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Abstract Recently it has been argued that a correct

reading of the quantum fluctuations of the vacuum could

lead to a solution to the cosmological constant prob-

lem. In this work we critically examine such a pro-

posal, finding it questionable due to conceptual and

self-consistency problems, as well as issues with the

actual calculations. We conclude that the proposal is

inadequate as a solution to the cosmological constant

problem.
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1 Introduction

Measurements of the brightness-redshift relation of type

Ia supernovae in the 1990s led scientists to uncover

the accelerated expansion of the universe [1,2,3,4,5,6];

other observations supporting the discovery include [7,

8,9,10]. Within general relativity, the accelerated ex-

pansion can be accounted for by the inclusion of a cos-

mological constant, which is equivalent to the introduc-

tion of a uniformly distributed form of energy, usually

referred to as “dark energy”. Since there is no evidence

for a spatiotemporal variation of such a dark compo-

nent [7,11,6,12], the cosmological constant seems to be

the simplest and most favored explanation for the phe-

nomenon1. In the next few years, substantial efforts will
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1Recent analysis [13,14] have uncovered certain tension
among observations at different epochs that could be inter-

be made to determine if a more sophisticated dynamical

scenario is required [18,19,20].

From the theoretical point of view, considerations

within quantum field theory (QFT) lead to the so-called

cosmological constant problem [21,22,23,24]. The issue

amounts to a vast disagreement between the small ob-

served value of the cosmological constant and the large

theoretical prediction for the quantum vacuum energy

density—which is supposed to act as a cosmological

constant. The point is that the effective cosmological

constant, the one associated with the expansion rate

we observe, can be naturally expected to be composed

of a bare value plus the quantum vacuum energy contri-

bution. The problem is that the latter is calculated to

be between 50 and 120 orders of magnitude larger than

the value obtained from cosmological observations. As

a result, in order to account for the observed value,

the bare cosmological constant must be fine-tuned with

extreme precision. This, in short, is the cosmological

constant problem.

Recently, [25] introduced a proposal for a possible

solution to the problem. In such a work it is argued that,

by taking seriously the non-renormalized energy den-

sity predicted by QFT, and by assuming that it grav-

itates, one arrives at a constantly fluctuating and ex-

tremely inhomogeneous vacuum energy density–instead

of the uniform density which is usually assumed. Such

a fluctuating energy density is argued to behave dif-

ferently than a cosmological constant. In particular, by

treating it as an inhomogeneous stochastic field, it is

supposed to lead to a spacetime that, at sufficiently

small scales, oscillates between expansion and contrac-

preted as a variation of the dark energy component, e.g. [15,
16,17].
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tion. Such oscillations are however claimed to largely

cancel at macroscopic scales, leaving a residual effect

that, due to the weak parametric resonance of the os-

cillations, results in an accelerated expansion.

A more recent paper [26] improved the original com-

putational methods, allowing for the inclusion of a large

number of scalar and massless fields. A higher num-

ber of fields is motivated by the fact that the Stan-

dard Model of particle physics contains several particle

species, including 28 bosonic field components. In such

a work it is claimed that, with the correct number of

fields and an adequate cut-off, the proposed scenario

leads to predictions that match observations—solving

along the way the cosmological constant problem.

The aim of the present manuscript is to expose a

number of serious problematic aspects of the proposal

in [25,26] (WZU from now on). In order to convey these,

we start in section 2 with a brief review of the standard

account of the cosmological constant problem, which

serves also to introduce the notation we will employ,

etc. Next, in section 3 we review the WZU model and

in section 4 we display what we take to be a list of

severe problems with such a proposal. Finally, in section

5 we present our conclusions. Regarding conventions

and notation, we use a (−,+,+,+) signature for the

spacetime metric and units where c = 1 = ~.

2 The standard account of the cosmological

constant problem

According to general relativity, the relation between

spacetime and matter fields is dictated by Einstein’s

equations

Gab + λgab = 8πGTab, (1)

with Tab the stress-energy tensor of the matter fields,

Gab the Einstein’s tensor, gab the metric and λ the

(bare) cosmological constant (CC).

In the context of QFT, the expectation value of the

stress-energy tensor in the vacuum state is given by

T vac
ab ≡ 〈0|T̂ab|0〉 = −ρvacgab (2)

with ρvac a constant. The form of Eq. (2) is derived from

the fact that, in a flat spacetime, the vacuum is Lorentz

invariant. As a consequence, the vacuum expectation of

T̂ab must be proportional to ηab (the Minkowski metric)

as the latter is the only (0,2) tensor which is Lorentz

invariant. By generalizing the previous argument to a

curved spacetime, relying on the general tenants of the

equivalence principle, one obtains Eq. (2), with ρvac a

constant due to the conservation equation∇a〈T̂ ab〉 = 0.

Now, if we substitute T vac
ab on the right hand side of

Eq. (1), we obtain

Gab + λgab = 8πGT vac
ab . (3)

Moving the term 8πGT vac
ab to the left-hand side of the

previous equation yields

Gab + λeffgab = 0 (4)

with

λeff ≡ λ+ 8πGρvac. (5)

Therefore the effective CC is the sum of the bare CC

plus a contribution from the vacuum energy density.

In the context of an homogeneous and isotropic FLRW

spacetime

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (6)

with a(t) the scale factor, Eq. (4) implies a(t) = a0e
Ht

with H =
√

λeff

3 . That is, the universe expands in an

accelerated manner, with λeff governing the expansion

rate.

What can be said about the value of λeff? Theoret-

ically speaking, going back to Eq. (5) we see that in

order to calculate λeff we need to estimate ρvac. To do

so, one considers contributions from the zero-point en-

ergies of all fundamental quantum fields. Strictly speak-

ing, though, the result one obtains by calculating such

contributions is infinite. It is only after the introduction

of an effective high-energy cut-off Λ that one ends with

a finite value for ρvac. Experimentally speaking, on the

other hand, λeff can be extracted from cosmological ob-

servations, with recent experiments [7] setting the value

at

λeff ' 4.32× 10−84(GeV)2. (7)

The problem, of course, is that the predicted value

of ρvac and the observed value of λeff differ by between

50 and 120 orders of magnitude, depending on the as-

sumptions of the calculation [27]. Thus, one faces the

problem that, in order to match the observed and pre-

dicted values of λeff, one needs to fine tune the bare

cosmological constant with extreme precision so as to

cancel almost all, but not exactly all, the dramatically

large contribution of ρvac. This, in a nutshell, is the CC

problem [21,22,23,24].

There have been proposals to deal with the problem

by invoking protective symmetries, or similar consider-

ations which would ensure a vanishing value for λeff

(see for instance [28]). The problem with said strate-

gies, however, is that they are now invalidated by the

fact that the value extracted from observations clearly

does not vanish.
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It should be noted that, in the above formulation of

the CC problem, it was assumed that vacuum energy

gravitates, i.e., that the zero-point energy encoded in

〈T̂ab〉 acts as a source for the gravitational field. This

is an issue on which there is an ongoing debate [21,

29,30,31,32,23,33,34]. In fact, as noted in [35,36,37,

38], when addressing the problem in the semiclassical

context based on unimodular gravity, vacuum fluctua-

tions of the stress-energy tensor do not gravitate. This

removes the need to contemplate the enormous dis-

crepancy between the observed value obtained from the

cosmological constant and the standard estimates from

the vacuum energy. It is important to note, though,

that the unimodular framework, in which a cosmolog-

ical constant arises simply as an integration constant,

presumably determined by initial conditions, does not,

by itself, offer an explanation for the magnitude of the

dark energy component inferred from cosmological ob-

servations.

