.5) [, Bl =anp—(-1)""BAra.

It may easily be shown that the Jacobi identity for a 2-cochain p takes now the
form g A p = L[p, u] = 0, while the action of s, on an arbitrary (p + 1)-cochain
1 € Alt?(V) is given by

(2.6) su> = (=1)"[w¢] = (=)D,

where the second equality defines the operator D, = [u,-]. A useful property of
D,, is that it is a graded derivation in Alt(V),

(2.7) D,la, B8] = [Dpa, 8] + (=1)"[e, DS,

where o € Alt™ (V') and 8 € Alt(V). Graded commutators allow an easy derivation
of the equation for finite deformations. If u is a Lie product, p' = p + ¢ will also
be one if [u', u'] = 0, from which one gets immediately the deformation equation

(28) Dy + 516, 91 =0,

which reduces to the cocycle condition for infinitesimal ¢.

Given a Lie algebra G = (V, ) and a deformation u; = u + ¢, where ¢ =
> o2 | dut™. Substituting ¢ in (2.8) results in a series of equations for the ¢, one
for each power of . The equations corresponding to t, t* and t3, are

(29) D =0, D = —5lbr, o], Dyugs = —[1, 2]

The first of (2.9) says that ¢; is a 2-cocycle. Then the graded derivation property
of D, implies that [¢1, 1] is a 3-cocycle. The second of (2.9) may be solved for
¢- provided that this 3-cocycle be a coboundary, which may not be the case if
H3(V,D,) is non-trivial. We conclude that the existence of non-trivial 3-cocycles
may render infinitesimal deformations non-integrable. If ¢, ¢1] is indeed a trivial
3-cocycle, so that the second of (2.9) admits a solution, an obstruction may occur
in the next step, i.e., in the third of (2.9), and so on. It can be shown that all
of these obstructions lie in H?, so that, if H? is trivial, every non-trivial 2-cocycle
is the first order term of some finite deformation [NR67]. Referring back to our
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geometrical image of £, as a hypersurface in RV, non-integrable 2-cocycles corre-
spond to deformation directions that point outside of £, but such that, for a little
step of order t along them, the Jacobi identities are violated to order #2, or higher.
Concrete examples of stable Lie algebras with non-trivial second cohomology group
have been constructed, see, e.g., [Ric67].

If ¢ is a (non-trivial) nilpotent 2-cocycle, i.e., satisfying [#,¢] = 0, then
Eq. (2.8) implies that p + t¢, for ¢ finite, is a (non-isomorphic) Lie product, if
i is one. When the dimension of H? is greater than one, the vanishing of the
anticommutators [¢;, ¢;], ¢; € HP, turns the finite deformation space of G into a
vector space, since then an arbitrary linear combination ¢ of the cocycles satisfies
Eq. (2.8). Notice that a nilpotent non-trivial 2-cocycle leads to non-isomorphic
algebras infinitesimally, but when extended to a finite deformation as above it may
well lead, for particular values of ¢, to isomorphic algebras — we will encounter
such a case in Sect. 3 below.

It is clear from the definition given above that a p-cochain can be realized as a
Lie algebra-valued p-form on the corresponding group manifold — we often make
use of this fact in what follows.

3. Stable Quantum Relativistic Kinematics

Consider the fifteen-generator algebra Gpm(g) (for “Poincaré - Heisenberg”),

(3.1) [Juvs Jpo] = (g;wJVp + 9vodue — JupJve — gwjup)
(3.2) (o> Pul = (gua gupP)

(3.3) [Jpos Zu]l = (g;w — upZo )

(3.4) [Pus Z0] = iqguwM

all other commutators being zero. J,, are the generators of the Lorentz group
(Juv = —Jupu), P, are the momentum 4-vector components, Z, is generally identi-
fied with the position 4-vector components (an interpretation we will soon challenge)
and M is a central generator whose only function in the literature is to render the
r.h.s. of the (covariant form of the) Heisenberg commutator, Eq. (3.4), linear in
the generators — to our knowledge, its physical nature has never been clarified.
Its omission, which is known to occur, leads to spurious non-linearities forced by
the Jacobi identities. This happened in the first work to deal with non-commuting
spacetime coordinates, Ref. [Sny47], and was pointed out in [Yan47], with the
story repeating itself almost sixty years later in [KGS04], [COO04], respectively.
For the moment, we regard Gpu (¢) as an abstract Lie algebra, devoid of any physical
connotations, and inquire about its stability. Related works are [Men94, KLO03].
The 2-cochain . (g), corresponding to Gpu(q), is given by

1
(3.5) oy (q) = inapnpﬁ D Jop + MM, @ Py 4+ M1y @ Zo, + I, @ M,

where undotted indices in forms refer to P’s and dotted ones to Z’s, so that, e.g.,
(H”, Z,,) = §,". Slightly abusing notation, we will let [T denote the 1-form that
detects the generator M.

