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Chaotic scattering from hydrogen atoms in a circularly polarized laser field
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We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite
radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom
dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance
of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of
chaos in the dynamics of the atom-field system.
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I. INTRODUCTION used to describe the electron-proton system in the presence
of a circularly polarized laser beam with finite width. In Sec.
The advent of high-energy lasers has allowed exploratioll, we discuss the dynamics outside the influence of the laser
of the dynamics of the laser-atom interaction in parametebeam. In Sec. IV, we look at the effect of the resonance
regimes where the nonlinear character of the interactiogtructures and chaos in the reaction region on scattering
dominates the dynamics. One of the most interesting deveRroperties of the electron. And finally, in Sec. V, we make
opments is the stabilization of the atoms in high-energy lasepome concluding remarks.
fields. For the case of linearly polarized laser fields, stabili-
zation has been predicted theoreticdlly-5] and has been II. TWO-DIMENSIONAL CLASSICAL MODEL
observed experimentally6,7]. The origin of this stabiliza-
tion appears to be phase-space structures induced by the non-We investigate the motion of the electron in a hydrogen
linear laser-field interaction. atom(in the limit of an infinitely massive nuclepsriven by
Numerical studie§8—15] have shown that stabilization a CP laser field which has a finite width. The beam may
should also occur for atoms interacting with circularly polar-consist of two linearly polarized laser beams superimposed,
ized (CP) laser fields, although the underlying dynamics isSo that their Poynting vectors lie along thexis, and their
much more complicated. Poincasarfaces of section of the electric fields are polarized along tixeaxis andy axis, re-
classical phase space show a very complex mixture of chagpectively. Outside some radiugin thex-y plane, the elec-
and nonlinear resonance structufdd—14. For hydrogen tric field drops to zero. A realistic model for this cutoff is a
atoms, interacting with CP laser fields, stabilization appear§aussian function of the radial distancelong with a pa-
to be caused by these complex structures which result frofameter c that determines the rate of decay of the field
the interaction between the external field and the nonlineastrength. We restrict our model to the two-dimensional plane
atomic forceqg13]. All work done to date on these systems of polarization of the lasefthe x-y plang. This simplifica-
assumes that the laser field extends spatially to infinity. ~ tion should capture the most important features of the dy-
In this paper, we consider a more realistic spatial depennamics, i.e., ionization or appearance of stable orbits which
dence for the laser field. We introduce a cutoff on the widthare expected to occur in that plane. In polar coordinates
of the laser beam. This then allows us to divide the configu{p;.r,p,,#) and in atomic unitsa.u), the planar Hamil-
ration space into a reaction region interior to the beam, antpnian is given by
an asymptotic scattering region exterior to the beam. The

dynamics inside the reaction region is nonintegrable and the pz 1 )
dynamics in the asymptotic region is integrable. With this H= 3 pZ+ |- ———=+Fre °" cog6—wt),
more realistic picture of the geometry of the laser beam, we r a“+r

can probe the atom-laser dynamics using techniques of scat- ()
tering theory, and we can ask different questions than those
of previous studies. For example, in Ref$1,12, the dy-  whereF is the field strengthe is the driving frequency, and
namics of the initially bound electron is studied as the laser is a smoothing parameter. We set 0.8 a.u., so the ion-
pulse is turned on, and it is found that the ability of theization potential is the same as that of hydrodag]. A
electron to ionize is strongly determined by the position ofsuitable value for the cutoff parameteris determined by
the electron in the complex phase-space structures mentionedperimentally obtainable sizes of focused laser beam spots.
above. By using scattering theory, we can ask the compliThe size of the smallest possible laser beam spot is deter-
mentary question: for what initial conditions can an incidentmined by the diffraction limit, and cannot be smaller than the
electron be captured for a long period of time? As we willwavelength of the laser. For visible lighwhich is the one
see, the cutoff does not significantly affect the importantemployed for the calculations throughout this pagbke pa-
electron-proton dynamics, so the scattered electron provideameterc must be in the order of I¢ a.u. or smaller. How-
a systematic probe of the dynamics in the reaction region. ever, because of computational considerations, we @sed
We begin in Sec. Il by developing the classical model=10"° a.u. This value ot is large enough to permit practi-
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FIG. 1. Zero-velocity surface foF=0.031935 a.u.w=0.114
a.u., andcc=10° a.u.