3 The WZU model

In this section we present a brief summary of the WZU

proposal for solving the cosmological constant problem.

The model was originally presented in [25] and was later

revisited and improved in [26].

According to [26], the standard assumptions, which

lead to a conflict between the observed value and the

theoretical estimates of the CC, are the following:

1. The total effective cosmological constant λeff is given

(at the order of magnitude level) by the vacuum en-

ergy density generated by zero-point fluctuations of

particle fields. In other words, vacuum fluctuations

must gravitate and contribute significantly to λeff.

2. QFT is an effective field theory description of a more

fundamental, discrete theory, which becomes impor-

tant at some high energy scale Λ.

3. The vacuum expectation value of T̂ab is Lorentz in-

variant.

4. Semiclassical gravity is valid.

The approach proposed in [25,26] to resolve the CC

problem is to negate assumption 3 (see [39,40] for a

recent discussion about this point) and to replace as-

sumption 4 with

4’ Semiclassical stochastic gravity is valid.

The starting point of the WZU analysis is the claim

that, by taking seriously the quantum fluctuations of

T̂ab in the vacuum, one must conclude that the vacuum

energy density is extremely inhomogeneous. To argue

for this, they first note that the vacuum state is not

an eigenstate of the local energy density operator T̂00,

from which they argue that it must contain quantum

fluctuations. To give an estimate of the size of such

fluctuations, in [25] they use a toy model where mat-

ter is described by a single massless real scalar field.

In such a case, they find that, while 〈T̂00〉 ∝ Λ4 (re-

call that Λ is an energy scale and Λ3 is volume−1),

the quantum fluctuations of T̂00, i.e.〈(T̂00 − 〈T̂00〉)2)〉,
are of order 2/3〈T̂00〉2 ∝ Λ8. This enormous magnitude

of the quantum fluctuations associated to T̂00 are then

argued to imply that the vacuum energy density ρvac

varies dramatically in space and time.

The next step in the WZU proposal is to note that

the inhomogeneity of the vacuum invalidates the use

of an homogeneous and isotropic FLRW spacetime. In-

stead they propose to use the inhomogeneous FLRW

metric

ds2 = −dt2 + a(x, t)2(dx2 + dy2 + dz2), (8)

where now the scale factor a(x, t) is a function of space

and time. Moreover, they propose to model the fluctu-

ating quantum energy density by a classical stochastic

field whose stochastic properties are determined by the

quantum expectation values in the vacuum. Given the

metric characterized by Eq. (8) and a stochastic tensor

Tab(x, t), the dynamical equation they then consider is

ä(x, t) +Ω2(x, t)a(x, t) = 0, (9)

where

Ω2(x, t) =
4πG

3

(
T00(x, t) +

1

a2(x, t)

3∑
i=1

Tii(x, t)

)
.

(10)

One can recognize Eq. (9) as a harmonic oscilla-

tor equation for each x, with Ω playing the role of a

time-dependent frequency. For the case where Ω(x, t) is

strictly periodic in time with a period T , the properties

of the solutions of Eq. (9) have been studied in Floquet

theory. Under certain conditions on Ω(x, t), parametric

resonance occurs and the general solution of Eq. (9) is

a(x, t) = c1e
HxtP1(x, t) + c2e

−HxtP2(x, t), (11)

where Hx > 0, c1 and c2 are constants. The P1 and

P2 are purely periodic functions of time with period T .

They are in general functions oscillating around zero.

The amplitude of the first term in Eq. (11) increases ex-

ponentially with time while the second term decreases

exponentially. Therefore, the first term will become dom-

inant and the solution will approach a pure exponential

evolution

a(x, t) ' eHxtP (x, t) (12)
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where the constant c1 was absorbed into P .

In the WZU proposal it is argued that, due to the

stochastic nature of quantum fluctuations, the Ω(x, t)

function is not strictly periodic. However, its behav-

ior, it is claimed, is still similar to that of a periodic

function. That is, Ω is said to exhibit quasiperiodic be-

havior, in the sense that it is always varying around its

mean value on an approximately fixed time scale. This

quasiperiodic behavior of Ω(x, t), it is claimed, should

also lead to parametric resonance behavior, i.e. the so-

lution must take the form

a(x, t) ' eHtP (x, t) (13)

where H is the observable global Hubble expansion

rate, given by the time average of Hx(t),

H =
1

t

∫ t

0

Hx(t′)dt′, (14)

where Hx depends on the spacetime dependent fre-

quency Ω(x, t), but with H a constant.

In addition, P (x, t) is no longer a strictly periodic

function, as in Eq. (11), but a quasiperiodic function

with the same quasiperiod as the time dependent fre-

quency Ω(x, t) (which is estimated to be of order 1/Λ).

Moreover, since H ≥ 0 and P has time average P = 0,

taking the time average of ȧ/a = H + Ṗ /P yields

H = ( ȧa ). As a result of all this, Eq. (13) implies an

exponentially growing scale factor, resulting in an ob-

servable distance scaling L(t) = L(0)eHt, with macro-

scopic acceleration obeying L̈(t)
L(t) = H2.

The rest of the WZU work is devoted to determining

the specific solution P (x, t) and the value of H2 associ-

ated with the relevant matter fields. If it turns out that

H2 ∼ 1 (in Planck units), the model would not resolve

the CC problem. If, on the other hand, H2 ∼ 10−120,

then the model would predict an appropriate order of

magnitude for the observed acceleration.

The case of a single scalar field considered in [25]

leads to

Ω2 =
8πG

3
φ̇2 > 0, (15)

where φ is a classical stochastic field whose statistical

properties are determined by the quantum fluctuations

of the vacuum. It is crucial for the WZU model that Ω2

is positive, otherwise the observed expansion would not

be correctly described by the model. In [26], a more real-

istic model is developed and the numerical calculations

are improved. In particular, they find that, for a uni-

verse with 28 bosonic fields (as in the Standard Model

of particle physics), and with a high-energy cut-off Λ

40 times higher than the Planck energy, they obtain

H ∼ 10−60, which is comparable to the observed value.

Thus, according to the authors of the WZU model, by

taking seriously the quantum fluctuations of the vac-

uum, we might be able to solve the cosmological con-

stant problem.

In order to get a feel for the procedures employed

by WZU to arrive at these conclusions, we start by

considering the case of a single massless scalar field.

For φ̂ a quantum massless scalar field in Minkowski

spacetime, one has

φ̂(x, t) =

∫
d3k

(2π)3/2

1√
2ωk

[
âke
−i(ωkt−k·x) +

+ â†ke
+i(ωkt−k·x)

]
, (16)

where ωk = |k|. The vacuum state |0〉 is then defined

by âk|0〉 = 0 for all k. According to [26], since Eq. (9)

contains no spatial derivatives, one can consider a fixed

point in space and focus only on the time evolution of

a. Therefore, for a fixed x0 one has

φ̂(x0, t) =

∫
d3k

(2π)3/2

1√
2ωk

(
b̂ke
−iωkt + b̂†ke

+iωkt
)
,

(17)

where b̂k ≡ eik·x0 âk. As is done in [26], we omit from

now on the label x0 and rewrite Eq. (17) as

φ̂(t) =

∫
d3k

(2π)3/2

1√
2ωk

(
x̂k cos(ωkt) +

1

ωk
p̂k sin(ωkt)

)
,

(18)

with

x̂k ≡
√

1

2ωk

(
b̂†k + b̂k

)
, (19)

p̂k ≡ i
√
ωk
2

(
b̂†k − b̂k

)
. (20)