We find that H2(Gpu(g)) is non-trivial,

(3.6) H2(QPH(Q)) = {[O]v [Cl]v [C2]7 [C3]} )
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where

(3.7) Q=117 @ 7, + %H”H” ® Juw

(3.8) G =-T"IIM @ P, + %HﬂH” ® Juw

(3.9) G =1M © 7, - TI"TIM @ P, + ¢qIT*TTY ® J,,, .

We also find that all anticommutators among the {’s vanish. Accordingly, an ar-
bitrary linear combination ((&) = a;(; (sum over i implied), for finite «;, provides
the finite deformation Gpy(q, &) of Gpu(q). The deformed commutators are

(3.10) [Py, Z)] = i qguuM +iqaszJ,,
(3.11) [Py, P)) =iqonJy,

(3.12) (Zy,Z)] =iqaady,

( ) [Py, M] = —iazP, +ia1Z,
( ) [Z,,M]=—iaP, +iasZ,,

to be supplemented by Eqs. (3.1)—(3.3). For a generic deformation, the P’s cease to
commute among themselves, the same happens with the Z’s, M is no longer central,
while the Heisenberg commutator receives an additional term, proportional to .J,, .

Is Gpu(q, @) stable? We compute, again, the second cohomology group and find

{[0]} if o # ajas
{0, ]} if of = aras

where x = (1 + (2 satisfies [x, x] = 0. Gpu(q, @) is, accordingly, stable everywhere
outside the instability surface a2 = ajas in a-space. The latter represents a double
cone with the apex at the origin and its axis along the first diagonal in the a;-as
plane, parallel to x (see Fig. 1). We succumb to the temptation to refer to the
various regions of a-space with their relativistic nicknames (“future”, “past”, etc.),
with the positive a1-as quadrant lying in the future. It is easily shown that there
are six equivalence classes of algebras, given by the regions the a-space is divided
into by the double light cone: future, past, elsewhere, future cone, past cone, apex.
For each of the above classes, a representative exists with a3 = 0. An arbitrary
point in a-space may be brought on the ai-as plane by a rotation in the P,-Z,
planes, P, = cos(9)P, + sin(0)Z,,, Z, = —sin(0) P, + cos(f)Z,,, which rotates a-
space by an angle 26 around the axis of the cone, counterclockwise as seen from
the future. The same kind of rotation may be used to bring points in the future
and past cones and the elsewhere, on the a;-as or the as-as plane. In any case,
the «;, i = 1,2,3, are fundamental constants of the theory of possibly Planckian
and/or cosmological origin (see, e.g., [KGS04]).

As it has been pointed out in [KL03, Men94], off the instability cone, Gpu(q, &)
is isomorphic to some so(m,6 — m), where, taking as = 0, m depends on the signs
of ¢, a; and asy. Specifically, assuming ¢ > 0,

(3.15) H? (Grn(q,d)) = {

50(1,5) ifa; >0,ay >0
(3.16) Gpu(q, a1, 02,03 = 0) = ¢ 50(2,4) if a1 <0
50(3,3) ifa; <0,ay, <0
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FIGURE 1. The (a1, az,as) deformation space of Gpu(q), with a
representative of each of the six equivalence classes drawn. The two
cones and the apex at the origin correspond to unstable algebras —
the rest of the space to stable ones. For all classes, a representative
exists with ag = 0 (the little spheres denote such representatives).
Standard quantum relativistic kinematics of a massive, spinless
particle lies at (0,q,0), when the Z’s are interpreted as moment
operators.

4. Some Physical Considerations

Consider the group manifold Gpy (g, @), corresponding to the algebra Gepn (g, @).
A point g on it represents some operation, e.g., a rotation, and, sufficiently close
to the identity, one may write g = e4, for some A in Gpy. Consider now arbi-
trary functions f, h on Gpu(g, @) — pointwise multiplication says that (fh)(g) =
f(g)h(g), implying commutativity among functions. The dual coproduct is given
by A(g) = g ® g, making g group-like, so that

(4.1) (fhyg) = (f®h, A(g)) =(f@h, g g) = (f, 9)(h, 9) = f(g)h(g).

For the generator A of g this implies A(4) = A® 1+ 1® A, making A primitive.
The conclusion is that Lie algebra generators are primitive operators.