0.0
cal calculations but small enough to retain most of the inter-
esting structures in the system.

The time dependence of the Hamiltonian can be elimi- .
nated by performing a time-dependent canonical transforma  —0-2 " R
tion, with generating function

-0.4

F(p€1¢vpr!prt):_p€(¢+wt)_prp (2) ) 5 .
2100.0 -50.0 0.0 50.0 100.0

relating lab coordinatesp(,r,py,#) to a coordinate frame X
(P,.p,P4,¢) that rotates with the electric field at a constant
angular velocityw. This leads to the Hamiltonian

P2 1
p) ) ) . .
) - \/az—szJer e cog¢)—Pyw velocitiesp=P,, and ¢= P4/p?— o, and then sep=0 and
¢=0, we obtain the equation for the ZVS,

FIG. 2. PoincareSOS at()=—0.451 a.u. fora) c=0 and(b)
c=10"%a.u.

. . s 1 2

yvhere the quasenergy isa cons_erved energy |n.th|s rotat- Qpys=— — ~w?p?+Fp e % cod ). (4

ing frame. If we introduce Cartesian coordinates in the rotat- Va?+p? 2

ing frame, [x=p cos(p), y=psin(¢)], the electric field al-

ways lies along thex axis. Note that the Hamiltonian The first two terms on the right-hand side of E¢) result

depends ong, so the angular momentur,, is not con-  from the atomic force and centrifugal force, respectively, and

served. In the subsequent discussion, we chéasless oth- have no angular dependence. They form a Coulomb well at

erwise statedw=0.114 a.u., which corresponds to 400 nmsmall p and a quadratic falloff at large. The angle-

laser excitation, and F=0.31935 a.u. I(=3.58 dependent term, due to the laser field, breaks the rotational

x 10 W/cn?) which is a “moderate” intensity associated symmetry. Just as was found in Reff$1,12 for the casec

with stabilization seen in numerical studies. =0, the ZVS can be depicted as a volcano with a confined
In the rotating frame, noninertial forces appear in the sys-caldera” region (see Fig. 1 The ZVS helps to identify

tem, and lead to a mixing of position and momentum coor-exclusion regions in phase space because a particle with non-

dinates. This precludes the construction of a potential-energgero velocity cannot intersect the ZVS.

surface in the usual sense. However, as shown in Refs. The ZVS possesses two critical points, denotec byand

[11,17], it is possible to construct a zero-velocity surfacex_, that lie along thex axis on opposite sides of the proton

(ZVS), which separates physical from unphysical regions ofand have quasienergies,Q), =Q,,(x,) and Q_

the phase space. If we recast the Hamiltonian in terms of the(),,((X_), respectively. For any nonzero field() .

: 3
1
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FIG. 3. ASOS in the neighborhood of the hyperbolic fixed point 0.4
induced by the spatial cutoff of the laser field. The initial conditions
lie in the interval 64 a.u<P,<66 a.u., with=-0.50 a.u. and (b)
c=10"°a.u.

>()_. Thus, the quasienerd® will fall in one of the three

regions: (1) O<Q_, (20 Q_<sQ<Q ., or (3) Q. <.
Whenw=0.114 a.u. and=0.031935 a.u., we hav@ , =
—0.11976 a.u. and) _=—-0.46986 a.u. We will use these B 0.0
values in the remainder of this paper(}& ) _, the interior
region (inside the caldepacannot be reached by an electron
lying outside the ZVSbut still inside the reaction region
However, if Q> _, then some orbits can travel between
the exterior region and the caldera and visit the vicinity of

the proton.

