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Chaotic scattering from hydrogen atoms in a circularly polarized laser field

Elias Okon, William Parker, Will Chism, and Linda E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 31 May 2002; published 15 November 2002!

We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite
radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom
dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance
of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of
chaos in the dynamics of the atom-field system.
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I. INTRODUCTION

The advent of high-energy lasers has allowed explora
of the dynamics of the laser-atom interaction in parame
regimes where the nonlinear character of the interac
dominates the dynamics. One of the most interesting de
opments is the stabilization of the atoms in high-energy la
fields. For the case of linearly polarized laser fields, stab
zation has been predicted theoretically@1–5# and has been
observed experimentally@6,7#. The origin of this stabiliza-
tion appears to be phase-space structures induced by the
linear laser-field interaction.

Numerical studies@8–15# have shown that stabilizatio
should also occur for atoms interacting with circularly pola
ized ~CP! laser fields, although the underlying dynamics
much more complicated. Poincare´ surfaces of section of the
classical phase space show a very complex mixture of ch
and nonlinear resonance structures@11–14#. For hydrogen
atoms, interacting with CP laser fields, stabilization appe
to be caused by these complex structures which result f
the interaction between the external field and the nonlin
atomic forces@13#. All work done to date on these system
assumes that the laser field extends spatially to infinity.

In this paper, we consider a more realistic spatial dep
dence for the laser field. We introduce a cutoff on the wid
of the laser beam. This then allows us to divide the confi
ration space into a reaction region interior to the beam,
an asymptotic scattering region exterior to the beam. T
dynamics inside the reaction region is nonintegrable and
dynamics in the asymptotic region is integrable. With th
more realistic picture of the geometry of the laser beam,
can probe the atom-laser dynamics using techniques of s
tering theory, and we can ask different questions than th
of previous studies. For example, in Refs.@11,12#, the dy-
namics of the initially bound electron is studied as the la
pulse is turned on, and it is found that the ability of t
electron to ionize is strongly determined by the position
the electron in the complex phase-space structures menti
above. By using scattering theory, we can ask the com
mentary question: for what initial conditions can an incide
electron be captured for a long period of time? As we w
see, the cutoff does not significantly affect the importa
electron-proton dynamics, so the scattered electron prov
a systematic probe of the dynamics in the reaction regio

We begin in Sec. II by developing the classical mod
1050-2947/2002/66~5!/053406~9!/$20.00 66 0534
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used to describe the electron-proton system in the pres
of a circularly polarized laser beam with finite width. In Se
III, we discuss the dynamics outside the influence of the la
beam. In Sec. IV, we look at the effect of the resonan
structures and chaos in the reaction region on scatte
properties of the electron. And finally, in Sec. V, we ma
some concluding remarks.

II. TWO-DIMENSIONAL CLASSICAL MODEL

We investigate the motion of the electron in a hydrog
atom~in the limit of an infinitely massive nucleus! driven by
a CP laser field which has a finite width. The beam m
consist of two linearly polarized laser beams superimpos
so that their Poynting vectors lie along thez axis, and their
electric fields are polarized along thex axis andy axis, re-
spectively. Outside some radiusr ~in thex-y plane!, the elec-
tric field drops to zero. A realistic model for this cutoff is
Gaussian function of the radial distancer along with a pa-
rameter c that determines the rate of decay of the fie
strength. We restrict our model to the two-dimensional pla
of polarization of the laser~the x-y plane!. This simplifica-
tion should capture the most important features of the
namics, i.e., ionization or appearance of stable orbits wh
are expected to occur in that plane. In polar coordina
(pr ,r ,pu ,u) and in atomic units~a.u.!, the planar Hamil-
tonian is given by

H5
1

2 S pr
21

pu
2

r 2 D 2
1

Aa21r 2
1Fre2cr2

cos~u2vt !,

~1!

whereF is the field strength,v is the driving frequency, and
a is a smoothing parameter. We seta50.8 a.u., so the ion-
ization potential is the same as that of hydrogen@10#. A
suitable value for the cutoff parameterc is determined by
experimentally obtainable sizes of focused laser beam sp
The size of the smallest possible laser beam spot is de
mined by the diffraction limit, and cannot be smaller than t
wavelength of the laser. For visible light,~which is the one
employed for the calculations throughout this paper! the pa-
rameterc must be in the order of 1028 a.u. or smaller. How-
ever, because of computational considerations, we usec
51025 a.u. This value ofc is large enough to permit practi
©2002 The American Physical Society06-1
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cal calculations but small enough to retain most of the in
esting structures in the system.

