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Abstract: In this text I develop the thesis that geometrical diagrams are depictions, not symbols; they depict 

geometrical objects, concepts or states of affairs. Besides developing this claim, I will defend it against three recent 

challenges from (Sherry 2009), Macbeth (2009, 2010, 2014) and (Panza 2012). First, according to Sherry, 

diagrams are not depictions, because no single depict can depict more than one thing, yet a single geometrical 

diagram can represent different geometrical !gures in different contexts. I will argue that, once we recognize that 

resemblance underdetermines depiction, we can see that pictures can indeed depict different thing in different 

contexts and, consequently, there is nothing surprising about a single diagram depicting different geometrical 

!gures. Next, I will defend it against a similar argument by Macbeth, according to which diagrams can represent 

different geometrical !gures, even within the context of a single geometrical proof. Finally, I will defend it against 

Panza’s argument that there are essentially spatial features that geometrical objects have only insofar as they 

inherit them from the diagrams that represent them, and this is incompatible with the hypothesis that 

geometrical diagrams are depictions for depictions inherit their visual and spatial properties from the objects they 

represent, and not the other way around. In response, I will argue that once we understand the sense in which 

subjects are metaphysically prior to their depiction, we will see that my claim that Euclidean diagrams are 

depictions is not incompatible with Panza’s thesis.
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1. Introduction

Diagrams play a central role in many aspects of current mathematical practice – in education, popularization, 

discovery, application, etc. (Mancosu 2005) Today, mathematical concepts and propositions are commonly 

presented in diagrammatic form, both in classrooms and research seminars all over the world. In contrast, the 

rigorous study of mathematical diagrams has been a mostly neglected topic, both in the history and the 

philosophy of mathematics. e traditional philosophical stance towards diagrams in mathematics is simple and 

well-known: Proofs that make substantial use of diagrams are assumed to lack the kind of rigor necessary to 

ground mathematical knowledge and are therefore of no interest to philosophy (Borwein 2008). As Neil Tennant 

has famously asserted, “It is now commonplace to observe that the diagram is only an heuristic to prompt certain 

trains of inference; thatit is dispensable as a proof-theoretic device; indeed, that it has no proper place in the 

proof as such. For the proof is a syntactic object consisting only of sentences arranged in a !nite and inspectable 

array.” (Tennnat 2006)

 In recent years, this stance has been challenged by a growing body of work aimed at reevaluating the role 

of diagrams in mathematics, its history and philosophy (Brown 2008, Guiaquinto 2007, Lomas 2002, etc.). 

Some of this work (Krummheuer 2009, Sherry 2009, Kulpa 2009, Brown 2008, Norman 2006, Shimojima 

1996, Barwise 1993, etc.) has tried to show how diagrams actually play or have played a substantial role in the 

justi!cation of mathematical knowledge, and that diagramatic proofs can be as rigorous as formal ones. Others 

(Cor!eld 2003, Mancosu 2008, Van Kerkhove & Van Bendegem 2007, etc.) have advocated for an alternative 

agenda for the philosophy of mathematics, one that does not focus on an abstract and idealized conception of 

mathematical justi!cation but instead deals with actual mathematical practice and the central role diagrams play 

in it.

 Despite this recent increase in philosophical interest in mathematical diagrams, fundamental questions 

still remain: ¿What is their epistemic value, if any?; ¿What role do they play in mathematical justi!cation, 

explanation or understanding?; ¿Do they represent? and if so ¿what can they represent and how?; ¿Do they have a 

syntax?, ¿a semantics? ¿a pragmatics?; ¿Is their representational character mediated by resemblance, like pictures, 

or by convention, like symbols? ¿How have techniques and styles of diagrammation evolved and why? In general 

¿what theoretical challenges emerge from what Inglis and Mejía-Ramos have called “the ubiquity of visual 
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argumentation in mathematics” (2009)? The aim of this article is to contribute to answering one of these 

fundamental questions: are geometrical diagrams depictions?

2. Representations as Tools

When we use a representation to perform an inference – as when we use a diagram to prove a 

geometrical result –, we are effectively using the representation as tool to perform a task. As such, it 

might be fruitful to frame our questions  regarding geometrical diagrams within the framework of 

tools and their philosophy. In this respect,  representations are not much different from simple tools 

like hammers, tractors or lamps. To explain each one of these tools, that is, to explain why they 

exist, and why they are the way they are, one must relate them to their function,  i.e. to the role they 

play in our performing of particular tasks  they help us  perform. In other words, it is impossible to 

explain tractors without talking about plowing and agriculture. In a similar fashion,  to explain why 

hammers are the way they are, it is  impossible not to take their function into account. It would be 

impossible to explain why a hammer is shaped as it is, or why it is not $uffier and made of cardboard 

without mentioning what it is for. Consider the hammer’s handle. Why are they as  long as they are? 

Why not shorter? The explanation is simple, once we realize that hammers,  when used to drive in 

nails,  work as levers, third-class levers. In levers of this kind,  the effort is placed between the load 

and the fulcrum. In the hammer, the wrist serves as fulcrum, while the effort is applied through the 

hand,  and the load is the resistance of the wood. (World Book Encyclopaedia 1979)  In third class-levers, 

the effort must travel a shorter distance and must be greater than the load. Thus,  a handle of a 

shorter length would not potentialise the effort enough to make the hammer efficacious. 
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 But not only that, it is also almost impossible to explain why our tools are the way they are 

independently of how we are ourselves. It is a truism that a hammer for aliens might not be similar 

to a human hammer. Why are the bases of hammer handles  ovals  or similar and not, say, square or 

rectangular? Because square handles  would be uncomfortable for human hands, while oval handles 

provide optimum comfort and avoid stress and injury. A hammer with a square handle would  be as 

efficacious  for driving in nails as hammers with oval handles. However, they would be less 

ergonomic. In general,  when explaining features of our tools, sometimes it is  not enough to appeal 

to what the tool is for,  but also how the user is: It makes no sense trying to explain why hammers have 

the dimensions they have without referring to the size of our arms and hands. Even if aliens developed 

hammers, it is very unlikely that they would be similar in shape to ours if aliens were not also similar in 
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shape and physiology to us.1 We can explain some features by explaining how the task constraints  the 

kind of object that can perform such task, but also the user constraints the tools  in similar ways. 

Notice that this distinction is a distinction in factors  that shape our technology,  not primarily of 

features. Some factors might weight more in the explanation of some features, but most likely, 

features will be the result of  the influence of  both factors. 

 Summarizing, regarding tools, it is impossible to account for their form without mention of 

function. Furthermore, it is also impossible to explain why our tools are the way they are independently 

of how we are ourselves. In general, technology is strongly shaped, among other factors, by constraints 

on how users are and what they can and cannot do as much as what goals such users wish to achieve 

through their use of such tools. So far, this must not be controversial.

 Representations are as much tools as hammers. ey are also devices used to assist us in 

performing certain tasks. Representations help us communicate, but also help us understand and 

navigate the world, make art and wage war, work and play, etc. Almost every human activity exploits 

some form of representation to make our tasks easier, simpler ... or more fun, more beautiful, etc. As 

such, out theories of representation must not be much different from our theories of other human tools.  

In particular, in explaining why our representations are the way they are, we must take in account what 

we develop them for, as well as how they accommodate our human condition, our strengths and 

weaknesses. Just as it is a truism that a hammer for aliens might not be similar to a human hammer, so 

alien representations might not be similar to human representations. 

 Some people might object to my talk of the many uses of representation in plural. After all, it 

might seem that for something to be a representation, it must serve one fundamental function, i.e., to 

represent something. All representation are used to represent, and anything that is used with a different 

purpose is thus no longer a representation (is seems to be the position of David Sherry 2009, Valeria 

Giardino 2012 and Tarja Knuuttila 2011). e point is well taken, and so when talking about the uses 
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of representations one must consider both their narrow function, namely  to represent, and also the 

multiple wider purposes they serve in our lives. For example, it is true that the signs outside sex 

segregated public restrooms have the function of representing a man and a woman; but it must also be 

obvious that they are there with the purpose of helping users identify which restroom is assigned to 

which sex. e !rst is their narrow representational function, while the second is their wider purpose. 

Most if not all representations have a wider purpose besides their narrow representational function. 

Riffing on Austin’s dictum, there are many things we do with representations.

 e importance of considering the wider purpose of representations, instead of focusing only on 

their narrow representational function must be obvious once we think of some examples. For example, 

it must be fairly uncontroversial to claim that any account of representational artworks that deals only 

with their representational function while ignoring their artistic purpose would be severely shortsighted. 

Something similar can be said of the images of political propaganda: they are shaped not only by their 

narrow representational function, but also by their wider political purposes. Failing to take both into 

account would leave us with a very limited picture of their nature.

 Summarizing, to understand why human representations are the way they are, we must 

understand not only what they aim to represent, but also why we might want them to represent that 

and in what circumstances. Furthermore, we must remember that in order to ful!ll their narrow 

representational function, representations must play a communicative role that essentially assigns at 

least two roles to their users: transmitter and receiver. In a sense, both are users of the representation as 

tool, and successful representations must meet the needs of both in an efficient way, that is, without 

spending too much of their resources. So, continuing with our previous example, in order to explain 

why the aforementioned restrooms signs are the way they are, we might sometimes need to appeal to 

their narrow representational function of representing a man and a woman, and other times to their 

wider purpose of helping identify restrooms for men and restrooms for women; we might sometimes 

need to appeal to how they !t the needs, limitations, etc. of potential restrooms users who can bene!t 

from the information contained in the signs, and other times to those of whoever wants to 

communicate that information to them. For example, we might explain why the !gures in the women’s 
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restrooms signs are wearing a skirt by appealing to how, even though neither all women wear skirts, nor 

everyone who wears a skirt is a woman, we (possible restroom users) expect skirt wearers to be women, 

and thus we (who want to help these potential users identify the sex corresponding to each restroom) 

can exploit this expectation to signal a sexual difference between these !gures and the !gures in the 

other restroom.

 I do not expect these simple examples to completely illustrate the importance of distinguishing 

between a representation’s narrow representational function and its wider purpose of use, and between 

the way these function and purpose shape them and how the circumstances of their users also determine 

their form. On the contrary, the main goal of this chapter is to illustrate this by developing a couple of 

examples in fuller detail and show how making these distinctions allow us to clarify certain debates in 

the literature. In particular, I will deal with a particular subset of representations that have attracted a lot 

of philosophical interest in the last few decades, specially in the philosophy of science: those that are 

used as inferential tools, that is, tools that aid us in making inferences. In what follows, I will try to 

show that, when dealing with representations of this kind, it can be useful to distinguish between the 

issue of how our inferential goals shape the representations we use, and the question of how such 

representations complement, exploit, and extend our cognitive abilities. In other words, when dealing 

with successful inferential representations, the questions of why we use them entails two different but 

closely related questions: !rst, why it is advantageous for us to use them, and second, why are we 

justi!ed in using them. We must ask both how well the representation !ts the task, and how well it !ts 

us; both how efficient it is to use the representation, and how efficacious it is. From now on, I will call 

questions about how our constitution as users shape our inferential representations “ergonomic” to 

distinguish them from more “logical” or “epistemological” questions about their inferential efficacy. 

Needless to say, philosophers have focused almost exclusively on these later questions and have thus 

ignored an important dimension of our inferential representations. 
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3. Inference and Representation

In 2007, in one of the most dramatic moments  in winter sports, french biathlete Raphaël Poirée 

took to the mass start race at the Holmenkollen World Cup for what he had publicly announced to 

be the last competition of his  illustrious career. However,  as he crossed the finnish line,  his long time 

competitor Ole Einar Bjørndalen of Norway was still right by his side. Fortunately, the finish-line 

camera had photograph the race’s  final moments (Figure 1). From these photos,  the jury 

determined that Poirée could not finish his  career with a winning race,  for Einar Bjøorndalen had 

crossed the line just instants before.