The system whose dynamics is given by Eg). has two 04 : ; i s
degrees of freedom. Therefore, it is possible to construct ¢ ~ ~1900 -500 0.0 50.0 100.0
Poincaresurface of sectiofSOS. We will plot the radial X

momentumP, and radial coordinatp each time¢=0 and FIG. 4. All graphs in this figure correspond &= —0.496 a.u.

p= _(modw). This can be thoug_ht of as <':1_p|0t Bf vs X, andc=10"° a.u.(a) Surface of sectiony vs x (in a.u) for initial
each timey=0 regardless of the sign &, . Itis also useful  congitionsp,=0, —70 a.u.<x<70 a.u.(b) Surface of sectiorp,

to plot x vs'y each timeP,=0 to obtain information about ysx (in a.u) for the same initial conditions as i@).

regions of configuration space accessible to the electron. In

the surfaces of section shown in the subsequent sections, offy. 3) shows clearly the contracting and expanding direc-
initial conditions generally consist of a range of points withtjons of the phase space in the neighborhood of the hyper-
P,=0 and ¢=0. The value ofp is chosen randomly be- pojic fixed point. By extending the initial conditions further
tween 0 and a givemmax and the initial value ofPy is  out from the nucleus, but still along=0, we found yet

determined by the quasienergy,. _ _ another pair of elliptic and hyperbolic points in each side of
Figure 2 shows a comparison of surfaces of section withhe nucleus.

and without the cutoff foK) = —0.451 a.u. We note that the
SOS withc=10"% in Fig. 2b), retains the significant non-
linear resonance structures and surrounding chaotic sea that
can be seen in Fig.(d and which has been seen by previous When p is large enough so that the field term can be
authors[11-14 for the case when the laser field extends toneglected, the Hamiltonian reduces to an asymptotic Hamil-
infinity. The large external resonance still exigid] and the  tonian Hasymgiven by

location of its central fixed point does not change signifi-

Ill. ASYMPTOTIC SCATTERING REGION

cantly. However, the size of the external resonance and of the 1 p2 1
chaotic sea surrounding it is reduced. In addition, in F{g) 2 Hasym:_( P2+ _¢’) — = —Py0=0. (5)
there is a pair of hyperbolic fixed points not present in the 2\ " p? P

system without the cutoff. A plot witl)=—0.50 a.u. and
initial conditions, 64 a.u<P,<66 a.u., confined to the This Hamiltonian is equivalent to that of the Kepler problem
neighborhood of the “cutoff” induced hyperbolic poisee (particle in a central attractive inverse square-law fores
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FIG. 5. Scattering data fdi = —0.496 a.u. and initial angular momentm=4.530 653 3 a.u(@ Delay timeTp (in a.u) vs ¢q for
0<¢py<2m. (b) Tp Vs ¢ for 0.702< ¢;=<0.735. (c) Final angular momenturﬁ’fﬁ (in a.u) vs ¢, for 0<¢y<2. (d) Radius of closest
approachp _ (in a.u) vs ¢ for 0< ¢po<27.

seen in a frame rotating with frequenay The equations of value ofp_ is determined by the total ener@yand the total
motion of this system can be integrated analytically yieldingangular momenturi®, .

closed-form solutions to the orbits in the asymptotic region. |t \we draw a circle of radiusR centered at X=0,y
The radial component of the motion in the rotating frame iszo) we can determine the time required for an orbit to
identical to that of the nonrotating frame. However, in theyayerse the interior of the circle after it first enters itat
rotating frame the actual trajectories cease to be conic secz=R | et 7 pe the time to travel frop=Rtop=p_. Itis

tions due to Coriolis forces which are present in the rmatingstraightforward to solve the equation of motion and obtain an

frame. , , _analytic expression for. We find
Let us consider the dynamics generated by the Hamil-

tonianH s, m. The orbits ofH .5y can be specified uniquely 7= \/H{ V(R=p_)(R+p_)+aln[ 2/(R—p_)(R+p_)
in terms of three quantities: the two conserved quantifies,

andP,, (which are both conserved B,,); and by a third +R—2a ]—aln[ 2¢la| ]}. (6)
quantity ¢, which is the initial angle of the orbit. The total
energy of an orbit in the lab fram&=Q 5+ wP 4, deter-
mines if that orbit is close¢bounded or open(unboundedl