The time dependence of the Hamiltonian can be eli
nated by performing a time-dependent canonical transfor
tion, with generating function

F~pu ,f,pr ,r,t !52pu~f1vt !2prr ~2!

relating lab coordinates (pr ,r ,pu ,u) to a coordinate frame
(Pr ,r,Pf ,f) that rotates with the electric field at a consta
angular velocityv. This leads to the Hamiltonian

H5
1

2 S Pr
21

Pf
2

r2 D 2
1

Aa21r2
1Fr e2cr2

cos~f!2Pfv

5V, ~3!

where the quasienergyV is a conserved energy in this rota
ing frame. If we introduce Cartesian coordinates in the ro
ing frame, @x5r cos(f), y5r sin(f)#, the electric field al-
ways lies along thex axis. Note that the Hamiltonian
depends onf, so the angular momentumPf is not con-
served. In the subsequent discussion, we choose~unless oth-
erwise stated! v50.114 a.u., which corresponds to 400 n
laser excitation, and F50.319 35 a.u. (I 53.58
31013W/cm2) which is a ‘‘moderate’’ intensity associate
with stabilization seen in numerical studies.

In the rotating frame, noninertial forces appear in the s
tem, and lead to a mixing of position and momentum co
dinates. This precludes the construction of a potential-ene
surface in the usual sense. However, as shown in R
@11,12#, it is possible to construct a zero-velocity surfa
~ZVS!, which separates physical from unphysical regions
the phase space. If we recast the Hamiltonian in terms of

FIG. 1. Zero-velocity surface forF50.031 935 a.u.,v50.114
a.u., andc51025 a.u.
05340
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velocitiesṙ5Pr andḟ5Pf /r22v, and then setṙ50 and
ḟ50, we obtain the equation for the ZVS,

VZVS52
1

Aa21r2
2

1

2
v2r21Fr e2cr2

cos~f!. ~4!

The first two terms on the right-hand side of Eq.~4! result
from the atomic force and centrifugal force, respectively, a
have no angular dependence. They form a Coulomb we
small r and a quadratic falloff at larger. The angle-
dependent term, due to the laser field, breaks the rotati
symmetry. Just as was found in Refs.@11,12# for the casec
50, the ZVS can be depicted as a volcano with a confin
‘‘caldera’’ region ~see Fig. 1!. The ZVS helps to identify
exclusion regions in phase space because a particle with
zero velocity cannot intersect the ZVS.

The ZVS possesses two critical points, denoted byx1 and
x2 , that lie along thex axis on opposite sides of the proto
and have quasienergies,V15Vzvs(x1) and V2

5Vzvs(x2), respectively. For any nonzero field,V1

FIG. 2. Poincare´ SOS atV520.451 a.u. for~a! c50 and~b!
c51025 a.u.
6-2
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CHAOTIC SCATTERING FROM HYDROGEN ATOMS IN A . . . PHYSICAL REVIEW A66, 053406 ~2002!
.V2 . Thus, the quasienergyV will fall in one of the three
regions: ~1! V,V2 , ~2! V2<V<V1 , or ~3! V1,V.
Whenv50.114 a.u. andF50.031 935 a.u., we haveV15
20.119 76 a.u. andV2520.469 86 a.u. We will use thes
values in the remainder of this paper. IfV,V2 , the interior
region ~inside the caldera! cannot be reached by an electro
lying outside the ZVS~but still inside the reaction region!.
However, if V.V2 , then some orbits can travel betwee
the exterior region and the caldera and visit the vicinity
the proton.