 Besides its  dramatic nature, the aforementioned episode is  of interest for us philosophers 

because it illustrates the central role representations like photographs play in the obtaining of new 

knowledge. When dealing with episodes like this, the philosopher is interested in determining what 

epistemic advantages  do we glean from the use of representations, and why are we justified in doing 

so. In other words,  why, in drawing certain conclusions about one give situation,  instead of probing 

the situation itself,  we make use of representations  of it, and second,  when we do,  why are we 

justified in accepting the conclusions we reach through them. For example, why did we need to use a 

photograph to the determine who won the race, when it occurred just right in front of our very own 

eyes, and second, why were we justified in accepting the conclusion we thus reached. In general, 

when talking about the successful role of representations in knowledge, the same two sort of 

questions  arise. Let me call the first kind of questions, logical; and the second ones, cognitive. These 

different sorts of questions require different sorts  of answers,  answering the logical question 

regarding the use of photo-finish might require saying something about the causal process behind 

photography and maybe also something about the location of the cameras in relation to the finish 

line. In contrast, answering the second, cognitive question might require saying also something 

about the limits  of our perceptual system and thus why we could not see the winner with the naked 

eye, etc.
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Fig 1 Photo Finish


 In order to understand just what might be involved in answering each sort of question, it 

might be useful to look into what happened that day in Holmenkollen in more detail,  to see a 

general pattern that we might be able to generalise to other inferential uses  of representations. The 

starting point is  a situation from which we want to get certain information,  in this  case, the ski race. 

There is  something we want to know about it,  i.e.,  who crossed the line first. In order to answer this 

question,  we proceed by first producing a representation of the situation: one that represents  not the 

whole of the situation at hand, but (at least some of)  its  relevant aspects in a tractable way. In other 

words, we want a representation that carries enough relevant information about its  subject,  without 

adding too much noise,  that is,  without including elements that might be mistaken as representing 

something relevant about its subject without actually doing so. Once we have such a representation, 

we translate our original question about the target situation into a corresponding question about its 

representation. In our example, we translate the question of who crossed the line first to a question 

about features of the photograph and what they represent, i.e. to the question of whether the part of 
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the image representing the foot of one skier touches the part of the photo that represents the 

crossing line,  while the part representing the foot of the other skier does not. If the system works 

properly,  then the answer we get to this  second question will serve us  also to answer the original 

question, once properly translated (Barwise 1993, Suárez 2004). 


 Notice how in drawing on the picture to get information about the race, we perform several 

inferences,  and not all on a par. In broad terms, we an identify two different – and equally important 

– sorts  of inferences: inferences of the first sort go from features  of the picture to what the picture 

represents, while inferences of the second sort go from what the picture represents  to how the world 

is. In the first sort of inferences,  we go from information about the picture – mostly,  about how it 

looks, but also background information about it – into information about the representation’s 

content, i.e.,  about how the world is  according  to the representation. We infer from the pattern of 

colours  and shapes  shown in the photograph that, in the picture, the racer in red crossed the line 

later than the racer in black. And, if we take into account more information about when and how 

the photo was taken, about who was racing and how they looked like,  etc. We also arrive to the 

conclusion that, in the picture,  Bjøorndalen crossed the finish line before Poirée, that the picture 

represents  Bjøorndalen beating Poirée in Holmenkollen,  etc. Inferences  of this  sort constitute what 

is commonly called the interpretation of  the representation.


 Once we have performed these inferences and have determined what is represented in the 

picture;  we still need to proceed to inferences  of the second sort. Once we know how the world is 

according to the picture, it is important to determine whether the world is  actually as  the picture 

represents  it to be. Once again, background information about the representation and how it was 

created will be essential. If we trust the process of photo-finsh and this particular instance,  we can 

conclude that Bjøorndalen crossed the finish line before Poirée,  not only according to the picture, 

but in the real world. We conclude that the picture not only represents Bjøorndalen beating Poirée in 

Holmenkollen, but that it shows it.

10



11

	 Sometimes,  in order to extract from a representation the information we need,  it might be 

enough to just inspect the representation, looking for the relevant information in it. However,  other 

times, the solution might not be so straightforward,  and some manipulation of the representation 

might be required to extract the relevant information. For example,  in photo finish situations, it is 

common practice to draw parallel lines  on top of the photographs marking the edge of each racer 

closest to the finish line. In this  process, it might be also necessary to combine the information 

contained in the representation with background knowledge from the target situation itself.  When 

using a map to navigate a city, for example, it is commonly necessary to match information from the 

map and information available at the context of use to determine what route to take or even to 

identify just where one is. In other words,  sometimes,  there is a going back and forth between 

representation and target in order to interpret the representation,  and thus  acquire the desired 

information.


 Most of the times,  when we use a representation to perform an inference, we need to 

proceed through these two sorts  of inferences. We need to first interpret the representation,  before 

we can infer something from it about the world. After all,  information contained in a representation 

is useless if it is  not extracted from it,  and applied to the world. Both elements  are fundamental. 

Different sorts of representations require different sorts  or interpretation, and different 

representations are trusted for different reasons. When we see the light flashing through the numbers 

inside an elevator,  for example, we trust the information it gives  us about the elevator’s itinerary for 

different sort of reasons that why we trust a photograph we took ourselves, or the maps on a subway 

station. Similarly,  how we interpret a text is  significantly different to how we interpret a map or how 

a radiologist interprets an X-Ray image. When talking about images, diversity is the norm.


 In every case, the whole process involved in using a representation to perform an inference is  

rather complex: it involves, not only the generation of the representation of the target situation,  but 

also the interpretation, manipulation and evaluation of the representation. All this  to draw an 
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inference that, at least in principle, could have also been achieved working directly on the world. 

This  means  that it makes sense to use a representation to draw an inference, only when its  use has 

some advantage,  either in perspicuity, certainty, accessibility,  etc. over working directly on the subject 

of such inference. This means that what makes a representation good for a certain inference,  is not 

just its accuracy in representing its  target or its  reliability in producing valid inferences,  but also its 

usefulness: its  tractability, accessibility,  clarity,  etc. As  I have mentioned, a good inferential 

representation is  one that helps us reach our inferential ends;  as such, it must help us overcome our 

limitations and/or  capitalize on our capacities in reaching our inferential ends. In other words, it 

must not only be effective in giving us  the information we need, but must do so in an efficient way 

(Giardino 2012, Kulvicki 2010,  Blackwell 2008,). Sometimes,  the advantage is  that the 

representation permits  us see what we could not se otherwise. The photograph in the photo finish 

example above,  for example,  allows  us to see something – the race’s  last instant – that we could not 

otherwise see,  even though it happened right in front of our very eyes. In this sense, it extends the 

capacities of  our very eyes.

	 In general, the above example of the photo finish clearly illustrates how both ergonomic and 

logical constraints  shape our representations, specially representations used in inference,  where 

ergonomic and logical constraints  shape both how we interpret the representation and whether we 

trust the representation to tell us something about the actual world (instead of the world as 

represented in the representation).

4. Geometrical Diagrams as Inferential Representations

Let me turn now to a different example of inferential representation: geometrical diagrams. In the 

above regards, geometrical diagrams are not much different from other representations used to draw 

inferences. We use them to make inferences about the geometrical realm that it would be hard, if not 

impossible, to make just thinking directly about geometrical objects (Dutilh Novaes 2013, Macbeth 

12



13

2014). We start from certain information given about a geometrical situation and construct a 

diagram to help us draw inferences about it. Sometimes, in order to get the result we want, we need 

only look at the diagrammatic representation of our given information, but most times we need to 

transform the diagram until the desired result is displayed (Hintikka & Remes 1974, Mumma 2012). 

Once displayed in the diagram, the result must be translated back into a general geometrical claim 

that is no longer about the diagram, but about the target geometrical situation. In this sense, 

diagrams are not very different from other representations used to draw inferences.

Fig 2 Euclid I.1

 Let’s look at a simple example: the famous diagram used in the proof of Euclid I.1. that requires 

the construction of an equilateral triangle on a given straight line (Figure 2). e !rst step is to 

diagrammatically represent the given line. is is done so by drawing a short, and more-or-less straight 

horizontal line. Why do we do this? One might think that it is easy to see why the line has to be more-

or-less straight, but why horizontal? and why short? It is clear that we could have made the line shorter 

or longer; vertical, horizontal or at an angle, and the logical validity of the proof would not have 

changed (Manders 2008, Mumma 2010). However, we do not. We know that if we drew the line too 

short or too long, the diagrams would loose, not validity, but usefulness. We need the diagram to be 

tractable and that adds extra restrictions about how better to represent, say, a straight line.

 Once the line is in place, in order to identify it, we use two indexes. We write a letter “A” at one 

of its edges and a “B” on the other. We use these indexes to identify the edge points of the line, and the 

line itself in the text of the proof. ese indexes are essential to the interaction between diagram and 

text (Netz 1998). Since the goal is to draw an equilateral triangle, whose sides are the same length as the 
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AB line just given, we know that one of the aspects that will be relevant about line AB will be its 

length.; but at this stage of the Elements, we know very little about the length of lines. We know, for 

example, that all the radiuses of a circle are of the same length. And also, we know that, given a straight 

line, we can construct a circle that has such line as its radius. us we can use this information to enrich 

our diagram. We do so by drawing a more-or-less circular curve in such a way that edge point A lays 

more-or-less at its center and edge point lays on its circumference. Just like it is not necessary to draw a 

perfectly straight line to represent one, so we do not need to draw a perfect circle to represent one. It 

just has to be similar enough. And we can do the same thing on the other edge. As is well known the 

resulting curves will intersect at two points, one over the line AB and another one below. Take one of 

these points. Once again, it makes no logical difference which one one takes, but we usually take the 

one on top. Why? Because we prefer our triangles pointed upward. (Friedenberg 2012) e difference is 

not logical, but ergonomic (Figure 3).

Fig 3 Inverse Euclid I.1.

 So, we take that point, label it with a letter “C” and draw a more or less straight line from it to 

point A an another line from it to point B. What results looks more or less like a triangle, and it 

represents one. How do we know that is is equilateral? Not because we can see that its sides are more or 

less the same length (Manders 2008), since our capacities of determining objective and relative length 

are known to be very de!cient and unstable (Sedgwick 1986,  Gogel 1990). Instead we know this 

because of a proof. And this proof is performed as much on the page, as on the diagram. We know that 

line AB and BC are of the same length, not only because of how we see them in the diagram, but 

because they are both radiuses of the same circle. We know that AB is a radius of the circle with center 
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on A, because that is how we constructed the circle, and we know that AC is also a radius of this same 

circle because that is how we constructed point C. A symmetrical line of reasoning leads us to the 

knowledge that CB is also of the same length as AB. By transitivity, we get that AB, BC and AC are all 

of the same length and consequently, triangle ABC is equilateral.

 Notice how what happens in the diagram here is completely analogous to what happens in the 

photo !nish case.  How do we know of certain portion of the photograph that it represents one or other 

of the racers? Partly it is because of how it looks. We can see the red on the photograph is similar to the 

red on Bjøorndalen’s uniform, for example, and this guides us in identifying its referent. However, if we 

did not know anything about how the photograph was taken, i.e., how was it located, when was the 

picture taken, etc. we would not be able to !x the referents to the shapes we see on its surface. We know 

that the red !gure is Bjøorndalen because we know that the norwegian racer wore red to the race and 

because we know which race was being photographed, etc. In other words, in photographs – and in 

diagrams, I will argue –, visual resemblance restricts content, but it does not fully determines it. In 

other to !x a referents to a depiction, we need rich contextual information, both about what is being 

represented and about how the representation was constructed.

 If I am right, a proper philosophy of diagrammatical reasoning in geometry must address not 

only the question of why (and when) are geometrical diagrams reliable means for making inferences 

about the geometrical realm (Mumma 2010,  Krummheuer 2009, Kulpa 2009, Brown 2008, Guiaquinto 

2007, Lomas 2002, Norman 2006, Shimojima 1996, etc.), but also why they are useful for doing so. 