Next, the Wigner-Weyl description of quantum me-

chanics is adopted. In this framework, any state can

be represented by a quasi-distribution function, called

Wigner’s function. For the vacuum state characterizing

the field φ̂(t), one can construct the Wigner function

W ({xk}, {pk}, t), where {xk} denotes the set {xk1 , xk2 , . . . }
with all k. The resulting Wigner function is a product

of Gaussians

W ({xk}, {pk}, t) =
1

π

∏
k

e−p
2
k−x

2
k . (21)

In the Wigner representation, the field
˙̂
φ2(t) can be

expressed as a function φ̇2({xk}, {pk}, t). In particular,
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for Ω2 (see Eq. (15)), one has

Ω2({xk}, {pk}, t) =

8πG

3

∫ ∫
d3kd3q

(2π)3
xkxqωkωq sinωkt sinωqt+

+ pkpq cosωkt cosωqt− 2xkpqωk sinωkt cosωqt. (22)

The next crucial step is to assume that Eq. (9) has

an equivalent equation for the quantum operators, i.e.
¨̂a(t) + Ω̂2(t)â(t) = 0, which in the Wigner representa-

tion takes the form

ä+Ω2a+
i

2

∑
k

(
∂Ω2

∂xk

∂a

∂pk
− ∂Ω2

∂pk

∂a

∂xk

)
− 1

8

∑
k,k′

(
∂2Ω2

∂xk∂xk′

∂2a

∂pk∂pk′
+

∂2Ω2

∂pk∂pk′

∂2a

∂xk∂xk′

− 2
∂2Ω2

∂xk∂pk′

∂2a

∂pk∂xk′

)
= 0 (23)

with a and Ω2 the corresponding Wigner transforms

[i.e. a({xk}, {pk}, t) and Ω2({xk}, {pk}, t)].
The numerical analysis begins by discretising k and

randomly sampling {xk} and {pk} with the distribution

of Eq. (21). The discretization is done by considering a

cube of width L in physical space, and restricting the

allowed modes of the field to be harmonics modes of

the box. The frequency of such modes is ω = 2π|n|/L,

with n = (nx, ny, nz) a set of integers. The cutoff fre-

quency Λ induces a cutoff on n given by nmax = LΛ/2π.

The cutoff in momentum space is applied as a sphere

of radius Λ by choosing modes with |n| < nmax. There-

fore, the sets {xk}, {pk} are now labeled as {xn}, {pn},
and they each contains one random number for every

value of n, such that |n| < nmax. After randomly sam-

pling {xn}, {pn}, the Wigner transform of Ω2 can be

obtained from the discrete equivalent of Eq. (22), which

is

Ω2({xn}, {pn}, t) =

[∑
n

√
n(xn sin(nt)− pn cos(nt))

]2

.

(24)

With the expression of Ω2({xn}, {pn}, t) obtained

in the aforementioned manner, the authors of [26] solve

Eq. (23) for a({xn}, {pn}, t). The full procedure is re-

peated for N different sets of random numbers {xn}
and {pn}. Subsequently, they average the N solutions

a({xn}, {pn}, t) and identify the classical value ao(t)

with such an average. Additionally, they propose to

identify the observed value of H with the average ȧ/a

obtained from theN computed solutions a({xn}, {pn}, t).
According to [26], if both N and L increase, then the

average obtained from this method should converge to

the quantum expectation value of the operator â, which

can be computed analytically from the Wigner distri-

bution and the Wigner transform of a. That quantum

average is then identified with the classical value ao. It

is also noted that increasing the number of fields nf ,

results in a total Ω2 that is simply the sum of each

individual Ω2
j , i.e. Ω2 =

∑nf

j Ω2
j .

The employed method is argued to imply that the

average ȧ/a over the N solutions a({xn}, {pn}, t) con-

verges to the quantum expectation value of an operator̂̇a/a in the appropriate limit of large N (and L). The

justification for such an implication is that the quan-

tum expectation value of any operator can be calculated

from the Wigner description of quantum mechanics. In

particular, for the operator ̂̇a/a one has

〈̂̇a/a〉 =

∫ ∏
k

dxkdpk(ȧ/a)[{xk}, {pk}, ]W [{xk}, {pk}, t].

(25)

The outlined procedure yields the main plots and re-

sults of Ref. [26].

4 Problematic aspects of the WZU model

In this section we expose what we take to be the main

problematic aspects of the WZU proposal. We start by

scrutinizing the claim that the vacuum is highly in-

homogeneous, then we explore the way the allegedly

inhomogeneous vacuum is handled via stochastic semi-

classical gravity and we end by dissecting some aspects

of the calculations underlying the WZU proposal.

4.1 Quantum fluctuations and inhomogeneities

As we mentioned in the previous section, the starting

point of the WZU account is the claim that the quan-

tum fluctuations of the vacuum imply a highly inho-

mogeneous vacuum energy density— an idea which is

crucial for their whole construction. In this subsection,

however, we show such a statement to be deeply prob-

lematic. In order to do so, it is useful to be precise

regarding the rules and assumptions at play. In partic-

ular, we find it convenient to begin by explicitly stating

the postulates of quantum mechanics (see for instance,

[41,42,43,44]), which can be summarized as follows:

(i) To every quantum system corresponds a Hilbert space.

(ii) The complete physical state of the system is repre-

sented at all times by a unit vector in the Hilbert

space.

(iii) The physical properties of the system are represented

by Hermitian operators.
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(iv) The time evolution of the system is governed by a

linear, unitary and deterministic equation (e.g., the

Schrödinger equation).

(v) Upon a measurement, the Born rule provides a list

of possible results and their probabilities.

(vi) After a measurement, the state of the system instan-

taneously jumps to the eigenstate of the measured

property with the eigenvalue corresponding to the

measured value.

One of our concerns with the WZU model, as we

will see, is that it seems to inadvertently conflict with

these postulates. Let us explore the issue in detail.

We start by making a fairly obvious observation.

The WZU model takes the initial state of the universe

to be the vacuum |0〉. Such a description, according to

postulate (ii), is assumed to be complete. Now, it is

straightforward to check that the vacuum is completely

homogeneous and isotropic, i.e., that such a state is an-

nihilated by the generators of spatial translations and

rotations. Additionally, it is easy to confirm that the

unitary evolution applied to |0〉 maintains at all times

the original homogeneity and isotropy of the system.

Therefore, the physical state of a system, fully charac-

terized by the vacuum state, is perfectly homogeneous

and isotropic at all times.

The situation, of course, would radically change if

one could somehow rely on postulates (v) and (vi). That

is, if one could argue that some kind of measurement

was performed on the system, upon which the vacuum

changed to a new state, say |Ω〉, that need not be ho-

mogeneous and isotropic |0〉. The inhomogeneous and

anisotropic new state |Ω〉 could then be used to char-
acterize an inhomogeneous spacetime and matter fields

after the time of measurement. The problem, of course,

is that in order to employ postulates (v) and (vi), it is

necessary to introduce some sort of external observer,

which seems impossible in cosmological context at play.

It is clear, then, that in order to obtain an inhomo-

geneous state |Ω〉 from the symmetric vacuum, with-

out invoking observers or measuring apparatuses, one

must depart from the standard interpretation of quan-

tum mechanics described above.