The system whose dynamics is given by Eq.~3! has two
degrees of freedom. Therefore, it is possible to constru
Poincare´ surface of section~SOS!. We will plot the radial
momentumPr and radial coordinater each timef50 and
f5p (modp). This can be thought of as a plot ofPx vs x,
each timey50 regardless of the sign ofPy . It is also useful
to plot x vs y each timePr50 to obtain information abou
regions of configuration space accessible to the electron
the surfaces of section shown in the subsequent sections
initial conditions generally consist of a range of points w
Pr50 and f50. The value ofr is chosen randomly be
tween 0 and a givenrmax and the initial value ofPf is
determined by the quasienergyV.

Figure 2 shows a comparison of surfaces of section w
and without the cutoff forV520.451 a.u. We note that th
SOS withc51025 in Fig. 2~b!, retains the significant non
linear resonance structures and surrounding chaotic sea
can be seen in Fig. 2~a! and which has been seen by previo
authors@11–14# for the case when the laser field extends
infinity. The large external resonance still exists@14# and the
location of its central fixed point does not change sign
cantly. However, the size of the external resonance and o
chaotic sea surrounding it is reduced. In addition, in Fig. 2~b!
there is a pair of hyperbolic fixed points not present in
system without the cutoff. A plot withV520.50 a.u. and
initial conditions, 64 a.u.<Pr<66 a.u., confined to the
neighborhood of the ‘‘cutoff’’ induced hyperbolic point~see

FIG. 3. A SOS in the neighborhood of the hyperbolic fixed po
induced by the spatial cutoff of the laser field. The initial conditio
lie in the interval 64 a.u.<Pr<66 a.u., withV520.50 a.u. and
c51025 a.u.
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Fig. 3! shows clearly the contracting and expanding dire
tions of the phase space in the neighborhood of the hy
bolic fixed point. By extending the initial conditions furthe
out from the nucleus, but still alongf50, we found yet
another pair of elliptic and hyperbolic points in each side
the nucleus.

III. ASYMPTOTIC SCATTERING REGION

When r is large enough so that the field term can
neglected, the Hamiltonian reduces to an asymptotic Ham
tonianHasym given by

Hasym5
1

2 S Pr
21

Pf
2

r2 D 2
1

r
2Pfv5V. ~5!

This Hamiltonian is equivalent to that of the Kepler proble
~particle in a central attractive inverse square-law force!, as

t

FIG. 4. All graphs in this figure correspond toV520.496 a.u.
and c51025 a.u. ~a! Surface of section,y vs x ~in a.u.! for initial
conditionspx50, 270 a.u.<x<70 a.u.~b! Surface of section,px

vs x ~in a.u.! for the same initial conditions as in~a!.
6-3
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FIG. 5. Scattering data forV520.496 a.u. and initial angular momentumPf
i 54.530 653 3 a.u.~a! Delay timeTD ~in a.u.! vs f0 for

0<f0<2p. ~b! TD vs f0 for 0.702<f0<0.735. ~c! Final angular momentumPf
f ~in a.u.! vs f0 for 0<f0<2p. ~d! Radius of closest

approachr2 ~in a.u.! vs f0 for 0<f0<2p.
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seen in a frame rotating with frequencyv. The equations of
motion of this system can be integrated analytically yield
closed-form solutions to the orbits in the asymptotic regi
The radial component of the motion in the rotating frame
identical to that of the nonrotating frame. However, in t
rotating frame the actual trajectories cease to be conic
tions due to Coriolis forces which are present in the rotat
frame.

Let us consider the dynamics generated by the Ham
tonianHasym. The orbits ofHasymcan be specified uniquel
in terms of three quantities: the two conserved quantitiesV
andPf ~which are both conserved byHasym); and by a third
quantityf0, which is the initial angle of the orbit. The tota
energy of an orbit in the lab frame,E5Vasym1vPf , deter-
mines if that orbit is closed~bounded! or open~unbounded!.
If E,0, the motion is bounded. IfE.0, the motion is un-
bounded and the trajectory comes in from infinity up to
point of closest approach,r5r2 , then returns to infinity.
For E.0, the point of closest approach isr25a(12e),
wherea521/2E ande5A112Pf

2 E is the eccentricity. The
05340
.
s

c-
g

l-

value ofr2 is determined by the total energyE and the total
angular momentumPf .