 Before moving on, let me give a further example to to illustrate the difference between these two 

sorts of questions. Consider the diagrams in !gure 4 representing the logical relations between three 

sets:
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Fig 4 Isomorphic Venn Diagrams

Even though they all share the relevant topographical properties necessary to reliably represent their 

target, i.e., the logical relations between sets (Shimojima 1996), some of them are better suited to this 

task than others. Some are clearer, some are more confusing; some are easier to draw, others more 

complex; some seem more beautiful, others are ugly. And these differences are not logical, but of a 

different kind. ese are the kind of differences I am calling, following Blackwell,  “ergonomic” for they 

depend not only on the internal properties of diagrams themselves, but also of the capacities of their 

users (and other external factors, such as the material restrictions associated with the practices within 

which they are used).

 is means that we must expect that what makes a geometric diagram helpful for a given proof 

be not its accuracy in representing a geometrical object or state of affairs, but also its tractability, clarity, 

etc. In what follows I will argue that partly, why we use diagrams in geometrical proof is similar to why 

we use photographs to decide who won a race, i.e., because diagrams, like photographs, look like what 

they represent. As I mentioned before, in appropriately using a representation to make an inference, it is 

important to be able to identify what is being represented. us, all things being equal, it is desirable 

that representations be developed in such a way that their referents are easy to identify (Paraboni et al. 

2007). Different kinds of representations use different mechanisms to determine their referents and to 

make them easily identi!able. One of the most common mechanisms of reference !xing is the 
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establishment of a convention through some kind of “baptism” (Kripke 1980), but there are others. For 

example, most scienti!c models ground their semantic relation to the world on being similar to what 

they represent (Giere 1988, 2004, Teller 2001). is similarity can be structural or in appearance, i.e., 

the representation might either be homomorphic to its subject or it might resemble it (or a combination 

of the two). When the semantic links is at least partially grounded on resemblance, the representation is 

called a depiction. Audio recordings, realistic drawings and sculptures, etc. are all examples of 

depictions.2

 Depictions have a clear cognitive advantage over other kinds of representations: when 

determining what something represents, it helps a lot if the representation looks similar to its referent. If 

we look back at the photo !nish example above, we will see that even though there could be other 

mechanisms that could accurately report the information of who crossed the line !rst, the photo !nish 

has become a standard mechanism partly because among its practical and cognitive advantages, 

photographs look like what they represent. What we see when we see a photo !nish is pretty similar to 

what we would have seen if we could have seen the !nal instant of the race frozen in time in front of us. 

is makes the information the picture contains about the race easily accessible, and its reliability very 

vivid. is means that part of why we epistemically use photographs in cases like this is precisely 

because they look like what they represent. In what follows I will try to argue that this later claim is also 

true about geometrical diagrams, i.e., they also look like what they represent and, furthermore, that is 

partially why they succeed in representing the geometrical objects they do.

 It is commonly assumed that geometrical diagrams are substantially different from words and 

mathematical formulas; that diagrams are pictures, while formulas and words are symbols, and that 

therefore, mathematics conducted diagrammatically is substantially different from mathematics 

conducted through formulas and words. e main hypothesis I will try to defend here is that, at least in 
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2. As with any substantial philosophical thesis, there are some who challenge the claim that depiction is grounded 
on resemblance (see for example Goodman 1968; Wollheim 1998; Lopes 1996; Greenberg forthcoming; etc. 
Strong defenses of the thesis that depiction is grounded in resemblance can be found in Abell 2005, 2009; 
Hyman 2006; Hopkins 1994; Peacocke 1992). Even though I am convinced that the resemblance theory I will 
present here can meet the challenges raised by these authors, I will not defend this view here.
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the case of purely geometrical diagrams,3  our commonsensical intuition is right: geometrical diagrams 

are pictures, not symbols; they depict geometrical objects, concepts or states of affairs.4 I do not mean to 

claim that geometrical diagrams are the only cases of depictions in mathematics, but they serve as 

paradigmatic examples of mathematical depictions. Since this is a universal claim, it is almost 

impossible to demonstrate directly. Instead, I am going to offer what I hope is a convincing account of 

how geometrical diagrams depict geometrical objects, give a few examples, and then address some 

qualms my account might raise. Speci!cally, I am going to defend my hypothesis against alleged 

counterexamples by David Sherry (2009) and Danielle Macbeth (2014), according to whom 

geometrical diagrams can be successfully used to prove theorems about geometrical objects and 

situations they do not resemble and thus cannot be pictures of, and a second argument against it by 

Marco Panza (2012), according to whom, geometrical diagrams cannot be depictions, for at least some 

of them are metaphysically prior to the geometrical objects they purport to represent.

 e articles is structured is as follows: First, I will present and develop the hypothesis that 

geometrical diagrams are what in the recent literature on visual representation have been called 

depictions. e portrait of Benjamin Franklin on the American hundred dollar bill, Jeff Koon’s porcelain 

sculpture of Michael Jackson and his pet chimpanzee Bubbles, and the embroidered crocodile 

monotype of La Chemise Lacoste on the chest of my sweatshirt are all uncontroversial examples of 

depictions. It is equally uncontroversial that abstract artworks like Mondrian’s Compositions, written 

words like the ones that constitute this text, and logos like those of Toyota and Citroën are not 

depictions. I will work under the assumption, developed by authors such as Hopkins (1994), Hyman 

(2006), Peacocke (1992) and Abell (2005, 2009), that depictions, unlike other visual representations, 
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3. e adjective “purely” is meant to exclude diagrams of differential or algebraic geometry like those developed by 
David Mumford (1999). From now on, when I talk of geometrical diagrams I will mean purely geometrical 
diagrams in this sense.

4. is idea dates at least as far back as Plato’s account of geometrical diagrams in Republic VII, 527a6-b6, where 
he writes: “when mathematicians are doing geometry, describing circles, constructing triangles, producing straight 
lines, they are not really creating these items, but only drawing pictures of them”. Cf. Taisbak 2003 and Panza 
2012. Notice that this assumption does not identify depiction with visual resemblance. Matters are a little bit 
more complex than that, so resemblance is a necessary but by no means sufficient condition for depiction. 
Determining what else is required for depiction will be part of what I will do throughout the paper.

http://en.wikipedia.org/wiki/Common_chimpanzee
http://en.wikipedia.org/wiki/Common_chimpanzee
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represent partially in virtue of their visual resemblance to what they represent.5  In order to make my 

hypothesis plausible, I will also need say something about the putative abstract nature of geometrical 

entities and how this is compatible with my assumption that they have sensible properties nevertheless. 

en I will present Sherry and Macbeth’s puzzle, i.e. how is it possible for a single diagram to represent 

different incompatible objects? I will argue that, once we understand what it takes for an image to 

depict an object, the puzzle dissolves. In particular, I will claim that, once we understand that 

resemblance is a necessary but not sufficient condition for depiction, we can easily see how the same 

picture can be used to depict different objects in different contexts. Next, I will present Panza’s 

challenge, i.e. that my hypothesis that Euclidian diagrams are depictions entails that their visual features 

are metaphysically dependent on those of their subject, and this is incompatible with the broadly 

Aristotelean thesis, defended by Panza among others, that at least some geometrical “objects inherit 

some properties and relations from these diagrams” (Panza 2012, 55). To meet this second challenge, I 

will show how my hypothesis does not actually entail the offending claim, and so is compatible with 

Panza’s brand of Aristotelianism. Finally, I will draw some general conclusions about mathematical 

diagrams and raise further questions.

5. On Depiction
e main claim I want to defend in this article is that geometrical diagrams are depictions of 

geometrical objects, i.e. they represent whatever geometrical !gures they stand for partially in virtue of 

visually resembling them.6 To better understand what it means for something to depict, it is a good idea 

to contrast depiction with other ways an object can represent another. Symbols, for example, usually 

represent their referents by convention, not depiction. Take words; in general, they do not depict their 
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5. As with any substantial philosophical thesis, there are some who challenge the claim that depiction is grounded 
on resemblance (see for example Goodman 1968; Wollheim 1998; Lopes 1996; Greenberg forthcoming; etc.). 
Even though I am convinced that the resemblance theory I will present here can meet the challenges raised by 
these authors, I will not defend this view here.

6. From now on, when I talk about the representation/depiction of objects, I will mean to include also the 
representation/depiction of concepts and states of affairs as well. It is important not to assume that all depictions 
are of objects (see Blumson 2009).
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meanings, because they seldom resemble the things they represent. e English word “albatross” does 

not look anything like an albatross, just like “lima bean” does not resemble a lima bean; the IEC 

standard standby symbol used on many home appliances does not resemble the standby state, just like 

the Chase Manhattan bank’s logo does not resemble a !nancial institution.

Fig 5. e World Wildlife Foundation Logo

 Most pictures, on the other hand, resemble what they are used to represent. A picture of an 

albatross commonly looks like an albatross in ways that the English word “albatross” does not. When 

pictures represent the objects they do, partly because they visually resemble them, we say that they 

depict them. In this sense, Chuck Close’s gigantic portrait of Phillip Glass depicts Phillip Glass, just as 

Imogen Cunningham’s $oral photos depict callas, magnolias and other $owers. us understood, 

depiction is foremost a relation, and only derivatively a kind of object (an object that depicts). 

Consequently, a depiction can also be a symbol if, besides depicting something, it symbolizes something 

else. Non-!gurative pictures like those of abstract, conceptual and similar avant-garde art are eminent 

examples of this, i.e., object that depict something, but symbolize something else (Abell 1995). Outside 

the world of !ne arts, logos, coats of arms, and other visual symbols are also used to represent more 

than they depict. e logo of the World Wildlife Foundation (!gure 5), for example, contains the 

picture of a panda bear. e picture depicts a panda, but the logo does not. It represents a foundation 

dedicated to defending pandas and other endangered animal species. In this case, there is a 

conventionalized metonymic relation between what the picture depicts (a panda) and what it represents 

(a foundation). In cases like these, we say that the picture depicts one thing, but symbolizes another 
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(Arnheim 1969). is commonsensical distinction is commonly made in ordinary language by 

distinguishing what the picture is a picture of and what else it represents or symbolizes.7  at is why a 

picture of a bald eagle, to use another example, can represent the United States of America, without 

being a picture of that country. A picture of a bald eagle can represent the U.S.A., not by depiction (the 

mechanism linking picture and country is not grounded on visual resemblance), but because of an 

explicit convention, in effect, an act of the U.S.A. Congress from June 20, 1782 (Atwood 1990). Now, 

when I claim that geometrical diagrams depict geometrical objects, I mean to say that their relationship 

with the mathematical entities they represent is like the one between a picture of a bald eagle and a bald 

eagle and not like that between a picture of a bald eagle and the United States of America. us, my 

claim is not just that diagrams represent geometrical objects, but that diagrams depict what they 

represent.

 Now that we know what it means to say that something depicts or is a picture of something 

else, we can turn our attention to mathematical diagrams. e !rst thing to notice about mathematical 

diagrams is that they do not form a homogenous natural kind with sharp boundaries.8 ere is no sharp 

line between what is and what is not a diagram. Take two-dimensional arrays like tables (Figure 6), 

matrices (Figure 7), or the formulas on Frege’s Begriffschrift (Figure 8). Are they diagrams or are they 

formulas? Some may argue that, since they exploit spatial relations for representational purposes, they 

must count as diagrams (Giardino 2012). Others might argue that since they follow strict syntactical 

rules and their semantic is compositional, they must instead count as symbols (Kahl 2003). 
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7. Notice however, that “depicting” and “being a picture of” may not be perfect synonyms, since we may still say 
that something is a picture of something it fails to depict it. For example, according to Kaplan (1968), a blurry 
photograph of Mount Rushmore is still a picture of Mount Rushmore, even if it does not depict Mount 
Rushmore, i.e., it does not resemble Mount Rushmore in a way that it is rationally to expect an audience to 
recognize. Also, not everything we call a picture is a picture of something. Abstract pictures, for example, are 
commonly considered not to be pictures of anything, even if they (or at least some of them) manage to represent. 
Consequently, abstract pictures do not depict. I thank Alex Grzankowski for raising this issue.