If E<O0, the motion is bounded. E>0, the motion is un-
bounded and the trajectory comes in from infinity up to a
point of closest approachy=p_, then returns to infinity.
For E>0, the point of closest approach js =a(1-e), We can now use the information about the dynamics when
wherea= —1/2E ande=+/1+ 2P2¢E is the eccentricity. The F=0 to probe the dynamics of the system wie# 0. The

Because of the symmetry of the orbit, the total time the orbit
spends inside the circle isravhenF=0.

IV. FRACTAL BEHAVIOR IN THE SCATTERING
PROCESS
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following method is employed. For the case whe# 0, an
electron with fixed() andP , and with a range of values for
¢o is launched inwards from a poinp ER,d= ¢g). We

chooseR large enough so that it lies in the asymptotic region.

The trajectory enters the circle at tinhe O, interacts with

the the laser field and atomic forces, and after a finite time

Tr, it leaves the circle. The functional dependence/grof
the excursion timél' g, the angular momentum;, and the
distance of closest approach to the nuclewus, are ana-

lyzed. Specifically we numerically generate plots of the de-

lay time, Tp=Tgr— 27, the final angular momentuf,, and
the distance of closest approagh,, as a function of¢.

The delay timeT is the actual time the particle spends

inside the circle, minus the timerZalculated for the trajec-
tory with the asymptotic Hamiltonian alone.

Below we explore the dynamics in the quasienergy re-

gimes(Q<Q_ andQ_<=Q0=<Q, . In subsequent plots, we
choose the radius of the circle to B&=1500.0 a.u., for

which the laser-field term in the Hamiltonian can be safely 1000

neglected. The values ap, are evenly distributed in the
interval[ 0,27r] and 10 000 different values @f, are chosen.
Below we first consider the regim@<()_, and then the
regime(l_<Q=<Q,.

A. The quasienergy regimeQQ <€ _
We begin with quasienergies in the reginfe<()_,

PHYSICAL REVIEW A6, 053406 (2002
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where the ZVS divides the phase space into two unconnected x

areas, the central caldera and the exterior region.(Fer

—0.496 a.u., the SOS exhibits a large exterior resonance, as 50.0

shown in Figs. 4a) and 4b). The initial conditions for both
Figs. 4a) and 4b) include a line of points ap,= 0 ranging

from x=—70 a.u. tox=70 a.u. Although both these plots
show orbits in the interior and exterior regions, this only
happens because some initial points span those two regions.

There are no orbits that transit between these regions.
In Fig. 5, we show plots of the delay timg,, the final

angular momentunﬁ’fl,, and the radius of closest approach,

p_, for initial conditions, Q=-0.496 a.u., P,
=4.5306533 a.u., andQ¢y=<2mx. These plots show frac-
tal behavior for initial angles in the interval 0.38%,

<2.575. In Fig. Bb), we focus on a small interval 0.70 a.u.

< ¢p0=<0.735 a.u. from the fractal segment in Figas The

25.0

]; 0.0

&>

-250 ] o
¥ ¥

o

0.0 1.0x10* 2.0x10% 3.0x10%
t

fractal behavior continues to repeat itself on smaller scales. FIG. 6. Some typical orbits from the fractal regime ffr=

In Fig. 5(c), we show the final angular momentuﬁ{b for
initial angles in the interval & ¢o<2w. This shows the
same fractal behavior as the delay time. In Figd)5we
show the radius of closest approagh,, for the range of
initial conditions O< ¢g<2m. This also shows fractal be-
havior in the interval 0.395 ¢,<2.575. Note that the elec-
tron never gets close to the proton.

As discussed in Refd.16—1§, fractal behavior in the

—0.496 a.u. ancPi¢=4.530 653 3 a.u(@) Surface of section of,
vs x (in a.u) for 0.5< ¢y=<1.0. (b) A single trajectory in thex-y
plane for P},=4.5306533 a.u. an@,=1.2945256.(c) P, vs
timet (in a.u) for trajectories in the interval 05¢,=<1.0.