If we draw a circle of radiusR centered at (x50, y
50), we can determine the time required for an orbit
traverse the interior of the circle after it first enters it atr
5R. Let t be the time to travel fromr5R to r5r2 . It is
straightforward to solve the equation of motion and obtain
analytic expression fort. We find

t5Auau$A~R2r2!~R1r2!1aln@ 2A~R2r2!~R1r2!

1R22a #2aln@ 2euau #%. ~6!

Because of the symmetry of the orbit, the total time the or
spends inside the circle is 2t whenF50.

IV. FRACTAL BEHAVIOR IN THE SCATTERING
PROCESS

We can now use the information about the dynamics wh
F50 to probe the dynamics of the system whenFÞ0. The
6-4
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CHAOTIC SCATTERING FROM HYDROGEN ATOMS IN A . . . PHYSICAL REVIEW A66, 053406 ~2002!
following method is employed. For the case whenFÞ0, an
electron with fixedV andPf and with a range of values fo
f0 is launched inwards from a point (r5R,f5f0). We
chooseR large enough so that it lies in the asymptotic regio
The trajectory enters the circle at timet50, interacts with
the the laser field and atomic forces, and after a finite ti
TR , it leaves the circle. The functional dependence onf0 of
the excursion timeTR , the angular momentumPf

f , and the
distance of closest approach to the nucleus,r2 , are ana-
lyzed. Specifically we numerically generate plots of the d
lay time,TD5TR22t, the final angular momentumPf

f , and
the distance of closest approach,r2 , as a function off0.
The delay timeTD is the actual time the particle spend
inside the circle, minus the time 2t calculated for the trajec
tory with the asymptotic Hamiltonian alone.

Below we explore the dynamics in the quasienergy
gimesV,V2 and V2<V<V1 . In subsequent plots, w
choose the radius of the circle to beR51500.0 a.u., for
which the laser-field term in the Hamiltonian can be saf
neglected. The values off0 are evenly distributed in the
interval@0,2p# and 10 000 different values off0 are chosen.
Below we first consider the regimeV,V2 , and then the
regimeV2<V<V1 .

A. The quasienergy regimeVËVÀ

We begin with quasienergies in the regimeV,V2 ,
where the ZVS divides the phase space into two unconne
areas, the central caldera and the exterior region. ForV5
20.496 a.u., the SOS exhibits a large exterior resonance
shown in Figs. 4~a! and 4~b!. The initial conditions for both
Figs. 4~a! and 4~b! include a line of points atpx50 ranging
from x5270 a.u. tox570 a.u. Although both these plot
show orbits in the interior and exterior regions, this on
happens because some initial points span those two reg
There are no orbits that transit between these regions.

In Fig. 5, we show plots of the delay timeTD , the final
angular momentumPf

f , and the radius of closest approac
r2 , for initial conditions, V520.496 a.u., Pf

i

54.530 653 3 a.u., and 0<f0<2p. These plots show frac
tal behavior for initial angles in the interval 0.395<f0
<2.575. In Fig. 5~b!, we focus on a small interval 0.70 a.
<f0<0.735 a.u. from the fractal segment in Fig. 5~a!. The
fractal behavior continues to repeat itself on smaller sca
In Fig. 5~c!, we show the final angular momentumPf

f for
initial angles in the interval 0<f0<2p. This shows the
same fractal behavior as the delay time. In Fig. 5~d!, we
show the radius of closest approach,r2 , for the range of
initial conditions 0<f0<2p. This also shows fractal be
havior in the interval 0.395<f0<2.575. Note that the elec
tron never gets close to the proton.

As discussed in Refs.@16–18#, fractal behavior in the
scattering properties is an indicator that the electron has
versed a network of heteroclinic tangles~chaotic structures!
as it passes through the reaction region. To see this m
clearly, in Fig. 6, we examine some typical orbits from t
fractal region in Fig. 5. Figure 6~a! shows a surface of sec
tion of px vs x for a set of orbits with initial angular momen
tum Pf

i 54.530 653 3 a.u. and initial angles in the interv
05340
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0.5<f0<1.0. In the SOS, orbits are plotted forf50 and
f5p. These orbits clearly lie along the contracting and e
panding manifolds associated with the exterior resonan
Figure 6~b! shows the path in thex-y plane ~not a SOS!
of a single orbit with initial angular momentumPf

i

54.530 653 3 a.u. and initial anglef051.294 525 6. It is
clearly trapped in the exterior part of the reaction region
a long period of time. Figure 6~c! shows the variation of the
angular momentum of the orbits in Fig. 6~a! as a function
of time.