8. When I talk of mathematical diagrams, I will be talking not about abstract diagram types, but about concrete 
diagram tokens. I will also assume that (at least some) geometrical diagrams are geometrical !gures themselves.
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Fig 6. Multiplication Table

Fig 7. Adjacency matrix for graph K5

Fig 8. Frege’s Begriffschrift eorem 71

Something similar can be said about other sorts of mathematical diagrams, like the lines and dots in graphs 

(!gure 9), the arrows of category theory (!gure 10) or the circles in a Venn Diagram (!gure 11). ey are neither 

symbols in a traditional formal language, nor depictions of anything. I have very little of interest to say about 

diagrams of these kinds. Consequently, from now on and except where explicitly stated, when I talk about 
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diagrams, I will mean geometrical diagrams.

Fig 9. Venn Diagram

Fig 10. 5 vertices graph (K5)

Fig 11. Diagram of Category eory

Among the mathematical diagrams that contain pictorial elements, in contrast, we have geometrical diagrams like 

those in !gures 8, 9 and 11. ese are the diagrams I aim to cover in my hypothesis. I do not mean to claim that 

geometrical diagrams are the only cases of depictions in mathematics. My intuition is that, besides geometrical 

diagrams, some arithmetical diagrams like those used in so-called visual proofs (!gure 12) are also depictive, but I 

will not defend this hypothesis here.
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Fig 12. Arithmetical visual proof (Nelsen 1993)

Whatever criteria we may choose to identify diagrams, there will always be representations which at 

least some mathematicians would take to be diagrams which our proposal will classify as formulas, and 

vice versa. (Stenning 2002) So, I am not going to assume that there is a fact of the matter to the 

question whether these and other hard cases are diagrams or not. Instead, I will focus on a particular 

and paradigmatic class of diagrams: geometrical ones.

 Before moving on to Sherry’s challenge to my hypothesis that geometrical diagrams depict 

geometrical objects, it might be a good idea to say a little about what other hypotheses about the nature 

of geometrical diagrams it excludes, and which ones it does not. For starters, it is incompatible with the 

claim, made by Panza (2012) and others, that geometrical diagrams are symbols, i.e., that their relation 

with the geometrical objects they represent is not grounded in visual similarity, but in other 

meachanisms of representation.9  Furthermore, it is important to notice that depicting is a way of 

representing, and therefore that depictions represent. us, the hypothesis that diagrams are depictions 

is automatically incompatible with the view that diagrams do not represent. is explicitly excludes 
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9. As we will se a little further ahead, according to Panza (2012), the hypothesis that geometrical diagrams are 
depictions entails that their visual features are metaphysically dependent on those of their subject, and this is 
incompatible with the broadly Aristotelean thesis, defended by Panza among others, that at least some 
geometrical “objects inherit some properties and relations from these diagrams” (Panza 2012, 55). However, my 
hypothesis does not actually entail the offending claim, and so is compatible with Panza’s brand of 
Aristotelianism, as I will argue later in this same text.
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non-representationalist positions like those of David Sherry (2009), Valeria Giardino (2012) and Tarja 

Knuuttila (2011), according to whom diagrams are not depictions but cognitive tools. Nevertheless, my 

thesis is not incompatible with the hypothesis that, besides being depictions, geometrical diagrams are 

also cognitive tools. Mathematical diagrams in general, and geometrical diagrams in particular, have and 

still are being used with many purposes: teaching, proving, exploring concepts, etc. To say that they are 

depictions does not imply dismissing or neglecting their central role as tools. On the contrary, I hope 

the recognition of their depictive nature will eventually help us understand better their central role in 

these and other mathematical practices.

 It is also important to remark that the hypothesis that geometrical diagrams are depictions is 

neutral with regards to the question whether the depicted geometrical entities are abstract or concrete.  

One might think that the very idea of geometrical depiction is incompatible with the view that 

geometrical objects are abstract and as such have no visual features that may be reproduced in depiction. 

If similarity of visual or spatial features underlies the kind of resemblance that mediates pictorial 

depiction, then it seems prima facie that abstract objects cannot be depicted, for they have no visual or 

spatial features. Even though this is an issue that deserves much more attention that the one I can 

devote to it here, an important remark is worth making: e hypothesis I defend here does require that 

geometrical entities have visual features; in particular, it requires geometrical entities to be shaped in 

certain ways, similar to those of geometrical diagrams. I expect circles to be round, for example, not in 

some sui-generis abstract or mathematical sense, but in the same sense that wheels and vinyl records are 

also round.10 So much is true. However, it is far from clear that this is incompatible with the hypothesis 

that geometrical entities are abstract.

 e claim that abstract objects cannot have sensible properties is not a settled matter, but 

instead a controversial philosophical thesis; and I am not the !rst philosophers to challenge it. Far from 

the debate on mathematical entities and their properties, a handful of philosophers have recently 

defended the view that some abstract objects might still have sensible features similar to those of 
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10. is does not mean that both geometrical and everyday round objects have to be both equally round. Even if 
geometrical circles are perfectly round in a way that wheels and CDs are not, this does not mean that both are 
not round, and this is all that my theory requires to say that both share at least this visual property.



26

everyday concrete objects (Rosen 2012, Fine 1982). It cannot be expected that I settle the issue here, yet 

I still want to present a couple of arguments that, even if highly controversial, might serve to make 

plausible the assumption that, if geometrical objects are abstract, they might not be the only abstract 

objects to have sensible properties.

 Let us start by considering !ctional characters. Several philosophers have defended and 

developed the thesis that !ctional characters are abstract entities (Zalta 1983, Salmon 1998, omasson 

1999, etc.). Now, ask yourselves what color the riding hood of the central character of the little red 

riding hood tale is. e common sense answer would certainly be that it is red, not some esoteric 

!ctitious red color, but the same red as Chinese $ags or ambrosian apples.11  Colors, of course, are 

paradigmatic examples of sensible properties.12  us, if !ctional characters are abstract entities, the 

riding hood worn by the main character in the little red riding hood is an abstract object that has at least 

one sensible property: that of being red. From this, it follows that being abstract does not preclude an 

object from having sensible properties.

 Consider now, to mention a second example, musical works like Shostakovich’s Quartet No. 8 

or Roberto Carlos’ “Jesus Cristo.” Common sense tells us that there is a way in which each one of them 

sounds. at is why we can say, for example, of a very bad performance of “Jesus Cristo” that it does not 

sound at all like “Jesus Cristo.” When we do so, we are not comparing between two different concrete 

performances of “Jesus Cristo”, but between a particular performance and an abstract composition. 

Even though they are not paradigmatic abstract objects, there are good reasons to consider musical 

works as abstract; after all, they are instantiated on several occasions and in different modalities, as 

argued by Parsons 1980 and Deutsch 1991. us, if we accept Parson’s or Deutsch’s view of musical 

works as abstract entities, we must accept that musical works are abstract objects that have sensible 
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11. As a matter of fact, we compare !ctional and non-!ctional objects all the time, saying things like “Sherlock 
Holmes is smarter than any actual detective” or “Her voice was coarse, like Miss Piggy’s.” is would be very hard 
to explain if we did not recognize that !ctional entities can share some of their properties with non-!ctional 
objects. 

12. Notice that for a property to be sensible, it is enough that it be perceivable in the appropriate circumstances; it 
is not necessary that it be perceivable every time it is instantiated.
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properties – audible properties in this case, and thus are another counterexample to the knee jerk view 

that abstract objects cannot have perceptual properties.

 Of course, there are alternative explanations of the phenomena mentioned above (Kroon and 

Voltolini 2011, Sainsbury 2010, et.al.). One could say for example, that when one says that a certain 

musical piece sounds certain way, such talk is elliptical of saying that performances of such pieces 

sound, or at least ought to sound in a certain way; or one could also try to argue that, since she does not 

exist, the main character in the little red riding hood does not actually wear amy hood, red or otherwise, 

and that when we say that her riding hood is read we mean to say that if she existed, she would wear a 

red riding hood. However, these alternative explanations face major challenges that deserve signi!cantly 

more attention than the one I can give them here. Also, notice that the correctness of my views does not 

actually depend on the soundness any of these controversial arguments.  My aim here is not to settle the 

issue of whether abstract objects have sensible properties here, but only to challenge the claim that my 

hypothesis is incompatible with a very common philosophical position regarding the ontological nature 

of geometrical objects, i.e., that they are abstract entities. I hope to have said enough so as to allow me 

to assume that some abstract objects – at least geometrical !gures we tend to represent in diagrams – 

have perceptual features. A more thorough discussion of this issue shall wait for some other occasion. 

Now, it is time to address Sherry’s challenge.

6. Sherry’s Challenge

In his 2009 article, “The Role of Diagrams in Mathematical Arguments”, David Sherry explicitly offers 

a argument against views like mine where diagrams are pictures of mathematical objects. According to 

Sherry, this kind of view “is unable to explain proofs which share the same diagram in spite of drawing 

conclusions about different !gures.” (Sherry 2009, 14) According to Sherry, if geometrical diagrams 

were depictions, they could only be used in proof to draw conclusion about objects depicted in them or 

about concepts that those object fall under. Consequently, a single diagram could be used to draw 

conclusions about different mathematical concepts, only if it depicted objects falling under all those 

concepts. A diagram of an isosceles triangle, for example, could be used to draw conclusions about 
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isosceles triangles or about triangles in general, but not about square triangles or about circles. As a 

corollary, if diagrams were depictions, no diagram depicting one single object could be used to draw 

conclusions about mutually inconsistent concepts or states of affairs. However, argues Sherry, in the 

history of mathematics there have been cases of mathematical proof where a single diagram is used to 

draw conclusions about an inconsistent set of concepts. One such famous case is Girolamo Saccheri’s 

use of the same diagram (a bi-rectangular, isosceles quadrilateral as shown in !gure 13) to prove 

theorems about three different and inconsistent types of quadrilaterals. According to Sherry, the 

existence of cases like this is enough to show that geometrical diagrams are not depictions.

Fig 13 Saccheri’s Diagram

 Saccheri’s overall goal in Euclid Freed of All Blemish (1697), was to show, as was commonly 

believed at the time, that Euclid’s !fth postulate could be proved using the other four postulates. In 

particular, his aim was to geometrically construct the !fth postulate from the !rst four. He started his 

proof by presenting a quadrilateral (like !gure 13) where A and B are right angles and AA’ ≅ BB’. All he 

needed then to derive the !fth postulate was to show, using only Euclid’s !rst four pustulates, that the 

aforementioned quadrilateral was a rectangle, i.e., that A’ and B’ were right angles too. With this goal in 

mind, he proved that angles A’ and B’ were equal and then proceeded, towards a reductio, to consider 

the possibilities that (a) A’ and B’ were obtuse, (b) right or (c) acute. In the end, he could not manage to 

derive a contradiction from possibilities (a) and (c). However, he still managed to draw mathematically 

interesting results from both assumptions, results that would later serve as foundations for Non-

Euclidean geometry (Rozenfeld 2008).
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 Sherry’s puzzle stems from the fact that, in going from (a) to (b) and (c), Saccheri did not switch 

between different sorts of diagrams, but worked with the same single !gure (!gure 13). When Saccheri 

considered the consequences of angles A’ and B’ being both acute, for example, he had no problem 

using the same diagram he had already used to draw conclusions about quadrangles with four square 

angles, to draw conclusions about quadrangles with two straight and two acute angles. According to 

Sherry, if Saccheri’s diagram had been a depiction, it could have only represented what it resembled. 

Since it resembled a bi-rectangular quadrilateral, and not one with two right and two acute angles, it 

could have only depicted a bi-rectangular quadrilateral, and not one with acute or obtuse angles. 

However, since it was successfully used to represent the three kinds of quadrangles, it could not have 

depicted them, only symbolized them. Sherry’s challenge, in consequence, is to explain how such a 

diagram could be used to draw conclusions about such different kinds of !gures, while remaining a 

depiction. In general, the challenge is to explain how is it possible for a single diagram to depict 

different kinds of objects, resembling only one of them.13 Meeting such a challenge will be the purpose 

of the following section. 