In spite of all this, the WZU position is that, even

in the complete absence of measurements or observers,

the quantum fluctuations of the vacuum imply it being

inhomogeneous. To ague for this they begin by not-

ing that the vacuum state, although an eigenstate of

the global Hamiltonian Ĥ =
∫
d3xT̂00, is not an eigen-

state of the local energy density operator T̂00. From

there they claim that the inhomogeneities arise from

quantum fluctuations encoded in the covariance of the

energy density operator, which is defined as

Cov(T̂00(x), T̂00(y)) = 〈0|{(T̂00(x)− 〈0|T̂00(x)|0〉)
× (T̂00(y)− 〈0|T̂00(y)|0〉)}|0〉, (26)

where the curly brackets {} indicate symmetrization.

If x and y are equal, Eq. (26) yields the variance of

T̂00, which is of the same order of magnitude as 〈T̂00〉2,
i.e. (〈T̂ 2

00〉 − 〈T̂00〉2) ∼ 〈T̂00〉2 ∼ Λ8. Additionally, from

the fact that when the spatial distance between x and y

increases, then Cov(T̂00(x), T̂00(y))→ 0, it is concluded

that the fluctuation at distant x and y are independent.

All these results are taken to indicate that the quantum

vacuum is extremely inhomogeneous.

A general problem with all this is that it is not clear

how one could arrive at the conclusion that the vacuum

energy density is inhomogeneous by inspecting quanti-

ties, such as 〈0|T̂00(x)|0〉 and 〈0|T̂ 2
00(x)|0〉, which can

be formally shown to be independent of x, that is, ex-

actly homogeneous and isotropic. Still, let us explore

the WZU argument in more detail.

In order to argue that the vacuum is inhomoge-

neous, WZU holds that the fluctuation at distant points

are independent. It is easy to see, however, that this

cannot be correct. The total energy is given by the in-

tegral of the energy density over all points, but if the

fluctuations at different points were uncorrelated, the

integral would be equivalent to a random walk—which

generically differs from zero. This, of course, is incom-

patible with the fact that the vacuum is an eigenstate

of the Hamiltonian with eigenvalue 0. To see this in a

simpler system, consider a pair of spin- 1
2 particles in a

singlet state. In analogy with the WZU argument, one

might claim that, since such a state is not an eigenstate

of the spin of each of the particles, then such quantities

would have fluctuations. If so, as each spin has magni-

tude 1
2 with a randomly fluctuating direction, the total

angular momentum would range from 0 to 1. This, of

course, would be incompatible with the fact that the

total spin of the singlet is exactly zero.

What is wrong, then, with the argument by which

one starts from “taking into account that when the spa-

tial distance between x and y increases,

Cov(T̂00(x), T̂00(y))→ 0”

and then concludes that the fluctuation at distant x and

y are independent? The problem is that the covariance

goes to zero not because the correlations disappear but

because they get “diluted”, as more and more points

are involved in the correlation as the distance between

points grows.

On the other hand, when the spatial distance be-

tween x and y decreases, the quantity Cov(T̂00(x), T̂00(y))
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increases (specifically, in Ref. [25] is shown that it in-

creases towards 2/3〈T̂00〉2 when the spatial distance

goes to zero). In the WZU model, that fact is taken to

support the argument that the energy density, which

is associated with the operator T̂00, is extremely inho-

mogeneous. To show that this cannot be the case, let

us explore the issue more generally. In quantum theory,

a two-point function 〈Â(x)B̂(y)〉 is a quantum corre-

lation between the values of two operators, Â and B̂,

associated with events x and y respectively. Given this,

one may wonder if a non-vanishing value of 〈Â(x)B̂(y)〉
could imply some sort of inhomogeneity, that is, if it

could signal that something about the state of the world

is different in x and y. In order to clarify the issue, let us

again examine the question in the much simpler EPR-B

scenario.

Consider the decay of a spin-0 particle at the origin,

taking place along the z axis. The joint state of the two

spin- 1
2 particles is a singlet state |Ψ〉, which is invari-

ant under rotations around the axis of decay. Now, let

us consider vectors n1 and n2 perpendicular to the z

axis, and construct the operators Â, the spin of par-

ticle 1 along direction n1, and B̂, the spin of particle

2 along direction n2. It is easy to see that there is a

non-vanishing quantum correlation between Â and B̂.

In fact, 〈Ψ |ÂB̂|Ψ〉 is proportional to n1 · n2 = cos(θ)

where θ is the angle between the two orientations. The

question we are interested in is if we can take this non-

trivial two-point correlation as an indication that the

symmetry under rotation around the z axis has been

broken.

One might get the impression that this is the case

by assuming that the correlation somehow means that
particle 1 now has a spin along the n1 axis (even if the

sign is still unknown to us) and that particle 2 now has

a spin along the n2 axis. However, what the correla-

tion in fact indicates is that if and when we decide to

measure those spins, the results over a long series of

repeated experiments would lead to statistical correla-

tions between the two sets of results that would go as

cos(θ). Moreover, in the absence of a measurement, the

answer to the question above is negative. That is, in the

absence of a measurement, the state remains |Ψ〉, a fully

rotationally invariant state, in which neither particle 1

nor particle 2 has a definite spin in any direction. It

goes to the core of quantum mechanics that two things

can be correlated, despite not having definite values.

Let us now focus on so-called quantum fluctuations,

which are associated with two-point functions, in the

particular case when the two operators are equal and

are evaluated at the same point, i.e., 〈φ̂2(x)〉. It is well

known that if φ̂ is a quantum field, then φ̂(x) is not de-

fined as an operator on each point x of the spacetime.

In fact, φ̂ is formally well-defined only as a distribution

on spacetime, but the product of two distributions at

the same spacetime point, e.g., φ̂2(x), is intrinsically

ill-defined mathematically. As a consequence 〈φ̂2(x)〉
by itself is divergent. Nonetheless, there are physical

observables in QFT that depend on the expectation

values of φ̂2(x). In particular, for 〈T̂ab(x)〉, which de-

pends quadratically on the fields, one can construct a

well-defined renormalization procedure to obtain mean-

ingful results. It is only in this context where one can

assign some kind of meaning to 〈φ̂2(x)〉. At any rate,

the relevant conceptual aspects of the issue at hand can

be explored in a more elementary scenario, namely the

ground state of the simple harmonic oscillator.

The point we want to make is that an identifica-

tion between quantum fluctuations and actual, phys-

ical inhomogeneities, is questionable (or at least in-

complete). The problem is that the quantum fluctu-

ations cannot be taken to represent physical fluctua-

tions, as they are only a measure of the width of the

quantum state in question. To see this, consider the

ground state of a 1D simple harmonic oscillator, which

clearly has uncertainty in position. The crucial point,

however, is that such an uncertainty does not imply

that the ground state is not symmetric under a reflec-

tion along the origin; instead, the uncertainty is only a

measure of the spread of the results of several position

measurements, performed on an ensemble of identically

prepared systems. As a result, in order to break the

reflection symmetry of a single harmonic oscillator, an

actual measurement of position has to be performed.

In other words, the quantum fluctuations or uncertain-

ties do not, by themselves, indicate that some aspect of

the physical system is undergoing random or stochastic

motion, and as far as a quantum state of the system is

taken to describe it completely, the symmetries of the

quantum state must be taken as also completely charac-

terizing the system to which such a state is associated.

Similarly, the fluctuations or uncertainties in the

vacuum considered by WZU do not, in any way, consti-

tute a departure from homogeneity or isotropy. With-

out an actual, physical process, beyond that imposed

by the unitary dynamics (which clearly does not break

such symmetries), no deviation from the initially ho-

mogeneous state can occur. And since, as we discussed

above, no measurements can happen in this setting,

clearly there is something missing in the WZU account.