Apart from being dual to the product among functions, the coproduct dictates
the way an operator acts on tensor products of representations. For example,
the group-like coproduct for the rotation g above implies that, to rotate a two-
particle system, one must rotate, by the same rotation, each of the constituent
particles. At the infinitesimal level, this results in the Leibniz-like rule Jiot = J1 +
Jo, familiar from the quantum theory of angular momentum. Thus, primitiveness
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of the generators translates into additivity of the corresponding physical quantities
under system composition.

One may substitute boosts instead of rotations in the example above, or trans-
lations, thus exhausting the Poincaré algebra generators. But do the position op-
erators, call them X, share this property? The answer is clearly no. At the
infinitesimal level, it is obvious that position is not additive under system composi-
tion. At the finite level, where the position operators can be regarded as generators
of translations in momentum space, it is clear that translating each of the two par-
ticles forming a composite system by k in momentum space, one ends up with the
composite particle being translated by 2k, not k. Either way, it becomes evident
that the position operators are not primitive and, hence, cannot be taken as gen-
erators of a Lie algebra. At the finite level, e*"*» cannot serve as points on the
group manifold.

But there is more. Acting on a two-particle system, via its coproduct, the
position operator should, presumably, return the center-of-momentum position for
the system. The latter is not a 4-vector, if Eq. (4.2) below is taken as its definition,
so that different inertial observers identify it with different points in spacetime
(see, e.g., [Rin79], p. 84). At the algebraic level, this means that A fails to be a
homomorphism of the J-X commutation relations, in other words, the coproduct
of the X’s does not, in general, exist. On the other hand, we know from experience
that the position of certain composite systems does behave like a 4-vector, at least
approximately (bullets come to mind). What is common in those systems is that
they are sufficiently lumped together to fool the observer into perceiving them
as a single, localized particle. Trying to formalize this a bit, we notice that the
expression for the center-of-momentum position of a (non-interacting) two-particle
system,

Eir + Exi
E )

with £ = E; + E,, does define, approximately, the spatial part of a 4-vector
when the energies E; are approximately equal to the rest masses in the center-
of-momentum frame. We call such systems psychron, from the Greek Quypédv for
“cold”. In that case, boosting to an arbitrary frame, all energies rescale by the
same ~y-factor, which cancels, and the Lh.s. of (4.2), given now by the Newtonian
expression for the center-of-mass, transforms as a vector. Multiplying both sides
of that equation by M (the mass operator), and ignoring ordering ambiguities, we
find that the moment operator Z, = X, M is primitive, and does behave like a
4-vector, when applied to psychron systems. We are inclined therefore, as our no-
tation might have given already away, to identify the Z’s in our stability analysis
with the moment operators introduced here. Notice that doing so, the Heisenberg
commutator [P, X,] = i ¢g,, becomes Eq. (3.4), with the so far cryptic M finally
revealed to be the mass operator.

Our good fortune does not stop here. Consider the standard quantum rela-
tivistic algebra Gqgr, with commuting P’s, commuting X’s, and the Heisenberg
commutator among them. Then the Z-Z commutation relations are fixed, and
there is no a priori reason why they should close linearly in the {J, P, Z, M} set.
Nevertheless, we find

(4.2) R=

(4.3) Z,, Z,) =iq(X,P, — X,P,), Z,, M] = —igP,.
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We recognize the r.h.s. of the first equation as (a multiple of) the covariant form of
the orbital angular momentum operator, L,,, = ¢~' (X, P, — X, P,). For a massive,
spinless particle then,

(44) [Z,ua ZV] = tiJuu .

A glance at (3.12), (3.14), shows that the above commutation relations are of exactly
the form found earlier, with ap = ¢ and a; = a3 = 0. This places Gqr at the
point (0,¢,0) in a-space, with the only available non-trivial deformation (along x)
introducing non-commutativity among the momenta. This last observation may
not rule out the compatibility of noncommuting spacetime coordinates with the
deformation found above but it does show that it is not an inevitable feature of
stability.

5. Concluding Remarks

We only have space to mention some directions for future work.

e Elucidating the nature of the moment operators in the general case, in-
cluding massless and/or spinful (sic) particles would be desirable.

e A Wigner-like classification, and other representation issues, should be
clarified.

e The possibility that among the deformations found, some are compatible
with non-commuting spacetime coordinates should be examined.

e Phenomenological implications of the deformations should be analyzed.

The hope is that, after two spectacular a posteriori vindications of the stability
point of view, in the form of the relativistic and quantum revolutions of the last
century, some true predictions might await us further ahead the sinuous deformation
path.
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