7. A Pragmatic eory of Geometric Depiction

My solution to Sherry’s challenge is based on a puzzling, but well known fact about depiction: that 

resemblance is a necessary, but not sufficient, condition for depiction. In consequence, resemblance 

underdetermines depiction; to know how a picture looks is never sufficient to determine what it depicts. 

Even though there is a broad debate regarding exactly what else is necessary for a picture to depict 

something, there is a growing consensus in the philosophical literature that intention and context are 

also heavily involved in depiction (Schier 1986; Bantinaki 2008; Blumson 2009; Abell 2005, 2009; 

etc.). For the purposes of this article, instead of trying to characterize depiction directly, I will adopt a 

two-step account: First, I will give a pragmatic account of the more general phenomenon of visual 

representation, and then offer a characterization of depiction as a speci!c kind of visual representation, 
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13. For another historical example of this phenomenon, consider proposition III.25 of Euclid’s Elements. Cf. Saito 
(2006: 84-90).
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to know, visual representation grounded on visual resemblance.14

 According to this account, a representational use of an object p visually represents an object 

(concept or state of affairs) x iff, under normal conditions, the audience of the representational act is 

able to work out that p represents x on the basis of (at most) what p looks like, the rational assumption 

that it was used with a representational purpose (i.e. that it was used to represent some particular object, 

or objects, to a certain audience), and other common background beliefs (about how the depicted 

objects look like, about the conventions of the media employed, etc.).15 16

Fig 14 Stick Figure
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14. I will not take a stand on the many debates regarding the relevant kind of resemblance involved, whether it is 
an objective relation between depiction and subject (Hyman 1999), a subjective relation between how we 
experience the depiction and how we experience its subject (Hopkins 1994), an audience-dependent relation 
between the picture-in-a-context and our memories and conceptions of how the subject looks (Newall 2006), a 
completely different sort of relation or a combination of these for different sorts of depictions (Freeman and 
Janikoun 1972).

15. In strict sense, in order to recover the representation’s content, it is not actually necessary to hold these 
common beliefs, it is enough to accept them for the purposes of communication (Stalnaker 2002). at is why 
we can easily interpret pictures aimed at audiences with radically different beliefs from our own.

16. Very young children are capable of correctly interpreting very simple depictions, long before they can adopt 
any representational conventions or even entertain thoughts about other people’s conversational intentions. 
Nevertheless, achieving full competence with depictions represents a major challenge in their development. (De 
Loache et. al. 2004; Trosethe et. al. 2004). Furthermore, cross-cultural studies (Berry 2002, Cox 1993, 
Derewosky 1989, Barley 1986) have repeatedly found cultural variation in our capacities for interpreting 
pictures. Consequently, there seems to be no cognitive or anthropological evidence for the claim that depictions 
are what Schier (1986) has called naturally generating representations: It is false that once children are initiated 
into a depictive system (like line drawings, color pictures, etc.) by being exposed to one picture and its content, 
they can easily interpret any novel picture (of an object they are independently able to visually recognize) within 
the same depictive system. us, it is very unlikely that there is something like an innate pictorial competence 
shared by all humans.
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 Notice that this broad category of visual representations covers all sorts of symbols, words, 

pictures and images. In order to distinguish depictions from other kinds of visual representations, it is 

necessary to introduce the further condition that resemblance must play a key role in determining what 

the picture represents. us, a picture p depicts an object o iff p visually represents o at least partially in 

virtue of p being made to visually resemble (or being selected because it visually resembles) object o in a 

way that is appropriate to its audience, its medium and style. is could be accomplished, for example, 

if the audience realizes that it would be very unlikely that the author would have given its work the 

visual appearance it has (resembling object o) unless she wanted us to recognize it as representing object 

o.17

 On this account, a stick !gure like !gure 14 can be used to represent a person (to a particular 

audience in a given context), if it would be rational to expect from such an audience, in such a context, 

to !gure out that, once assuming that the stick !gure was used with the intention of representing 

something and given certain common knowledge, both about how people look, and about how 

monochromatic line drawings are used, that the most likely intention of the user was to represent a 

person.18  Besides visually representing some man, the stick !gure can also be said to depict a person if 

part of the reason why it represents a person is because it was made to look or selected by the user to 

look like a person.

 According to this account of depiction, how a picture looks is just part of the information the 

interpreter exploits in order to determine what is being depicted. Consequently, what a picture depicts 

strongly depends on its context of use. As Calderola (2010), Dilworth (2008), Bantinaki (2008), 

Hyman (2006) and many others have insisted, visual resemblance is a many-to-many relation, i.e. 

different images may resemble the same object, and the same image can resemble many objects. As 

such, visual resemblance may restrict the kind of objects a picture can depict, but it cannot always 
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17. is is very far from being a full and satisfactory account of visual depiction. As I have already mentioned, the 
debate is long and complex, and I do not intend to settle it here. All I need is a sufficiently plausible account that 
allows me to argue for my main claim, i.e., that geometrical diagrams are depictions.

18. Notice that, so far, this account is silent as to whether a stick !gure of a man actually depicts it or is a 
conventionalized symbol for it.
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determine what it is being used to represent in every situation of use. Extra background information is 

still necessary. Consequently, it is not surprising that the same picture can be used to represent different 

things in different contexts. Consider, for example, the same single picture of a high-heeled shoe in two 

different contexts: one, in a shoe catalogue and another inside a crossed circle over a parquet $oor (!g. 

15). In the !rst context, the picture represents a model of shoes. In the second, in contrast, it represents 

high-heeled shoes in general. It is used to communicate the information that high-heeled shoes are 

forbidden on the parquet $oor. Without being ambiguous, the picture still changes content when 

placed in different contexts.

Fig 15 e Same Picture on Different Contexts

 In mathematics, this kind of thing happens all the time. In different contexts, the same !gure can 

be used to represent different entities or states of affairs (Kulpa 2009). Take !gure 16, for example. e 

lines in the diagram look (more or less) straight, look (more or less) parallel and look (more or less) of 

the same size.19 us, they can be used to depict and prove different things about different sorts of pairs 

of lines in different contexts. If the diagram is used in a mathematical context accompanied by the text 

“Let AB and CD be two line segments of the same length...”, for example, then it is being used to 

depict a pair of line segments of the same length. In a different context, say one where the text 

accompanying the diagram said “Let AB and CD be two parallel lines ...” or “Let AB and CD be two 

line segments of the same length...”, the very same diagram could also be successfully used to depict 

other things. Given than any diagram resembles many different states of affairs, we need to pay 
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19. For resemblance (and therefore, for depiction), the lines need not look perfectly straight, parallel, etc. After 
all, a more or less straight line still resembles a straight line. On the other hand however, in many cases, diagrams 
look perfectly round, straight, etc. even if they are objectively not (Giaquinto 2007; Newstead and Franklin 
2010).
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attention to the context to decide just what it depicts. is is as true of geometrical diagrams as it is for 

any other sort of depiction.

Fig 16 e Generality Problem in Geometry

 One of the key claims of contemporary theories of depiction like Abell’s or Blumson’s is that 

context plays an essential role in determining the content of depictions, not only in cases of obvious 

ambiguity like (Figure 22), but in general when one need to determine which visual properties of the 

depiction correspond to similar properties in the depicted objects, and which not. Resemblance is rarely 

total, i.e. most pictures do not look exactly and completely like the objects they represent. is means 

that depicted objects will always have non-depicted properties (including visual ones). at is why, for 

example, two-dimensional pictures can be used to depict three-dimensional objects, or black and white 

images can be used to depict colored objects. Consider a black and white depiction of a queen of hearts. 

e hearts in the depicted card are red, yet the corresponding hearts in the picture are black. However, 

we have no problem recognizing the depicted card because of our common knowledge both of playing 

cards and the limitations of black and white pictures. We know that the traditional color of hearts in 

playing cards is red, not black. Yet, we also know that, within the limitations of black and white 

picturing, black is an appropriate color to use on a white background to depict a red object on a white 

surface. So we know that, if someone were to depict a queen of hearts in black and white, she would 

probably draw its hearts black.20  us, even if the heart on the picture resembles a black heart more 

than it resembles a red heart, we conclude that it makes more sense to infer that it depicts a red heart 

that it does a black heart.21  Context, therefore, help us determine which visual properties of the picture 
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20. is does not mean that the same picture, in a different context could not depict a different object. If the 
hearts of playing cards were blue instead of red, for example, the same picture could also be successfully used to 
represent a queen of blue hearts.

21. Consequently, determining the content of a depiction is not a matter of determining what it resembles the 
most.
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are to be taken as standing for analogous properties in the depicted object, and which not.

 e moral of the theory is that, when dealing with the depiction of objects, one must be very 

careful to distinguish between depicting an object that is F (for some visual feature F) and depicting an 

objects as being F. Black and white pictures, for example, can depict colored objects, but they cannot 

depict them as colored. e hearts in the aforementioned card are red, yet they are not depicted as being 

red. ey are not depicted as being black either. e black and white picture is silent regarding the color 

of the depicted heart.22  In general, most if not all depictions are silent regarding one or another feature 

of their subjects. e picture on my voter ID, for example, is silent about my weight and about whether 

or not I was wearing pants at the time my picture was taken. is is just a normal feature of depictions. 

A picture does not have to be F, or even look as being F, to be used to depict an object that is F. is is 

what allows objects that are not F, and do not even look like being F, be used to depict entities that are 

F; this is why a black and white pictures can be used to depict colored objects, two-dimensional pictures 

can be used to depict three-dimensional objects and !gures in Euclidean space can be used to depict 

geometrical !gures in non-Euclidean space.23

 One must be very careful in noticing that to say that a representation looks like or visually 

resembles its subject does not mean that looking at the representation is just like looking at its subject. 

All it means is that there are some properties that the depiction shares with its subject that are also 

visible in the depiction. is means  that for the desired resemblance relation to hold it is not necessary 

that the same property that is visible in the depiction is visible also in the subject. When one thinks of 

everyday cases of depiction, i.e., photographs, realistic paintings, etc., the properties of the subject 

reproduced in the depiction are properties that one can also see in the subject. However, not all 

depictions are like that. As a matter of fact, many of the depictions used in science are not like that. In 

many of them, what we see in the depictions could not be seen directly on the depicted things 

themselves. Micrographic, telegraphic and stroboscopic pictures, for example, let us see things that are 

not visible to the bare eye. Consider the aforementioned example of photo !nish photography: there is 
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22. Schier talks of “representational commitments” to make this very same point. In his words, our use of the 
black and white picture holds no commitment regarding the color of what it depicts.

23. I thank Alex Grzankowski for raising this issue.
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a sense in which what we see is similar to how the last instant of the race would look like, but of course 

we cannot actually see such instants (Canales 2009). 

 In consequence, when I claim that a diagram D resembles a geometrical object O all I claim is 

that there is at least one property P such that (i) both D and O are P and (ii) one can perceive that D is 

P. Consequently, when I say that D depicts O in a proof, all I mean is that D represents O at least 

partially in virtue of being drawn so as to share this property P in a way that under normal conditions, 

the readers of the proof can be rationally expected to be able to use this information to work out its 

content – i.e., that it represents O.

 As argued in the !rst two sections of the article, when aiming to represent a geometrical state of 

affairs in a proof, one must decide both what must be represented and how. To determine what must be 

represented, one must consider what is given in the initial conditions of the proof, what has already 

been proved, etc. To determine how should one represent it, one has to evaluate the logical and 

cognitive advantages and disadvantages of the different means of representation available.  In particular, 

one must decide what information is worth depicting in the diagram, and what information is better 

left in the text. To determine whether a feature of the target geometrical situation is worth reproducing 

in the diagram, one must weigh its costs and bene!ts. In Euclid’s example above, for example, we use a 

roundish closed curve to represent a circle. it is just roundish, because drawing it perfectly round would 

require too much effort without adding much new relevant information. On the other, if the line was 

not closed, but open, it would lacked a feature of circles key to the validity of the proof (Panza 2012) 

and if it was not roundish but polygonal, the resulting diagram would have been too confusing. us, 

we conclude that being a roundish closed curve is a feature of the circle that is worth reproducing in its 

depiction, while perfect roundness is not.