We conclude that any stochasticity attributed to the

vacuum necessarily requires the identification of an ob-

server and/or a measurement device external to the sys-

tem. Since it seems impossible to identify such entities

in the cosmological setting, the inhomogeneities consid-

ered by WZU remain obscure. It is often argued that
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decoherence—i.e., the inevitable interaction of a system

with its environment—is able to explain the quantum-

to-classical transition. If so, one might argue that deco-

herence is responsible for the surge of inhomogeneities

in the vacuum. The problem with all this is that de-

coherence by itself is in fact incapable of explaining

this transition, [45,46,47,48,49]. Decoherence operates

within the framework of standard, linear, unitary quan-

tum mechanics. Therefore, it cannot destroy by itself

superpositions or symmetries.

To see this, we note that the argument for the claim

that decoherence can explain the quantum-to-classical

transition is that, for all practical purposes, reduced

density matrices of systems in interaction with an envi-

ronment behave as mixtures. The problem is that those

reduced density matrices behave as mixtures only if one

assumes that, upon measurement, systems behave ac-

cording to the Born rule and the collapse postulate, i.e.,

according to postulates (v) and (vi). Consequently, de-

coherence alone, without any external input that might

be recognized as a measurement, cannot provide a justi-

fication for a stochastic description of the system under

examination. At any rate, the universe, by definition, is

an isolated system. Therefore, no clear candidates for

environmental degrees of freedom to be traced out seem

to be available, [50].

Of course, one might want to go beyond the stan-

dard postulates of quantum theory (and indeed one

needs to do so if one wants to work within a framework

that is not plagued with conceptual difficulties). But in

that case, one has to clearly specify what alternative

approach to quantum theory one is using. Otherwise,

one is simply utilizing a collection of mutually incom-

patible premises, choosing one at a time according to

what one needs to achieve at the corresponding stage.

4.2 Semiclassical gravity and stochasticity

The WZU model, relies on semiclassical ideas for the

treatment of gravity (in the sense of describing space-

time geometry in terms of a classical metric, while char-

acterizing matter fields in term of quantum theory).

Traditional semiclassical gravity (SCG) is based on Ein-

stein’s semiclassical equations [51]

Gab = 8πG〈ψ|T̂ab|ψ〉. (27)

A natural reading of the SCG approach assumes that

spacetime is quantum mechanical at the fundamental

level, but considers that when a metric characterization

is meaningful, one is already well within the classical

realm as far as the gravitational degrees of freedom are

concerned. In other words, SCG must be seen as an

effective theory and not as a fundamental one.

There are, however, some known situations in which

Eq. (27) fails even as an effective theory, such as when

the quantum uncertainties of T̂ab are large compared

to its expectation value. According to the WZU model,

this is the case in the cosmological setting. Consequently,

in such a model, SCG is replaced by stochastic semiclas-

sical gravity (SSCG). That is the main idea behind the

assumption 4’ described in Sect. 3.

The motivation behind the SSCG framework is to

take into account the effects on spacetime of the quan-

tum fluctuations of the stress-energy tensor. One of the

most well-known approaches to SSCG is developed in

Refs. [52,53,54,55,56,57]. The proposal is to consider

the spacetime metric as an open system that interacts

gravitationally with the quantum matter fields, the lat-

ter constituting the environment. As a consequence, the

system will exhibit stochastic dynamics with fluctua-

tions due to the noise induced by the environment. For

simplicity, a perturbative analysis is usually considered.

To the lowest order, SSCG is thus characterized by the

modified Einstein’s semiclassical equations

Gab[g + h] = 8πG〈T̂ab[g + h]〉R + 8πGξab(g), (28)

where g is a metric that results from solving the stan-

dard Einstein’s semiclassical equations, h is a linear per-

turbation and 〈T̂ab〉R refers to the renormalized stress-

energy tensor. The field ξab[g] is a Gaussian stochas-

tic classical noise; its statistical properties are inher-

ited from the quantum fluctuations of the stress-energy

tensor and are taken to be

〈ξab(x)〉s = 0, (29a)

Nabcd(x, y) ≡ 〈ξab(x)ξcd(y)〉s = 〈{t̂ab(x)t̂cd(y)}〉[g]

(29b)

where t̂ab(x) ≡ T̂ab(x) − 〈T̂ab(x)〉 and higher order cu-

mulants are set to zero. It is important to point out that

two notations are being introduced: 〈. . .〉s and 〈. . .〉.
The notation 〈. . .〉s refers to an average associated to

a classical stochastic process. That is, an average over

a suitable ensemble of “possible realizations”, with the

understanding that each individual experiment corre-

sponds to a single unique realization (thus, in the cos-

mological setting at hand, our universe would corre-

spond to a single realization). The notation 〈. . .〉 refers

to the quantum expectation value of an operator. As

can be observed from Eqs. (28) and (29), the stress-

energy quantum fluctuations induce a back-reaction ef-

fect on the spacetime geometry. Specifically, the term

ξab induces a perturbative correction to semiclassical

gravity. Thus, it is assumed that the gravitational field
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is described by gab + hab, with hab a linear perturba-

tion to the metric gab, which is a solution of Eq. (27).

Note that hab is implicitly assumed to be a (classical)

tensor stochastic field. One could also add higher order

corrections to the background geometry by taking into

account higher order stress-energy fluctuations.

An important point regarding the SSCG approach is

that, in order to ensure the consistency of Eq. (29), ξab
must satisfy ∇aξab = 0 (with ∇a the covariant deriva-

tive associated with the background metric gab). In Ref.

[53] it is shown that the fact that ∇aT̂ab = 0 implies

that ∇axNabcd(x, y) = 0. Therefore, applying the covari-

ant derivative to the correlation functions in Eq. (29),

one gets 〈∇aξab〉s = 0 and 〈∇axξab(x)∇cyξcd(y)〉s = 0.

From this, according to Refs. [53,54], one concludes

that ∇aξab is deterministic and equal to the zero vector

field, guaranteeing the consistency of SSCG.

The problem is that the previous argument is not

solid. Consider for simplicity a classical stochastic scalar

variable ϕ(x) that the can only take the values +1 or

-1. Let us further assume that we have a distribution

such that, at each point, ϕ takes those two values with

equal probability, and without correlations between the

values at two distinct points. Clearly, after N → ∞
realizations of ϕ(x), the statistical average of the 1-

point function vanishes, i.e., 〈ϕ(x)〉s = 0. Let us now

focus on the product ϕ(x)ϕ(y). The only two possi-

ble values for such a product are either -1 or +1, and

both occur with equal probability. Hence, after N →
∞ realizations, the statistical average of the 2-point

function also vanishes, i.e., 〈ϕ(x)ϕ(y)〉s = 0. Thus, in

analogy with Eq. (29), we have that 〈ϕ(x)〉s = 0 and

〈ϕ(x)ϕ(y)〉s = 0; nevertheless, ϕ(x) is a never-vanishing
stochastic field, and it is completely non-deterministic.

This is a clear counter example for the argument in the

latter paragraph. Namely, the fact that 〈∇aξab〉s = 0

and 〈∇axξab(x)∇cyξcd(y)〉s = 0, does not necessarily im-

ply that ∇aξab is deterministic and equal to the zero

vector field.2 As a result, given that ∇aξab = 0 does

not necessarily hold for every realization of ξab, is clear

that Eq. (28) cannot be valid for every ξab. This in turn

implies that Eq. (28) is inconsistent for the generic in-

dividual realizations, thus undercutting the program as

a whole.