0.5<¢y=<1.0. In the SOS, orbits are plotted fgr=0 and
¢= . These orbits clearly lie along the contracting and ex-
panding manifolds associated with the exterior resonance.

scattering properties is an indicator that the electron has trékigure 6b) shows the path in th&-y plane (not a SO$

versed a network of heteroclinic tangléshaotic structures

of a single orbit with initial angular momenturrPiqS

as it passes through the reaction region. To see this more 4.530653 3 a.u. and initial anglé,=1.2945256. It is
clearly, in Fig. 6, we examine some typical orbits from theclearly trapped in the exterior part of the reaction region for
fractal region in Fig. 5. Figure(6) shows a surface of sec- a long period of time. Figure(6) shows the variation of the

tion of p, vs x for a set of orbits with initial angular momen-

angular momentum of the orbits in Fig(ah as a function

tum Pid,=4.530 6533 a.u. and initial angles in the interval of time.
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FIG. 7. Scattering data fd2 = — 0.496 a.u. antﬂ’i(ﬁ:S.O a.u.(a
Delay timeTp (in a.u) vs ¢, for 0=<¢y=<2. (b) Final angular
momentumP’, (in a.u) vs ¢, for 0= go=<27.

FIG. 8. Graphs correspond fd= —0.406 a.u. and=10"° a.u.
(a) Surface of sectioly vs x for initial conditionsp,=0 and—70
a.u.<x<70 a.u.(b) Surface of sectiop, vsx (in a.u) for the same
initial conditions as in(a).

ter the caldera and come near the proton. In Fig),8ve
show a surface of section afvsy for (=-0.406 a.u. and

o- plotted each timg,=0. The initial condition includes a line

of points,— 70 a.u.<x<70 a.u. In Fig. &), we show a SOS

of p, vs x for the same initial conditions used in Fig@®

We see that the exterior resonance is still intact but the area

Not all initial conditions allow the trajectory to enter the
exterior resonance region. In Figsayand 71b), we show
plots of the delay tim& 5, and the asymptotic angular m
mentum P:b, respectively, as a function op, for 1=
—0.496 a.u.P;=5.0 a.u., and & ¢o=<2w. In both cases,

we obtain simple smooth curves. Note tiig has a large : - .
of the regular island is much smaller than in Fig&)4and
range of values;-1000 a.u=Tp=<1500 a.u., and that large 4(b), and it has moved closer to the origin. Also, the area

Tp values are associated with small valuesRjf. On the  affected by the heteroclinic tangles has increased consider-
other hand, the negative values B correspond to orbits  op\y The inward shift of the location of the elliptic fixed

that receive a large increase in the angular momerfym oint of the resonance with the increase(fcauses more
in the reaction region, and leave the reaction region muclyits 1o collide with the ZVS, leading to their eventual cha-
faster due to the presence of the laser field. otic ionization.
In Figs. 9a) and 9c), we show plots of the delay timE,
B. The quasienergy regimeQ)_<Q<Q, and the final angular momentuR,, as a function ok, in

Let us now consider the regm@_ < O < Q,, in the interval Gs ¢po<27. All plots in Fig. 9 are for quasien-
which the caldera and the exterior region are connected by ergy =—0.406 a.u. and initial angular momentuRl,
passageway. For some initial conditions, the electron can en=5.0 a.u. We again see a range of fractal behavior in each
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FIG. 9. Scattering data fdn = —0.406 a.u. andPi¢=5.0 a.u.(a) Delay timeTp (in a.u) vs ¢ for 0<po<2. (b) Tp (in a.u) vs ¢,
for 0.47< ¢(,<0.67. (c) Final angular momenturﬁfb (in a.u) vs ¢ for 0< py<27r. (d) Pf,) (in a.u) vs ¢ for 0.47< ¢y<0.67.