 In a similar fashion, in Saccheri’s case we use a quadrangle with four more-or-less square angles, to 

represent a quadrangle with two straight and two acute angles, because trying to make the depiction 

even more similar to its target geometrical object would have be too difficult, within the limitations of 

our medium. Still, we try to include in the depiction as many features given in the setting of the 

problem as possible. e setting of the problems asks us to consider a (i) quadrangle ABCD such that 
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(ii) A and B are square, (iii) A’ and B’ are acute, and (iv) AA’ ≅ BB’. It is quite easy to draw a quadrangle 

that more or less satis!es three of the previous constraints, but not one that satis!es all four, so we have 

to decide which constraints the diagram will satisfy and which one not. Saccheri chooses not to include 

(iv) in his diagram, however we could have chosen to exclude a different constraint, and work with a 

different diagram. For example, some contemporary textbooks use a diagram like !gure 17, that satis!es 

(ii), (iii) and (iv), but not (i).

A’

A

B’

B

a

c

a

b

Fig 17. Alternative Saccheri’s Quadrangle

Whatever constraint we do not include in our diagram, still has to be communicated in considered in 

the proof. is is commonly done textually, but there are other mechanisms we can also use. For 

example, a little quadrangle is usually added on the angles that are to be interpreted as straight (See 

!gures 16 and 17). ese symbols are not part of the depiction itself, but auxiliary symbols that are 

added on top, just as the letters used to identify the angles.

Fig 18 Two-Dimensional Depiction of a ree-Dimensional Object (Kepler 1619/1997)

 In the end, what features we decide to include in the depiction will depend on the costs and 

bene!ts of including or excluding them. When we cannot include in the digram all the information 
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given in the setting of the problem, we have to choose which information to exclude and make sure 

there are enough indications, either in the accompanying text or symbols, as to what information is 

missing from the diagram. is is why the resemblance involved in depiction is rarely total: Most of the 

times, it is not worth reproducing all the properties of the depicted object in the depiction; it might 

even be disadvantageous. Accordingly, most depictions have properties (including perceptual ones) that 

their depicted subjects do not have, and vice versa. is is why, for example, two-dimensional pictures 

can be used to depict three-dimensional objects (as in !gures 18 and 19), black and white images can be 

used to depict colored objects and diagrams in Euclidean space can be used to depict !gures in Non-

Euclidean space. Just as a black picture can depict a colored object, geometrical !gures of one sort can 

be successfully used to depict geometrical objects of a geometrically different kind. Sometimes, the 

diagram of a triangle is just a triangle, but this need not be so. Just as a picture of a circle need not be a 

circle itself, a diagram of a cube need not be a cube. Diagrams are two-dimensional entities, yet they are 

also used to represent mathematical entities in three or more dimensions. Consider !gures 18 and 19. 

e two-dimensional !gure represents a three-dimensional object without being a three-dimensional 

object itself. It is enough that it resembles it in the relevant way, that is, the way that helps the 

depictions’ intended audience recognize that it is indeed three-dimensional. e (concrete, bi-

dimensional) lines in the diagram represent (abstract) tri-dimensional lines without being (concrete) tri-

dimensional lines themselves. It is enough that they resemble them in the relevant way.

Fig 19. Bidimensional Representation of a Tridimensional Object
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e same thing happens in the diagrammatic representation of objects of non-euclidean geometry. e 

picture in !gure 20, for example, is an object in Euclidean space, but it is here used to represent 

Morley’s triangle in hyperbolic space.

Fig 20. Euclidean Representation of a Non-Euclidean Object

e same thing happens in Saccheri’s case. Even though the diagram is a !gure in Euclidean 

space, it can depict quadrangles in both Euclidean and Non-Euclidean space. In general, for any 

property F, objects that are not F, and do not even look like being F, can be successfully used to depict 

entities that are F as long as there are other similarities and contextual clues that allow the interpreter to 

identify the depiction’s content. How context helps the interpreter of a diagram !x its referent will be 

explained in detail in the following section.

8. Content and Context in Geometrical Depiction

To further detail how context helps !x the content of depictions, it might prove helpful to say a little bit 

more about how context is exploited in human communication. For the purposes of this paper, let me 

adopt the well known account owed to H. Paul Grice (1975), according to whom, whenever we engage 

in conversations, our communication is guided by a set of assumptions or maxims. ese maxims 

include: (maxim of quality) say only what you believe to be true and of which you have enough 

adequate evidence; (maxim of quantity) be as informative as necessary, (maxim of relation) contribute 

only relevant information to the conversation; (maxim of manner) and be clear. ese maxims together 

conform what is known as the cooperative principle: “Make your conversational contribution such as 

required, at the stage at which it occurs, by the accepted purpose of the talk exchange in which you re 
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engaged” (Grice 1975, 46). Appealing to this maxim has proved to be helpful in explaining how we 

exploit contextual information to resolve ambiguities, !x extension to predicates, understand sarcasm, 

etc. Assume now our use of pictures follows Grice’s cooperative principle.24  In particular, assume 

Saccheri’s use of !gure 13 to illustrate the hypothesis that A’ and B’ are obtuse angles adheres to this 

principle. Now, the four angles of of Saccheri’s parallelogram are right. Angles A’ and B’ clearly look 

right. ey resemble right angles, but also resemble (among other things, and to a lesser degree) other 

sorts of angles and therefore could be used to depict them. us, it is necessary to consider which of 

these possible interpretations is most likely to be the one intended by the author, Saccheri. Without 

further information, the most promising hypothesis is that the diagram depicts a !gure very much like 

itself, i.e., a parallel quadrangle. However, after reading the accompanying text, we realize that 

interpreting Saccheri’s diagram as depicting such a parallelogram would violate Grice’s maxim of quality, 

since it would be inconsistent with the information contained in the text. us, we infer that A’ and B’ 

must actually depict obtuse angles, not right ones. is restores consistency to Saccheri’s combination of 

picture and text, and allows us to maintain the presumption that he was adhering to the 

aforementioned principle of conversation in using the diagram in that context.

Sometimes, in order to restore consistency between text and diagram, one must reject not what 

the diagram shows, but what the text says instead. Consider for example, !gure 21 as used in Euclid’s 

reductio proof in I.6 (See Netz 1999, p. 55).

A

B C

D

Fig 21 Euclid I.6
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24. I am not the !rst one to suggest this, of course. Grice himself thought the principle applied to all rational, 
cooperative practices, not only verbal conversation; while Fling Schier (1986) and Catherine Abell (2005) have 
already applied Grice’s principles to depiction.
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In the diagram we see two triangles sharing one side (BC) and one angle (DBC), as sated in the 

initial conditions of the proof. We also see that one of the triangles (BCD) is inside the other (ABC) 

and, consequently, is smaller. Finally, we also see that angles ABC and ACB are more or less equal. e 

accompanying text con!rms that the angles they represent are equal. It also asks us to work under the 

hypothesis that DB = AC. us, we assume that the depicted triangles ABC and BCD are of different 

sizes, have two equal sides (BC = BC and DB = AC) and one equal angle (ABC = DBC). However, we 

know from previously proved results, that if two triangles have two equal sides and one equal angle, one 

cannot be larger than the other, which contradicts what we see in the digram. As in Saccheri’s case 

above, we have reached a contradiction. Since we need to restore consistency in order to determine the 

diagram’s reference, and the contradiction is easily avoided if we reject the hypothesis under 

consideration, we do that. Once we stop trying to interpreting lines DB and AC as equal in length, we 

can easily identify the depicted !gures as two triangles ABC and BCD such that ABC > BCD, ABC = 

DBC, BC = BC and AB > DB. ese, of course, are not impossible triangles, but regular possible 

triangles. is way, we can make sense of what happens in reductio proofs without having to postulate 

impossible geometrical objects. In general, in reductio proofs of this sort, the diagram does not 

represent the hypothesis to be reduced (or the contradiction reached from it), but the positive 

conclusion we obtain from the reductio. If a reductio proof assumes that not-P to get to a contradiction 

and thus show that P, we can expect its diagram to depict a situation where P holds, not one where the 

reduced hypothesis not-P holds, for this is impossible.

 Identifying the content of Saccheri’s parallelogram requires signi!cant input from the context. 

Angles A and B in Saccheri’s diagram do not look obtuse or acute for sure; but an object does not have 

to be or look as being F in order to depict an object that is F. A !gure that is not F  can depict an object 

a that is F, as long as it resembles a in some other respect. Since visual resemblance need not be total to 

ground depiction, an object can depict another without sharing all of its visual features. Absolute 

similarity is not necessary. In particular, a straight angle can depict an acute angle, as long as they share 

enough other visual properties for the audience to be able to identify one as representing the other. In 

the case of Saccheri’s parallelogram, we have enough visual clues in the diagram’s geometrical features to 

identify each and every angle. We can identify angle AB in the diagram, for example, just by identifying 
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the meeting of lines A and B, disregarding whether such angle is straight, acute or obtuse. In this 

regards, Saccheri’s parallelogram is not very dissimilar from the black and white picture of the queen of 

hearts above. Even though the heart in the black and white picture is black, the heart it depicts is not 

black. Even though the angle in the diagram is straight, the angle it depicts is not straight. In both cases, 

how the picture looks seriously underdetermines what it depicts, and we need to appeal to our 

substantial common knowledge about the world to determine what is being depicted. In the case of the 

queen of hearts, we had no problem interpreting the black hearts in the picture as red because of our 

common knowledge both of playing cards and the limitations of black and white pictures. Similarly, in 

Saccheri’s case, we have no problem using both our knowledge of geometry and of the conventions and 

limitations of (two-dimensional, black and white) geometrical diagrams (in Euclidean space) to 

interpret the diagram.

 Disregarding the underdetermination of depiction by resemblance makes it hard to understand 

how the same diagram (or different tokens of the same diagram type) could be used to depict different 

mathematical objects. Saccheri’s parallelogram is mysterious only under the wrong impression that it is 

sufficient to look at a diagram to get to its content (Larkin and Simon 1995, apud. De Giardino 2012). 

Yet, once we recognize the importance of context in determining what is depicted, we realize that there 

is nothing mysterious in Saccheri’s parallelogram. Without a proper understanding of the role of context 

in depiction, Sherry cannot see how the diagram can change its content from one quadrangular to 

another. So, he takes the radical anti-realist and anti-representationalist alternative of claiming that 

mathematical diagrams (and mathematical formulae) do not represent mathematical objects at all. 

However, once we understand that how a diagram looks underdetermines what it depicts, no such 

radical move is required. Drawing only one parallelogram, all three parallelograms can be depicted. 

us, Sherry’s challenge poses no real threat to the thesis that geometrical diagrams are depictions.25
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25. Notice that the account given to Saccheri’s parallelogram is readily available for the many other cases where 
geometrical diagrams lack some of the relevant properties of the geometrical !gures they depict, for example, the 
diagrams used to represent impossible situations in some of Euclid’s reductio proofs, or the diagrams representing 
polygons inscribed in circles with polygon sides drawn curving inward in the Archimedes Palimpsest. In all these 
cases, the substantial differences between diagram and !gure pose no challenge to the depictive hypothesis.



42

9. Creative ambiguity and seeing-as

A challenge to the hypothesis that diagrams are depictions similar to Sherry’s has been raised by 

Danielle Macbeth on her otherwise excellent study of Euclidean diagrams (Macbeth 2009, 2010 and 

2014). According to Macbeth, that the role of diagrams in mathematical proof largely consists in the 

de- and recon!guration of content displayed by geometrical drawings, not in the analysis of a given 

static picture. Consider, for example, the proof of Euclid I,1 presented at the beginning of this text. 

Notice how it is essential to be able to regard one and the same drawn line AB now as the radius of a 

circle and then as one side of a triangle. According to Macbeth, this is incompatible with the thesis that 

geometrical diagrams are depictions, since the content of a depiction cannot change in the course of 

reasoning about what it depicts (Macbeth 2009, 252). us, we need an account of the content of 

Euclidean diagrams that allows for shifts in content and for what she calls, following Manders (1996, 

2008), the popping up of new geometrical information from the diagram. 