FIG. 6. Some typical orbits from the fractal regime forV5

20.496 a.u. andPf
i 54.530 653 3 a.u.~a! Surface of section ofpx

vs x ~in a.u.! for 0.5<f0<1.0. ~b! A single trajectory in thex-y
plane for Pf

i 54.530 653 3 a.u. andf051.294 525 6.~c! Pf vs
time t ~in a.u.! for trajectories in the interval 0.5<f0<1.0.
6-5
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Not all initial conditions allow the trajectory to enter th
exterior resonance region. In Figs. 7~a! and 7~b!, we show
plots of the delay timeTD , and the asymptotic angular mo
mentum Pf

f , respectively, as a function off0 for V5

20.496 a.u.,Pf
i 55.0 a.u., and 0<f0<2p. In both cases,

we obtain simple smooth curves. Note thatTD has a large
range of values,21000 a.u.<TD<1500 a.u., and that larg
TD values are associated with small values ofPf

f . On the
other hand, the negative values ofTD correspond to orbits
that receive a large increase in the angular momentumPf ,
in the reaction region, and leave the reaction region m
faster due to the presence of the laser field.

B. The quasienergy regimeVÀÏVÏV¿

Let us now consider the regimeV2 < V < V1 , in
which the caldera and the exterior region are connected
passageway. For some initial conditions, the electron can

FIG. 7. Scattering data forV520.496 a.u. andPf
i 55.0 a.u.~a!

Delay timeTD ~in a.u.! vs f0 for 0<f0<2p. ~b! Final angular
momentumPf

f ~in a.u.! vs f0 for 0<f0<2p.
05340
h
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ter the caldera and come near the proton. In Fig. 8~a!, we
show a surface of section ofx vs y for V520.406 a.u. and
plotted each timepx50. The initial condition includes a line
of points,270 a.u.<x<70 a.u. In Fig. 8~b!, we show a SOS
of px vs x for the same initial conditions used in Fig. 8~a!.
We see that the exterior resonance is still intact but the a
of the regular island is much smaller than in Figs. 4~a! and
4~b!, and it has moved closer to the origin. Also, the ar
affected by the heteroclinic tangles has increased consi
ably. The inward shift of the location of the elliptic fixe
point of the resonance with the increase ofV causes more
orbits to collide with the ZVS, leading to their eventual ch
otic ionization.

In Figs. 9~a! and 9~c!, we show plots of the delay timeTD

and the final angular momentumPf
f , as a function off0 in

the interval 0<f0<2p. All plots in Fig. 9 are for quasien-
ergy V520.406 a.u. and initial angular momentumPf

i

55.0 a.u. We again see a range of fractal behavior in e

FIG. 8. Graphs correspond toV520.406 a.u. andc51025 a.u.
~a! Surface of sectiony vs x for initial conditionspx50 and270
a.u.<x<70 a.u.~b! Surface of sectionpx vs x ~in a.u.! for the same
initial conditions as in~a!.
6-6
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FIG. 9. Scattering data forV520.406 a.u. andPf
i 55.0 a.u.~a! Delay timeTD ~in a.u.! vs f0 for 0<f0<2p. ~b! TD ~in a.u.! vs f0

for 0.47<f0<0.67. ~c! Final angular momentumPf
f ~in a.u.! vs f0 for 0<f0<2p. ~d! Pf

f ~in a.u.! vs f0 for 0.47<f0<0.67.
s
s
t

e

ca
t

th
e

e
th

ro-
not

e
me

orbit

e
l

the
plot. In Fig. 9~a!, we show the delay timeTD for the entire
range of initial angles, 0<f0<2p, and in Fig. 9~b! we fo-
cus on a small interval 0.47<f0<0.67 and magnify the
horizontal scale of one of the unresolved regions. We can
that the function is still not resolved. This clearly suggest
complex structure at even smaller scales, and we find tha
be the case. In Figs. 9~c! and 9~d!, we show plots for the
angular momentumPf

f of the scattered electron for the sam
two ranges of the initial angle as shown in Figs. 9~a! and
9~b!. The angular momentum of the scattered particle
take on a huge range of values after passing through
resonance region. For a small range of initial angles,
electron does enter the interior region and comes relativ
close to the proton.