plot. In Fig. 9a), we show the delay tim&j for the entire  p, vs x for initial condidtions,2=—0.406 a.u.,P,,=5.0
range of initial angles, & ¢o=2, and in Fig. 4) we fo- a.u., and 0.4% ¢,=<0.67. Only those orbits witly>0 are

cus on a small interval 0.47¢,=<0.67 and magnify the shown. These orbits get trapped for long time in the hetero-

horizontal sca_\le O.f one of the unresolvec_i regions. We can SSSinic tangles associated with the exterior region and do not
that the function is still not resolved. This clearly suggests a nter the caldera. In Fig. {if) we show a single orbit, with
complex structure at even smaller scales, and we find that tg; . g ) : g '

»=95.0 a.u. andgpy=0.5. This orbit does not enter the

be the case. In Figs.(® and 9d), we show plots for the - O h )
angular momentur®!, of the scattered electron for the same caldera, but does get delayed for a significant period of time
two ranges of the initial angle as shown in Figga)9and [N the reaction region. In Fig. 16), we show the angular
9(b). The angular momentum of the scattered particle cafomentum as a function of time for the orbits in Fig(d0
take on a huge range of values after passing through th;he angula}r momentum appears to degrease while the orbit
resonance region. For a small range of initial angles, théS trapped in the exterior resonance region.
electron does enter the interior region and comes relatively In Fig. 11a), we show a single orbit which enters the
close to the proton. caldera for the cas@ = —0.406 a.u., taken from the fractal
In order to confirm that the fractal behavior in tfig region with P'¢=5.0 a.u. andg,=5.58568 a.u. This orbit
plots is related to the chaotic structures in the phase space,dets trapped for a long time inside the caldera. In Figbjl1
is useful to construct a SOS for the orbits that generate theve show the angular momentum as a function of time for the
fractal structures in Fig. 9. In Fig. 18 we show a SOS of same orbit as in Fig. 1&). It is interesting that during the
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FIG. 11. A typical orbit from the fractal regime fof)=
—0.406 a.u. and initial angular momentuﬁi¢=5.0 au.(@ A
single trajectory in the-y plane(not a SO$ for P'¢=5.0 a.u. and
¢$o="5.58568.(b) P, vs timet (in a.u) for the same orbit as ifa).

%00 20000 as000 ¢ 50000 65000  8000.0 plotting the delay time, the exiting angular momentum, and
the distance of closest approach as a function of the incident
angle. The dynamics has two distinct regimes depending on
the value of the quasienergy of the incident particle. Below a
certain cutoff value of the quasienergy, no initial condition
will allow the incident electron to come close to the proton.
Above that cutoff value quasienergy, a finite rar@éich
grows with increasing value of quasienergan come arbi-

time the orbit spends inside the caldera, it has a very lowrarily close to the protorithis separation of regimes was

angular momentum as one might expect since the radius réiso noted in Refg.11-14). _ N
mains small. We have found that incident orbits can exhibit fractal be-

havior in their delay time, the exiting angular momentum,
V. CONCLUSIONS fan(_j the distance of close_st approaqh as a function of the
incident angle after they exit the reaction region. The appear-
We have examined the classical dynamics of an electrorance of fractal behavior in the scattering plots is closely re-
proton system(the hydrogen atom when they are bound lated to the trapping of incoming orbits in the chaotic struc-
which interacts with an intense circularly polarized lasertures surrounding the stable islands in the phase space.
beam of finite radius. We have explored dynamics of the Using scattering theory to probe the electron-proton dy-
system by launching electrons into the reaction region antchamics gives a systematic way of finding the chaotic regions

FIG. 10. Some typical orbits which get trapped in the exterior
region for()=—0.406 a.u(a) p, vsx (in a.u) for Pi¢=5.0 a.u. and
0.47< ¢¢=<0.67. (b) x vs y (not a SO$ for a single orbit withP'¢
=5.0 a.u. andepy=0.55. (¢) P4 vs timet for P;,=5.0 a.u. and
$o=0.55(in a.u).
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