In a Euclidean demonstration, what is at first taken to be, say, a radius of a circle is later in the 

demonstration seen as a side of a triangle. But how could an icon of one thing become an icon of 

another? How, for example, could an icon of a radius of a circle turn into an icon of a side of a 

triangle? (MacBeth 2009, 252)

 To account for the shifting content of Euclidean diagrams, Macbeth endorses a pragmatic 

account very similar to mine, where the author’s intensions, as manifest in the diagram’s accompanying 

text, play an essential role in determining its content. According to her,

“...the Euclidean diagram can mean or signify some particular sort of geometrical entity only in 

virtue of someone’s intending that it do so and intending that that intention be recognized. One’s 

intention in making the drawing—an intention that can be seen to be expressed in the setting out 

(in those cases in which there is one) and throughout the course of the kataskeue—is, in that case, 

indispensable to the diagram’s playing the role it is to play in a Euclidean 

demonstration.” (Macbeth 2014, 82)

Furthermore, one’s intention can override what the diagram shows, so that if the geometer draws an 

angle with the intention “merely to draw an angle,... that which he draws... will necessarily be right, or 
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acute, or obtuse; but [what it represents] will be neither right nor acute nor obtuse. It will simply be an 

angle.” (Macbeth 2014, 82)

 According to Macbeth, the recognition that intensions play an essential role in determining the 

content and role of a diagram entails that they cannot be depictions, i.e., that a !gure drawn in a 

Euclidean diagram, even though it may also resemble its object in appearance, it does not represents it 

in virtue of this resemblance in appearance. (Macbeth 2014, 95) Macbeth recognizes that diagrams of 

circles, for example, look like circles, but argues that it is not because of this that they represent circles, 

but because of the interplay between pragmatic mechanisms and a structural homomorphism between 

the parts of the diagram and those of the geometrical objects it represents.

 us, for Macbeth, a pragmatic account that takes seriously the importance of intensions is 

incompatible with the hypothesis that diagrams are depictions (Macbeth 2009, 252-3). I hope to have 

shown here that this is just not so, i.e., that Macbeth is wrong in thinking that the content of depictions 

is !xed previously and independently of any pragmatic considerations regarding the intensions of the 

mathematician. us, in the end, Macbeth and me are very close in agreement regarding the use and 

interpretation of Euclidean diagrams. However, we disagree on whether this means that they are 

depictions or not.

 Let me take some time to develop the thesis that the kind of shift in seeing a diagram that is 

required for proofs like Euclid I.1. can be accounted within a framework like mine, i.e., that 

recognizing that the use of diagrams in Euclid requires actually seeing the same diagram (or parts of a 

diagram) as different things in different moments, is compatible with my claim that diagram are 

depictions, for depictions can also be seen in different ways, i.e., sometimes to adequately interpret an 

image, it is necessary to recognize a shift in what it depicts.26 In other words, what Grossholz has 

called “creative ambiguity” is a feature common to depictions, thus it is far from being incompatible 

with it. Even taking into consideration the conventions and techniques at play, a single image can 

equally resemble more than one object and ambiguity may result, and this ambiguity can be 
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26. Of course, the most famous image, the paradigmatic example of shifting pictorial content in the literature, as 
Macbeth herself recognizes, is Wittgenstein’s famous duck-rabbit. However, according to Macbeth, for the very 
same reasons that she claims that the diagram in Euclid I.1. is not a depiction, is not a depiction either.
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exploited in the conveying of a message. Consider the following example: In 2004, the Light of Life 

foundation ran a series of ads with the purpose of raising awareness of the growing number of cases of 

neck cancer among women. e ad featured a cropped photograph resembling a woman's naked torso 

(!gure 22), showing part of her waist, one of her breasts and just the edge of her nipple. However, the 

image was actually a cropped photograph of a woman’s face, showing just her lower lip, chin and long 

neck. Even if we take in consideration the usual conventions associated with color photographs, 

without further input from its context, it is impossible to determine whether it depicts a fragment of 

woman's naked torso (part of her waist, one of her breasts and just the edge of her nipple), or a 

fragment of a woman’s face (a tip of her lower lip, a quarter of her chin and half her long neck). It 

resembles both things equally. e image also contained the legend “e fastest growing cancer among 

women is not what you think”. e photograph, by Frank W. Ockenfels, was purposely ambiguous 

between both interpretations – torso and neck – and it was this ambiguity that made it a perfect !t for 

harnessing the message that the foundation wanted to communicate: that the fastest growing cancer 

among women is not what most people think, i.e., breast cancer, but neck cancer. 27 In order to 

successfully interpret the ad, it is necessary to interpret the photograph as depicting once a torso and 

then a neck. is might require seeing, for example the same crimson part both as a nipple and then as 

a lip, but this does not make the picture no longer a depiction.

 us, the possibility of creative ambiguity is not only consistent, but a consequence of the fact 

that isolated from their context, pictures do not depict anything, but only when placed in an adequate 

context. In other words, substantial input from the context is necessary to determine what the image 

represents. If the context changes, what the picture depicts might change as well. If the context is 

dynamic, as it is in geometrical proofs28
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27. e example is described in Meyers 2004.

28. Notice, however, that the discarded interpretation still plays some role in the interpretation of the picture. It 
was precisely this depictive ambiguity that was exploited by the Light of Life Foundation to raise awareness of 
thyroid cancer. Similar representational ambiguities have been productively exploited in mathematics (Grosholz 
2007; Giardino unpublished).
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Fig 22 Ambiguity in Depiction

 Given the importance of contextual information in determining the content of depictions, that 

the same depiction can change content from one context to the next must not be surprising at all. us, 

when we have a dynamic context like in the example above, it is not surprising that the same depiction 

switches from depicting a torso to depicting a neck, from depicting a nipple to depicting a lip. Similarly, 

when the proof so requires, we might be able to interpret the same line as depicting a side of a triangle 

one time, and as depicting a radius of a circle.

 is phenomenon has been tried to be explained in terms of seeing as, i.e., that the reason why 

the diagram is useful in proof is because of the insight we get from !rst seeing the same drawn line as 

the radius of a circle and then seeing it as one side of a triangle. In other words, some philosophers have 

tried to assimilate what happens in proofs like Euclid I,1 with Wittgenstein’s famous drawing that can 

be seen both as a rabbit and as a duck. However, both cases are radically different. In seeing 

Wittgenstein’s drawing as a picture of a duck, one must assign an interpretation to the drawing such 

that certain part of it represents its beak, another its eye, etc. If we want to see it then as a picture of a 
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rabbit, we must see the part that represented the duck’s beak as now representing the rabbit’s ears, and 

so on. Abandoning one interpretation is necessary, before adopting the new one, because both 

interpretations are inconsistent. Nothing can be both a rabbit ear and part of a duck’s beak. However, 

nothing of the sort is necessary in interpreting the diagram associated with Euclid I,1, for there is 

nothing inconsistent in a line being both the side of a triangle and the radius of a circle. After all, both 

the property of “being the side of a triangle” and the property of “being the radius of a circle” are 

extrinsic, relational properties, i.e., properties that a line has not because of any of its inherent features 

but because how it is related to other geometrical objects. As Emily Grosholz has emphasized, “Because 

the side of a triangle is a line, it is intelligible independent of the triangle, despite the fact that regarded 

as a side it is intelligible only in relation to the triangle as a whole.” (Grosholz 2007, 36) Nevertheless, 

being related in one way to a geometrical object does not preclude the same line from being related in 

different ways to other geometrical objects. us, in explaining how we are able to regard line AB both 

as the radius of a circle and as one side of a triangle, there is no need to appeal to “seeing as”. In order to 

make sense to the double role the line plays in the proof, its is enough to notice that when we describe 

AB as a radius, we pay attention to some of its extrinsic features, while we focus on different extrinsic 

features when we describe it as part of a triangle. In Macbeth’s words (2014), “it is the shift in one’s 

perceptual focus that effects what we would otherwise think of as a step in reasoning.” When we regard 

it as a radius, we focus on its relation to the circle that has A as its center; when we regard it as the side 

of a triangle, we focus on its relation to lines BC and AC. ere is nothing here that could make us 

abandon the thesis that diagrams are depictions.

 

10. Panza’s Challenge

At least since Plato, it is received wisdom that depictions are metaphysical derivative from their subjects 

(Plato 1892) or, to put in layman’s terms, depictions look the way they do because of how what they 

depict looks like, and not the other way around. e basic idea behind this widespread intuition is that 

to depict is to somehow reproduce some of the visual properties of the subject. Consider an everyday 

realist painting of a sunset by the sea. e painter paints the sky tones of red and orange, because that is 
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how the sky looks at sunset. It paints parts of the sea a greenish blue, because that is the color of the sea 

at sunset. In the end, if the painter succeeds in depicting the seaside landscape, her painting will look 

the way it does, among other things, because of the way the landscape itself looks. In general, the 

painting has the relevant visual properties it has – the ones that it shares with its subject – because of the 

way the landscape looks, that is, because the landscape had those visual properties !rst.

 In the case of geometrical diagrams, this means that, if they were depictions, as I argue, then 

their visual properties should be grounded in the visual properties of the geometrical objects they 

depict. Geometrical diagrams of circles would be round (or, at least, roundish), for example, because the 

circles they depict are round themselves, and not the other way around. However, argues Panza (2012), 

we have strong historical evidence that the objects of Euclidean geometry actually inherited some of 

their properties – including some of their visual and spatial properties – from the diagrams used to 

study them, and not the other way around. Consequently, we must reject the hypothesis that diagrams 

are depictions.

 Panza’s challenge against the hypothesis that geometrical diagrams are depictions is based on a 

broadly Aristotelian interpretation of Euclid’s use of diagrams in his Elements. As I have mentioned at 

the beginning of this chapter, proposition I.1 of Euclid’s Elements requires to construct an equilateral 

triangle on a given line segment AB (!g. 1). To achieve this, Euclid describes two circles with centre in 

the two extremities A and B of the given segment, and takes for granted that these circles intersect each 

other in a point C. However,  it has been known for a long time that this is not licensed by his 

postulates. is has led to a longstanding debate on whether Euclid’s proof is $awed, or it is warranted 

on other grounds. In his (2012), Marco Panza argues that Euclid’s argument is sound, but diagram-

based, meaning that its soundness depends on the existence of what he calls “diagrammatic attributes”, 

i.e., attributes that geometrical objects inherit from the diagrams that represent them (through a process 

of abstraction in the Aristotelian sense, which Panza takes to consist, broadly speaking, in isolating 

shared properties of objects and them treating them as if they were objects). In other words, Panza 

argues that the best way to understand proofs like this is by adopting a broadly Aristotelian framework, 

where abstract geometrical objects are not metaphysically prior to the concrete diagrams we use to study 

them, but instead can inherit some of their properties from them. On this view, geometrical circles are 
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round, for example, because the diagrams that depict them are paradigmatically round, and not the 

other way around.

 I do not want to address Panza’s interpretation of Euclid here, for I cannot pretend to have the 

historical credentials to challenge his take on this piece of ancient mathematics. Instead, I plan to meet 

his challenge in a different way. I want to argue that my thesis that the diagrams of Euclidean geometry 

are depictions is compatible both with Platonism - the claim that geometrical objects are metaphysically 

prior to geometrical diagrams – and Panza’s Aristotelian claim that geometrical diagrams, despite being 

concrete, are more fundamental than geometrical objects, at least with regards to some geometrical 

attributes. I will do this by arguing against the widespread intuition that depictions look the way they 

do because of how what their subject matter looks like, and not the other way around. I will argue that, 

once we understand exactly in what sense depiction is grounded in similarity, we will be able to see that 

the thesis that diagrams are depictions is compatible with both Platonism and Aristotelianism.