In order to confirm that the fractal behavior in theTD
plots is related to the chaotic structures in the phase spac
is useful to construct a SOS for the orbits that generate
fractal structures in Fig. 9. In Fig. 10~a! we show a SOS of
05340
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a
to

n
he
e
ly

, it
e

px vs x for initial condidtions,V520.406 a.u.,Pf
i 55.0

a.u., and 0.47<f0<0.67. Only those orbits withẏ.0 are
shown. These orbits get trapped for long time in the hete
clinic tangles associated with the exterior region and do
enter the caldera. In Fig. 10~b! we show a single orbit, with
Pf

i 55.0 a.u. andf050.5. This orbit does not enter th
caldera, but does get delayed for a significant period of ti
in the reaction region. In Fig. 10~c!, we show the angular
momentum as a function of time for the orbits in Fig. 10~a!.
The angular momentum appears to decrease while the
is trapped in the exterior resonance region.

In Fig. 11~a!, we show a single orbit which enters th
caldera for the caseV520.406 a.u., taken from the fracta
region with Pf

i 55.0 a.u. andf055.585 68 a.u. This orbit
gets trapped for a long time inside the caldera. In Fig. 11~b!,
we show the angular momentum as a function of time for
same orbit as in Fig. 11~a!. It is interesting that during the
6-7
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OKON et al. PHYSICAL REVIEW A 66, 053406 ~2002!
time the orbit spends inside the caldera, it has a very
angular momentum as one might expect since the radius
mains small.

V. CONCLUSIONS

We have examined the classical dynamics of an elect
proton system~the hydrogen atom when they are boun!
which interacts with an intense circularly polarized las
beam of finite radius. We have explored dynamics of
system by launching electrons into the reaction region

FIG. 10. Some typical orbits which get trapped in the exter
region forV520.406 a.u.~a! px vs x ~in a.u.! for Pf

i 55.0 a.u. and
0.47<f0<0.67. ~b! x vs y ~not a SOS! for a single orbit withPf

i

55.0 a.u. andf050.55. ~c! Pf vs time t for Pf
i 55.0 a.u. and

f050.55 ~in a.u.!.
05340
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plotting the delay time, the exiting angular momentum, a
the distance of closest approach as a function of the incid
angle. The dynamics has two distinct regimes depending
the value of the quasienergy of the incident particle. Below
certain cutoff value of the quasienergy, no initial conditio
will allow the incident electron to come close to the proto
Above that cutoff value quasienergy, a finite range~which
grows with increasing value of quasienergy! can come arbi-
trarily close to the proton~this separation of regimes wa
also noted in Refs.@11–14#!.

We have found that incident orbits can exhibit fractal b
havior in their delay time, the exiting angular momentu
and the distance of closest approach as a function of
incident angle after they exit the reaction region. The appe
ance of fractal behavior in the scattering plots is closely
lated to the trapping of incoming orbits in the chaotic stru
tures surrounding the stable islands in the phase space.

Using scattering theory to probe the electron-proton
namics gives a systematic way of finding the chaotic regi

r

FIG. 11. A typical orbit from the fractal regime forV5

20.406 a.u. and initial angular momentumPf
i 55.0 a.u. ~a! A

single trajectory in thex-y plane~not a SOS! for Pf
i 55.0 a.u. and

f055.585 68.~b! Pf vs timet ~in a.u.! for the same orbit as in~a!.
6-8
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of the phase space and regions that can trap the electro
long periods. Use of scattering theory can also give so
information about ionizing orbits, since for every incide
orbit, there will be a time-reversed ionizing orbit. Our resu
show a strong directional dependence of initial states that
be delayed for long periods in the reaction region. It mig
be possible to observe this directional dependence in
scattering of electrons off a proton beam as it passes thro
a circularly polarized laser beam.
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