2Note that the missing aspect of the analysis would be the
consideration of ϕ(x)ϕ(x) and its statistical average. If one
could argue that such a quantity vanishes, one would have
grounds to argue that ϕ(x) might be deterministic and equal
to zero. Of course, that does not hold in our example, where
ϕ(x)ϕ(x) = 1 on every element of the ensemble, and so its
average value. Regarding the situation at hand, one would
have to find a way to argue that 〈∇a

xξab(x)∇c
xξcd(x)〉s = 0

and there seems to be no path for doing so.

The SSCG considered in the WZU model is not the

same as the one characterized by Eqs. (28) and (29), i.e.

the WZU’s model is not based on conventional SSCG.

One particular difference between the two approaches

is that the SSCG framework characterized by Eq. (28)

relies on a perturbative analysis. The WZU model, on

the other hand, deals with a situation that is extremely

inhomogeneous (with (〈T̂ 2
00〉 − 〈T̂00〉2) ∼ 〈T̂00〉2 ∼ Λ8),

implying that its gravitational effects cannot be treated

perturbatively. Recall that the approach used in the

WZU model employs Einstein’s equations with the mat-

ter fields regarded as classical stochastic fields, with

their statistical properties determined by quantum ex-

pectations values. A such, the approach can be regarded

as a nonperturbative version of the SSCG scheme de-

scribed above.

However, conventional SSCG and WZU’s version of

SSCG share the same difficulty, namely that applying

the 4-divergence to each side of the Einstein field equa-

tions (EFE) yields an inconsistency. In WZU’s model,

the corresponding EFE Gab = 8πGTab with metric (8)

lead to an inhomogeneous type of Friedmann equations.

On the other hand the scale factor a(x, t) and the stress-

energy tensor Tab are interpreted as classical stochastic

fields. In particular, the statistical properties of Tab are

supposed to be inherited from the quantum expectation

values, e.g. 〈T̂ab〉 and Eq. (26). For example, the statis-

tical mean of the 00 component of stress-energy tensor,

〈T00(x)〉s, is related to 〈T̂00(x)〉 ' Λ4. Therefore, given

that ∇a〈Tab(x)〉s = 0, the 4-divergence of the statisti-

cal mean of Tab vanishes. At this point, the same prob-

lem that arises in conventional SSCG appears in WZU’s

case. That is, what enters into WZU’s version of EFE

is not the average of the stochastic field, in this case

〈Tab〉s, but a realization of a particular Tab(x) at each

point x. Consequently, quite generically we would have

∇aTab(x) 6= 0, but for any metric and in particular that

of (8) we have ∇aGab(x) = 0; hence one has a deeply

problematic result, because it implies that the semiclas-

sical equations considered are simply inconsistent in the

context of the premises of the setting at hand. Note also

that in WZU’s model one cannot claim that what ap-

pears in the right hand side of EFE is 〈T̂ab〉 ' Λ4 since

that is a homogeneous quantity. On the other hand, in

WZU’s model the left hand side of EFE is supposed

to be associated in a manner not clearly specified with

quantum expectation values of the metric degrees of

freedom, and in fact, that leads to ambiguities in their

final results (near the end of the next subsection we will

be more specific about that latter issue).

We end this subsection by pointing out that the

aforementioned analysis is independent of the discus-

sion presented in Sec. 4.1. That is, even if one were to
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somehow accept that “vacuum quantum fluctuations”

generate an inhomogeneous stochastic Tab, there are in-

consistencies in the WZU’s version of SSCG when using

such stress-energy tensor as a matter source in EFE.

4.3 Some issues with the actual calculations

underlying the WZU proposal

To conclude our critique of the WZU proposal, let us

ignore for the meantime the previous objections and

grant i) that large quantum fluctuations imply a highly

inhomogeneous vacuum energy density and ii) that such

a density, modeled as a classical stochastic field, can be

adequately employed as source in the Einstein equa-

tions. In what follows, we will show the actual calcula-

tions performed by WZU to be incompatible with these

granted assumptions.

The first point we would like to make is that if,

as argued by WZU, the stress-energy variation from a

spacetime point to its neighbors is generically as large

as the stress-energy at the point itself, then it is un-

reasonable to constrain the spacetime metric to have

the particular simple form of Eq. (8). Such a metric

has only one degree of freedom per spacetime point,

rather than the 6 generic degrees of freedom of an un-

constrained metric, so it seems incorrect to expect it to

satisfy Einstein’s equations associated with a random

stress-energy tensor. In fact, even if that was the form

of the metric at some initial time (i.e., if one is given

initial data compatible with such a form at some ini-

tial hypersurface), the extremely large variations of the

stress-energy tensor to the future of that hypersurface

would rapidly modify the spacetime metric producing
large inhomogeneous terms. A concrete problem ema-

nating from all this is the following.

In the WZU model, the solution of Eq. (9) is of

the form a(x, t) = eHtP (x, t), with P a quasi-periodic

function in t. Let us now focus on the initial constraints

given by Einstein’s equations with components 0i (i =

1, 2, 3). Using the solution for a, these equations yield

∂i

(
Ṗ

P

)
= −4πGJi, (30)

where we have introduced the notation

J ≡ (T01, T02, T03).

Now, applying εijk∂j to both sides of the equation, with

εijk the Levi-Civita tensor, leads to a problem: while

the left-hand side vanishes automatically, there is no

reason for the right-hand side to do so. By assumption,

we have a highly inhomogeneous and anisotropic Tab,

fluctuating randomly from point to point, so there is no

reason for it to satisfy εijk∂jT0k = 0. Thus, there is an

incompatibility between the following assumptions: A)

a highly inhomogeneous and fluctuating stress-energy

tensor, and B) the metric ansatz (8).

The authors of the WZU model agree that the use

of the simple inhomogeneous metric of Eq. (8) might

result in inconsistencies. They argue, however, that one

should take the results obtained with it as a “first ap-

proximation”. In principle, we agree with the spirit of

such a proposal (and recalling that for the present anal-

ysis we have left out the problems presented in Sects.

4.1 and 4.2), i.e. that a non-pertubative computation

in the metric and the stress-energy operator may not

be feasible for practical reasons. However, the approx-

imation scheme one is supposed to be applying to the

problem at hand should, at least, involve a clearly iden-

tified small expansion parameter as well as some well

defined scheme allowing for instance the possibly of

studying the backreaction effects in each step of the

approximation. The problem in WZU’s model is that

in practice there is none of that in their supposed ap-

proximation. The model deems Tab to be extremely in-

homogeneous and anisotropic. Hence, in some sense, the

stress-energy tensor is considered in a completely non-

perturbative way in WZU’s model when the intent is

just the opposite. Moreover, there is no small parameter

present that could characterize the alleged approxima-

tion. Therefore, the predictions extracted from this for-

malism cannot really be considered approximations to

any well-defined quantities, so they cannot be trusted.

Specifically, we see no reason to trust the results de-

rived from WZU main equation, i.e. Eq. (9), but at the

same time dismiss the inconsistency derived from Eq.

(30), provided that both equations are obtained from

the same version of EFE.

In [25], more general metrics are analyzed and new

arguments are presented to support the estimates ob-

tained from the metric of Eq. (8). The problem, as we

explain bellow, is that those arguments rely on dubious

identifications between observable quantities, quantum

expectation values and ensemble averages.