11. Depiction and Similarity

My defense against Panza’s challenge involves a double strategy: one negative and one positive. On the 

negative side, I will attack the admittedly intuitive thesis that depictions look the way they do because 

of how their subjects looks like, and not the other way around. Yet, in the positive one I will try to 

recover what is right about our intuition that objects are somehow metaphysically prior to their 

depictions. And then I will show that once we properly understand the sort of metaphysical priority 

involved, it will be clear that it is compatible both with Aristotelianism and Platonism. I will proceed 

thus in order, from the negative to the positive.

 e main point behind my negative thesis is that visual similarity can ground depiction even if 

it is not created ex-profeso to ground depiction. Let me start by noticing that it is true that, in many 

paradigmatic cases of depiction, like a painter depicting a landscape as it unfolds before her eyes or a 

sculptor chiseling marble to depict a heroic !gure, the resulting depictions look the way they do because 

the artists shaped them with the explicit intention of reproducing certain visual properties of preexisting 

objects or situations, i.e., so that the !nal results visually resembles them. Hence, it makes sense to say 

that the resulting painting or sculpture has the shape or the colors it does because of the shape and colors 
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of the object or scene it depicts. However, this is not something that can be generalized to any kind of 

depiction. Consider the existence of pictorial ready-mades and found object sculptures, i.e., cases where 

already-existing objects (including pictures) are used to create new pictures or sculptures that depict 

objects that were not already depicted by the original objects. In these cases, it would be a mistake to say 

that the resulting pictures owe their shapes and looks to the objects they aim to depict.

 Consider, for example, that when David Kemp took a bunch of boots and assembled them to 

depict a group of dogs in his public piece inners Dogs (2010) (Figure 23), he did not give the shoes 

the appropriate shape necessary to depict dogs. Instead, he exploited the preexisting similarity between 

the boots and the different parts of dogs in order to create his sculptures. In the end, his assembled 

sculptures visually resembled dogs, and in virtue of this resemblance they succeeded in depicting them. 

However, it would be a mistake to say that the boots Kemp used to create his sculptures had the shape 

they do because dogs had the shape they do. No, those boots had already their shape independently of 

the shape of dogs. Similarly, cucumbers had the shape they did before Sarah Lucas appropriated them to 

depict male genitalia in her Au Naturel sculpture from 1994 (Figure 24). In these and many similar 

cases, the relation of visual similarity preceded the relation of depiction, both on a temporal and 

metaphysical sense.
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Fig 23. inners Dogs, David Kemp (2010)

 In general, in cases where the artist does not shape, paint or in general makes objects look the 

way they do, but instead chooses and assembles preexisting objects because of the way they already look, 

it would be a mistake to say that those objects the artist picked looked the way they did because of how 

the object the artist wanted to represent looked. is means that visual similarity can ground depiction 

even if it is not created ex professo to ground depiction. In general, what depiction requires is visual 

similarity, but it is completely neutral to whether visual similarity is the result of the process of 

depicting or is previous to it. In other words, my hypothesis is neutral regarding the metaphysical 

priority of the shared visual properties.
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Fig 24. Au Naturel, Sarah Lucas (1994)

 Yet one might be tempted to say that, even if some of their parts do not, the aforementioned 

examples as a whole still look the way they do because of how their subjects look and that therefore they 

are not counterexamples to the general thesis. And that might be true, but it misses the point of the 

criticism, for we can at least imagine cases where the artist picks a single object or image to depict her 

subject without in any way modifying its appearance or adding any other material component; as long 

as the chosen objects bears enough visual similarities with its subject, the case is not implausible. In 

those cases, we need to say that the object succeeds in depicting it subject even though it does not look 

the way it does because of the way its subject looks. is is enough to show that the main argument 

behind Panza’s challenge is unsound, for one of its premises is false.

 Still, there is something to Plato and Panza’s intuition that the depiction is somehow 

metaphysically derivative of its subject. You might still think that, even in the case of collages and found 

objects, the objects that make up the depiction may look the way they do independently of what they 

are being used to depict, yet the depiction does not, for there is still a substantial sense in which the 

chosen object or objects would not constitute a depiction of their desired subjects unless they looked 

like them, and that this is what establishes the metaphysical priority of subject over depiction. If the 

object did not look the way it did it would not have been chosen by the artist and this choosing and 

assembling is metaphysically analogous to chiseling stone or painting on canvas, i.e., it is guided by the 
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artist’s aim of !nding an object that reproduces some of its subject’s visual features. is much is true, 

and I think there is something right about thinking that an object would not be a depiction of 

something unless it looked like it. Yet, the best way to cash out this intuition is not to postulate some 

metaphysical priority between depiction and subject, as I have shown above, but between depiction as a 

relation and the way subject and depiction look, in particular, the fact that they are visually similar. 

However, to do so would be nothing but to affirm the basic fact that depiction is partially grounded in 

similarity. is means that an object x depicts a subject y partly in virtue of sharing some of its visual 

properties, i.e., the fact that x depicts y is partially grounded on the fact that x is visually similar to y. 

e fact that x is visually similar to y is in turn grounded on x and y having the visual properties they 

do. us, visual similarity is metaphysically prior to depiction, and I think this is all there is to the 

putative priority of how the subject looks over how the depiction looks.

 Now, notice that the priority of similarity over depiction is in no way violated by 

Aristotelianism. It might be true that, as Panza argues, Euclidean objects inherit some of their properties 

from the diagrams used to study them, and thus that the visual properties of Euclidean objects are 

metaphysically grounded on the analogous properties of Euclidean diagrams, but this in no way violates 

the principle that their sharing of this properties is metaphysically prior to the fact that one depicts the 

other. In other words, the claim that depiction is grounded on visual similarity is compatible with both 

Platonism and Aristotelianism, for it does not matter whether how geometrical diagrams look is 

metaphysically prior to how geometrical objects look, as long as they look similar enough for the former 

to depict the later.

12. Open Questions

In this paper I have tried to offer an account of diagrams grounded in two main principles about our 

general use of representations. e !rst one is that representations used to make inferences are shaped 

by both logical and cognitive constraints, and diagrams are not an exception, e second one is that 

diagrams are depictions and as such they exploit perceptual resemblance to !x their reference. I have 

tried to show how combining these two insights can throw some new light on some of their otherwise 

puzzling questions, like why the same diagram can be used in different contexts to represent different 

52



53

things, how do text and diagram interact in proof, and what does the diagram in a reductio proof 

represents. I have tried to show that as a consequence of the logical and cognitive constraints that shape 

diagrams, their visual resemblance to what they depict is usually not complete but partial, and this 

results in an underdetermination of their reference. In other words, I have tried to show why, in 

diagrams, just as in depiction in general, visual resemblance constraints but does not fully determine 

reference. Most times, the diagram will resemble more than one different state of affairs, and we will 

need extra information to identify the intended referent among them. us, it is necessary to combine 

the information we perceive in the diagram with the information from the accompanying text to 

determine the content of a diagram. is allows for a more dynamic and malleable use and 

interpretation of diagrams, as is manifested in proofs like Saccheri’s, where the same diagram is used to 

represent mutually inconsistent geometrical objects, on Euclid’s I.6 where the diagram is used to reduce 

a hypothesis to contradiction.

 I hope to have shown how taking diagrams to be depictions help us understand important 

aspects of their role in geometrical proof. However, even if I am right about the pictorial character of 

geometrical diagrams, a few questions remain open. For starters, we still have the issue of whether other 

mathematical objects have visual properties (Maddy 1990, Lomas 2002, Levine 2005) and thus whether 

there could be pictures in other mathematical !elds, remains open as well. One must look at the 

different kinds of diagrams employed in mathematics case by case. In some of them, like the projective 

diagrams of knot theory or some diagrams in topology (such as the ubiquitous torus), the answer will 

probably be yes, they are depictions (Brown 2008). Yet, it very unlikely that the same can be said of all 

cases. Logical diagrams like those of Peirce, Venn or Euler, for example, are most likely not depictions. A 

shaded intersection of circles does not look at all like the intersection of sets, if such a thing even looks 

like anything. In a similar fashion, Penrose’s graphical tensor notation (1971) (!gure 25) is not pictorial 

either. Notice that one of its conventions is to use a straight line to represent symmetrisation and a 

wiggly line to represent anti-symmetrisation; yet, there is nothing straight in symmetrisation that is 

wiggly in antisymmetrization. Consequently, those lines do not depict such operations, only symbolize 

them. In general, it should not be much of a surprise to notice that as branches of mathematics become 

more abstract, their diagrams become less pictorial and more symbolic. us, much of the most 
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prevalent kind of diagrams used in mathematical today, like the diagrammatic notation of quantum 

group theory, Cvitanovic's birdtracks, string diagrams for monoidal categories, planar algebras, etc. are 

not pictorial, but symbolic. Even in more basic areas of mathematics like simple arithmetics, diagrams 

such as those used in so-called visual proofs (Nelsen 1993) (!gure 12) do not seem to be depictions 

either (Brown 2008).29  So, in the end, I hope one of the lessons to learn from the hypothesis here 

developed is that mathematical diagrams do not form a single natural kind, and thus their 

representational nature must be studied carefully depending on the kind of diagrams one is interested 

in.

Fig 25. Penrose’s graphical tensor notation

 Another set of important issues surround the very notion of depiction and the symbol/picture 

distinction. How deep (or shallow) is it? Is it a distinction that exists only at the level of pre-theoretical intuition, 

or does it have further signi!cance, perhaps at the cognitive level? e empirical data suggests that different 

cognitive capacities underlie our ability to interpret pictures and symbols (Farah 1989, DeLoache and Burns 

1994, DeLoache 1998, Bloom and Markson 1998, Bovet and Vauclair 2000, Uttal et. al. 2006, etc.). However, 

the very distinction is elusive. Some empirical studies on the cognitive aspects of pictures contrast it only with 

linguistic representations, and not with other sorts of visual representations, so there is little empirical basis for an 

answer. e same can be said about the work done on the development of visual representations (Morley & 
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29.. According to Brown (2008), even though they are pictures, these diagrams do not depict what they 
represent. eir content is in!nite, and therefore cannot be depicted, but only symbolized. For similar reasons, at 
least some diagrams used in analysis may not be depictions either, since they are used to represent in!nite 
processes. I am thankful to Guillermo Zambrana and Jean Dhombres for their helpful insights into the history of 
diagrams in analysis. I am not fully convinced, however, that arithmetical diagrams used in so-called visual proofs 
are not depictions. However, the issue deserves more attention than the one I can assign it here.
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Renfrew 2009, White 1992, Hodgson 2000, et. al.), where no distinction is made between depictions and other 

forms of non-linguistic visual representations. Also, notice that even strong advocates of a resemblance account of 

depiction like Abell (2009), recognize that knowledge of pictorial conventions is necessary for the interpretation 

of many cases of depiction. Whoever wants to maintain a sharp distinction between symbols and depictions, 

must explain how the existence of such conventions does not blur the picture/symbol distinction – specially since 

some pictorial conventions can be as complex and systematic as those governing the semantics of some arti!cial 

languages (Greenberg forthcoming).

 Finally, one must also determine what epistemological consequences about geometrical 

knowledge and proof can we get from the thesis that geometrical diagrams depict mathematical entities 

and states of affairs. Is it true, as McCarty claims (unpublished), that the depictive character of diagrams 

helps us escape the epistemological limitations of mathematical formalism? Are mathematical depictions 

good news for the realist, and maybe offer a way out of Benacerraff’s dilemma, as Brown (2008) 

suggests? Or is Kitcher (1984) right in claiming that using diagrams in proof threatens its a-priori 

character? Notice that depiction is not a factive relation. In consequence, we cannot derive the existence 

of geometrical objects from the fact that geometrical diagrams are depictions. Pictures of non-existent 

objects are not uncommon, so it might still be the case that the mathematical entities depicted in 

geometrical diagrams do not exist. In other words, the thesis defended here is amenable to both 

platonists and nominalists.30  In general, more work is necessary to !t the thesis that geometrical 

diagrams are depictions in a broader philosophical account of mathematics.
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30. is is not a problem for resemblance based accounts of depiction, which can make sense of this sort of 
depiction in several ways (Hopkins 1994). For example, it can amend its notion of visual resemblance so that a 
picture can be said to resemble a non-existent object if it shares some of the visual properties it would have if it 
existed (Abell 2009).
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