For instance, in [25] one finds

ȧ

a
(x, t) =

ȧ

a
(x0, t)− 4πG

∫ x

x0

J(x′, t) · dl′ (31)

where dl′ = (dx′, dy′, dz′) and x0 is an arbitrary spa-

tial point. According to the WZU treatment, from the

above equation, since 〈J〉 = 0, one concludes that 〈ȧ/a〉s
= 0. Such a result is then interpreted as cancellations

of local contractions and expansions of the spacetime

sourced by “quantum fluctuations”. Another example

is the estimation of the difference between the values of

ȧ/a at two fixed spatial points separated by a distance
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of order ∆x ∼ 1/
√
GΛ2. In [25] one finds

∆

(
ȧ

a

)
∼ 4πGJ∆x ∼

√
GΛ2 ∼

√√√√〈( ȧ
a

)2
〉
s

, (32)

in which the first estimation is essentially Eq. (30).

Now, the second estimation comes from associating the

classical value of J with the square root of its quantum

fluctuation, i.e., J =

√
〈Ĵ2〉 ∼ Λ4, and the last estima-

tion is given by associating the square root of the quan-

tum expectation value

√
〈T̂00〉 ∼ Λ2 with the square

root of the classical ensemble average of the quantity

(ȧ/a)2 (this last association is made via Einstein’s equa-

tions with components 00, which is explicitly given by

〈G00〉s = 8πG〈T̂00〉).
The point we would like to make is that estimations

of physical observables from quantum expectation val-

ues, such as those described above, most be handled

with care—particularly in the cosmological context at

hand. It is clear that quantum expectation values can-

not be directly associated with measurement results,

only with averages of measurement results performed

over ensembles of identically prepared systems. In a

cosmological setting, such ensembles are nowhere to be

found. Moreover, it is often the case that the expecta-

tion value is not even a possible value for the result of

a measurement, which always has to be an eigenstate

of the measured quantity.

To conclude we note that, as we have mentioned,

the SSCG used by WZU differs from traditional SCG

or the SSCG represented in Eq. (28). In particular, in

the WZU model, the gravitational degrees of freedom

are treated as quantum operators in some parts of the

calculation. This is illustrated, for example, by the com-

putation of the Wigner transform of ̂̇a/a in order to

obtain the quantum expectation value 〈̂̇a/a〉, as shown

in Eq. (25).3 It is worth noting, as mentioned in [26],

that the results would change if, instead of considering

〈̂̇a/a〉, one focuses on 〈 ˙̂a〉/〈â〉. These ambiguities disap-

pear when adopting a SCG framework in which gravity

is always classical but the matter fields are subjected

to a QFT description.

5 Conclusions

Naive vacuum energy estimates of the value of the cos-

mological constant produce results that are several or-

3 Note that the use of Wigner’s quasi-distribution function
automatically implies that one is going to compute an expec-
tation value of a quantum operator. In other words, Wigner’s
function generically possess negative values, therefore it can-
not be taken to represent in any sense a probability distribu-
tion function for a classical variable.

ders of magnitude larger than those extracted from cos-

mological observations. Severe fine tuning of the bare

cosmological constant seems to be required to deal with

that. Obtaining a deeper understanding of this puzzle

(and perhaps to achieve a final solution) is one of the

major challenges of modern physics. This is because

the cosmological constant problem is likely connected

with several aspects of theoretical physics that can still

be considered open issues. In particular, the resolution

of the cosmological constant problem might be related

with: a complete theory for interacting quantum fields

and renormalization in a curved space-time (see for in-

stance [58]); a full workable theory of quantum gravity,

and/or perhaps other topics [59,60]

The WZU proposal is a valiant attempt to deal with

the cosmological constant problem. Unfortunately, the

proposal is beset by several devastating problems. The

difficulties involve issues that touch on the conceptual

framework of quantum theory, its application to the

cosmological setting, various self-consistency concerns

within stochastic semiclassical gravity and problematic

aspects in the actual calculations.

Recapitulating in some detail, we have argued that:

I) The claim that the quantum fluctuations of the vac-

uum imply a highly inhomogeneous vacuum energy

density, which is a central tenet of the WZU con-

struction, is simply inconsistent with the standard

interpretation of quantum mechanics.

II) The implementation of stochastic semiclassical grav-

ity is not self-consistent because there is no mech-

anism at play to ensure that the stress-energy ten-

sor satisfies the conservation equation in each re-

alization of the stochastic process. Therefore, the

stress-energy tensor is incompatible as a source in

Einstein’s field equations.

III) The equation employed to describe spacetime within

the WZU model is in fact inconsistent with the pos-

tulated, highly fluctuating nature of the stress-energy

tensor. Henceforth, there is no reason to accept the

results derived from one of the equations (which

claim to obtain the correct magnitude of the cosmo-

logical constant), while at the same time, one must

clearly recognize the inconsistency of another one of

the main set of equations employed.

We stress that items II and III hold independently

of item I (which some people may discard as “just phi-

losophy” or plainly reject it based on their preconcep-

tions regarding the foundations on Quantum Mechan-

ics). That is, even if one were to accept all the premises

in WZU’s model (see Sec. 3), items II and III reveal in-

consistencies in such a model. It is thus the inescapable

conclusion that the WZU proposal, at least in its present
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form, is in fact inadequate as a solution to the cosmo-

logical constant problem.

Acknowledgements G.R.B. is supported by CONICET (Ar-
gentina) and he acknowledges support from grant PIP 112-
2017-0100220CO of CONICET (Argentina). G.L. is supported
by CONICET (Argentina) and the National Agency for the
Promotion of Science and Technology (ANPCYT) of Argentina
grant PICT-2016-0081. D.S. acknowledges support during the
elaboration of this manuscript from the FAE-Network of CONA-
CYT, as well as the sabbatical fellowships from CO-MEX-US
(Fullbright-Garcia Robles) and from DGAPA-UNAM (Paspa).
E.O. acknowledges support from UNAM-PAPIIT grant IN102219.

References

1. A.G. Riess, et al., Astron. J. 116, 1009 (1998). DOI
10.1086/300499

2. S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). DOI
10.1086/307221

3. D. Huterer, M.S. Turner, Phys. Rev. D60, 081301 (1999).
DOI 10.1103/PhysRevD.60.081301

4. M. Betoule, et al., Astron. Astrophys. 568, A22 (2014).
DOI 10.1051/0004-6361/201423413

5. D.M. Scolnic, et al., Astrophys. J. 859(2), 101 (2018).
DOI 10.3847/1538-4357/aab9bb

6. T.M.C. Abbott, et al., Astrophys. J. 872(2), L30 (2019).
DOI 10.3847/2041-8213/ab04fa

7. P.A.R. Ade, et al., Astron. Astrophys. 594, A13 (2016).
DOI 10.1051/0004-6361/201525830

8. D.J. Eisenstein, et al., Astrophys. J. 633, 560 (2005).
DOI 10.1086/466512

9. S. Alam, et al., Mon. Not. Roy. Astron. Soc. 470(3), 2617
(2017). DOI 10.1093/mnras/stx721

10. T.M.C. Abbott, et al., Phys. Rev. Lett. 122(17), 171301
(2019). DOI 10.1103/PhysRevLett.122.171301

11. T.M.C. Abbott, et al., Phys. Rev. D99(12), 123505
(2019). DOI 10.1103/PhysRevD.99.123505

12. D. Huterer, D.L. Shafer, Rept. Prog. Phys. 81(1), 016901
(2018). DOI 10.1088/1361-6633/aa997e

13. A.G. Riess, et al., Astrophys. J. 826(1), 56 (2016). DOI
10.3847/0004-637X/826/1/56

14. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scol-
nic, Astrophys. J. 876(1), 85 (2019). DOI 10.3847/
1538-4357/ab1422

15. E. Di Valentino, A. Melchiorri, O. Mena, Phys. Rev.
D96(4), 043503 (2017). DOI 10.1103/PhysRevD.96.
043503

16. G.B. Zhao, et al., Nat. Astron. 1(9), 627 (2017). DOI
10.1038/s41550-017-0216-z

17. E. Di Valentino, Nat. Astron. 1(9), 569 (2017). DOI
10.1038/s41550-017-0236-8

18. R. Laureijs, J. Amiaux, S. Arduini, J.. Auguères,
J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Du-
vet, A. Ealet, et al., ArXiv e-prints (2011). URL http:

//sci.esa.int/euclid

19. D. Spergel, N. Gehrels, J. Breckinridge, M. Donahue,
A. Dressler, B.S. Gaudi, T. Greene, O. Guyon, C. Hirata,
J. Kalirai, N.J. Kasdin, W. Moos, S. Perlmutter, M. Post-
man, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg,
J. Centrella, W. Traub, C. Baltay, J. Colbert, D. Bennett,
A. Kiessling, B. Macintosh, J. Merten, M. Mortonson,
M. Penny, E. Rozo, D. Savransky, K. Stapelfeldt, Y. Zu,
C. Baker, E. Cheng, D. Content, J. Dooley, M. Foote,

R. Goullioud, K. Grady, C. Jackson, J. Kruk, M. Levine,
M. Melton, C. Peddie, J. Ruffa, S. Shaklan, ArXiv e-
prints (2013). URL http://wfirst.gsfc.nasa.gov

20. D. Alonso, et al., (2018). URL http://www.lsst.org

21. S. Weinberg, Reviews of Modern Physics 61, 1 (1989).
DOI 10.1103/RevModPhys.61.1

22. S.M. Carroll, W.H. Press, E.L. Turner, ARA&A 30, 499
(1992). DOI 10.1146/annurev.aa.30.090192.002435

23. J. Martin, Comptes Rendus Physique 13, 566 (2012).
DOI 10.1016/j.crhy.2012.04.008

24. S.E. Rugh, H. Zinkernagel, Stud. Hist. Phil. Sci. B33,
663 (2002). DOI 10.1016/S1355-2198(02)00033-3

25. Q. Wang, Z. Zhu, W.G. Unruh, Phys. Rev. D95(10),
103504 (2017). DOI 10.1103/PhysRevD.95.103504

26. S.S. Cree, T.M. Davis, T.C. Ralph, Q. Wang, Z. Zhu,
W.G. Unruh, Phys. Rev. D98(6), 063506 (2018). DOI
10.1103/PhysRevD.98.063506

27. J.F. Koksma, T. Prokopec. The Cosmological Constant
and Lorentz Invariance of the Vacuum State (2011)

28. S.W. Hawking, Phys. Lett. 134B, 403 (1984). DOI 10.
1016/0370-2693(84)91370-4

29. E. Masso, Phys. Lett. B679, 433 (2009). DOI 10.1016/
j.physletb.2009.08.007

30. N. Dadhich, Pramana 77, 433 (2011). DOI 10.1007/
s12043-011-0163-7

31. E. Bianchi, C. Rovelli. Why all these prejudices against
a constant? (2010)

32. E. Bianchi, C. Rovelli, R. Kolb, Nature 466, 321 (2010).
DOI 10.1038/466321a

33. D. Bernard, A. LeClair, Phys. Rev. D87(6), 063010
(2013). DOI 10.1103/PhysRevD.87.063010

34. M. Cerdonio, C. Rovelli, Int. J. Mod. Phys. D24(12),
1544020 (2015). DOI 10.1142/S0218271815440204

35. S. Weinberg, Gravitation and Cosmology: Principles and
applications af general theory of relativity (John Wiley
and Sons, Inc, New York, 1972)

36. G.F.R. Ellis, H. van Elst, J. Murugan, J.P. Uzan, Clas-
sical and Quantum Gravity 28(22), 225007 (2011). DOI
10.1088/0264-9381/28/22/225007

37. G.F.R. Ellis, General Relativity and Gravitation 46, 1619
(2014). DOI 10.1007/s10714-013-1619-5

38. L. Smolin, Phys. Rev. D80, 084003 (2009). DOI 10.1103/
PhysRevD.80.084003

39. F.D. Mazzitelli, L.G. Trombetta, Phys. Rev. D97(6),
068301 (2018). DOI 10.1103/PhysRevD.97.068301

40. Q. Wang, W.G. Unruh, Phys. Rev. D97(6), 068302
(2018). DOI 10.1103/PhysRevD.97.068302

41. P.A.M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, 1930)

42. J. von Newmann, Mathematische Grundlagen der Quan-
tenmechanik (Springer, Berlin, 1932)

43. D.Z. Albert, Quantum Mechanics and Experience, (Har-
vard University Press), p.30-38 (1994)

44. A. Bassi, G.C. Ghirardi, Phys.Rept. 379, 257 (2003).
DOI 10.1016/S0370-1573(03)00103-0

45. S.L. Adler, eprint arXiv:quant-ph/0112095 (2001)
46. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004). DOI

10.1103/RevModPhys.76.1267
47. J. Bub, Interpreting the quantum world, 1999th edn.

(Cambridge University Press, Cambridge, UK; corrected
edition, 1997)

48. G. Bacciagaluppi, in The Stanford Encyclopedia of Phi-
losophy, ed. by E.N. Zalta, fall 2016 edn. (Metaphysics
Research Lab, Stanford University, 2016)

49. E. Okon, D. Sudarsky, Foundations of Physics 46, 852
(2016). DOI 10.1007/s10701-016-0007-x

http://sci.esa.int/euclid
http://sci.esa.int/euclid
http://wfirst.gsfc.nasa.gov
http://www.lsst.org


13

50. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht,
Reviews of Modern Physics 85, 471 (2013). DOI 10.1103/
RevModPhys.85.471

51. L. Rosenfeld, Nucl. Phys. 40, 353 (1963). DOI 10.1016/
0029-5582(63)90279-7

52. E. Calzetta, E. Verdaguer, Phys. Rev. D59, 083513
(1999). DOI 10.1103/PhysRevD.59.083513

53. R. Martin, E. Verdaguer, Phys. Lett. B465, 113 (1999).
DOI 10.1016/S0370-2693(99)01068-0

54. R. Martin, E. Verdaguer, Phys. Rev. D60, 084008 (1999).
DOI 10.1103/PhysRevD.60.084008

55. A. Roura, E. Verdaguer, Int. J. Theor. Phys. 39, 1831
(2000). DOI 10.1023/A:1003641714822

56. A. Roura, E. Verdaguer, Phys. Rev. D78, 064010 (2008).
DOI 10.1103/PhysRevD.78.064010

57. B.L. Hu, E. Verdaguer, Living Rev. Rel. 11, 3 (2008).
DOI 10.12942/lrr-2008-3

58. I.L. Shapiro, J. Sola, JHEP 02, 006 (2002). DOI 10.1088/
1126-6708/2002/02/006

59. T. Josset, A. Perez, D. Sudarsky, Phys. Rev. Lett.
118(2), 021102 (2017). DOI 10.1103/PhysRevLett.118.
021102

60. A. Perez, D. Sudarsky, Phys. Rev. Lett. 122(22), 221302
(2019). DOI 10.1103/PhysRevLett.122.221302


	Introduction
	The standard account of the cosmological constant problem
	The WZU model
	Problematic aspects of the WZU model
	Conclusions

